Multi-Sensor Approach to Improve Bathymetric Lidar Mapping of Semi-Arid Groundwater-Dependent Streams: Devils River, Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Acquisition
2.3. Optical Properties of Water
2.4. Data Analysis
3. Results
3.1. Water Transparency and Turbidity
3.2. Water-Surface Detection Analysis
3.3. GPS Quality Control
3.4. Lidar Bathymetry versus GPS Measurements
3.5. Lidar Bathymetry versus Sonar
3.6. Ground Penetrating Radar
4. Discussion
5. Conclusions
- the probability of measuring depth through aquatic vegetation with all available methods, and
- the confirmation that all integrated remote sensing datasets are accurate.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khorram, S.; Nelson, S.A.C.; Koch, F.H.; van der Wiele, C.F. Remote Sensing; Springer Briefs in Space Development; Springer US: Boston, MA, USA, 2012; ISBN 978-1-4614-3102-2. [Google Scholar]
- Thenkabail, P. Remote Sensing Handbook—Three Volume Set, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-4822-8267-2. [Google Scholar]
- Mouw, C.B.; Greb, S.; Aurin, D.; DiGiacomo, P.M.; Lee, Z.; Twardowski, M.; Binding, C.; Hu, C.; Ma, R.; Moore, T.; et al. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions. Remote Sens. Environ. 2015, 160, 15–30. [Google Scholar] [CrossRef]
- Dauwalter, D.C.; Fesenmyer, K.A.; Bjork, R.; Leasure, D.R.; Wenger, S.J. Satellite and Airborne Remote Sensing Applications for Freshwater Fisheries. Fisheries 2017, 42, 526–537. [Google Scholar] [CrossRef]
- Höfle, B.; Rutzinger, M. Topographic airborne LiDAR in geomorphology: A technological perspective. Z. Geomorphol. Suppl. Issues 2011, 55, 1–29. [Google Scholar] [CrossRef]
- Karp, S.; Stotts, L.B. Fundamentals of Electro-Optic Systems Design: Communications, Lidar, and Imaging; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-139-10885-0. [Google Scholar]
- Killinger, D.K. Lidar (light detection and ranging). In Laser Spectroscopy for Sensing; Baudelet, M., Ed.; Elsevier: Berkeley, CA, USA, 2014; pp. 292–312. ISBN 978-0-85709-273-1. [Google Scholar]
- Muirhead, K.; Cracknell, A.P. Airborne lidar bathymetry. Int. J. Remote Sens. 1986, 7, 597–614. [Google Scholar] [CrossRef]
- Guenther, G.C. Airborne Lidar Bathymetry. In Digital Elevation Model Technologies and Applications: The DEM Users Manual; Maune, F.D., Ed.; American Society of Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2007; pp. 253–320. [Google Scholar]
- Hilldale, R.C.; Raff, D. Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf. Process. Landf. 2008, 33, 773–783. [Google Scholar] [CrossRef]
- Kinzel, P.; Legleiter, C. sUAS-Based Remote Sensing of River Discharge Using Thermal Particle Image Velocimetry and Bathymetric Lidar. Remote Sens. 2019, 11, 2317. [Google Scholar] [CrossRef] [Green Version]
- Legleiter, C.J. Remote measurement of river morphology via fusion of Lidar topography and spectrally based bathymetry. Earth Surf. Process. Landf. 2012, 37, 499–518. [Google Scholar] [CrossRef]
- Saylam, K.; Brown, R.A.; Hupp, J.R. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 191–200. [Google Scholar] [CrossRef]
- Ogashawara, I.; Mishra, D.R.; Gitelson, A.A. (Eds.) Remote Sensing of Inland Waters. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Berkeley, CA, USA, 2017; pp. 1–24. ISBN 978-0-12-804644-9. [Google Scholar]
- Saylam, K.; Hupp, J.; Andrews, J.; Averett, A.; Knudby, A. Quantifying Airborne Lidar Bathymetry Quality-Control Measures: A Case Study in Frio River, Texas. Sensors 2018, 18, 4153. [Google Scholar] [CrossRef] [Green Version]
- Lague, D.; Feldmann, B. Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis. In Developments in Earth Surface Processes; Elsevier: Berkeley, CA, USA, 2020; Volume 23, pp. 25–54. ISBN 978-0-444-64177-9. [Google Scholar]
- Saylam, K.; Hupp, J.R.; Averett, A.R.; Gutelius, W.F.; Gelhar, B.W. Airborne lidar bathymetry: Assessing quality assurance and quality control methods with Leica Chiroptera examples. Int. J. Remote Sens. 2018, 39, 2518–2542. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, W.; Lu, L.; Wu, M. Calibration Technology of Palmer Scanning Airborne Lidar with Vector Measurements. In Proceedings of the 2010 IEEE International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 13–14 March 2010; pp. 775–778. [Google Scholar]
- Busato, L.; Boaga, J.; Peruzzo, L.; Himi, M.; Cola, S.; Bersan, S.; Cassiani, G. Combined geophysical surveys for the characterization of a reconstructed river embankment. Eng. Geol. 2016, 211, 74–84. [Google Scholar] [CrossRef]
- Słowik, M. Reconstructing migration phases of meandering channels by means of ground-penetrating radar (GPR): The case of the Obra River, Poland. J. Soils Sediments 2011, 11, 1262. [Google Scholar] [CrossRef] [Green Version]
- Carrick Utsi, E. The Effect of Water and Air. In Ground Penetrating Radar; Daniels, D.J., Ed.; Elsevier: Berkeley, CA, USA, 2017; pp. 39–50. ISBN 978-0-08-102216-0. [Google Scholar]
- Green, R.T.; Bertetti, F.P.; Miller, M.S. Focused groundwater flow in a carbonate aquifer in a semi-arid environment. J. Hydrol. 2014, 517, 284–297. [Google Scholar] [CrossRef]
- Robertson, S.; Wolaver, B.D.; Caldwell, T.G.; Birdsong, T.; Smith, R.; Hardy, T.; Lewey, J.; Joplin, J. A multidisciplinary approach to developing the science and public support needed to maintain instream flows in the Devils River Basin, Texas. In Multispecies and Watershed Approaches to Freshwater Fish Conservation; Symposium 91; Dauwalter, D.C., Birdsong, T.W., Garrett, G.P., Eds.; American Fisheries Society: Bethesda, MD, USA, 2019; pp. 293–314. [Google Scholar]
- Robertson, M.S.; Winemiller, K.O. Habitat Associations of Fishes in the Devils River, Texas. J. Freshw. Ecol. 2003, 18, 115–127. [Google Scholar] [CrossRef]
- Abolt, C.; Caldwell, T.; Wolaver, B.; Pai, H. Unmanned aerial vehicle-based monitoring of groundwater inputs to surface waters using an economical thermal infrared camera. Opt. Eng. 2018, 57, 053113. [Google Scholar] [CrossRef]
- Caldwell, T.G.; Wolaver, B.D.; Bongiovanni, T.; Pierre, J.P.; Robertson, S.; Abolt, C.; Scanlon, B.R. Spring discharge and thermal regime of a groundwater dependent ecosystem in an arid karst environment. J. Hydrol. 2020, 587, 124947. [Google Scholar] [CrossRef]
- Westfeld, P.; Richter, K.; Maas, H.-G.; Weiß, R. Analysis of the effect of wave patterns on refraction in airborne Lidar bathymetry. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 133–139. [Google Scholar] [CrossRef]
- Milsom, J.; Eriksen, A. Field Geophysics: The Geological Field Guide Series, 4th ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-74984-5. [Google Scholar]
- Mancuso, S. (Ed.) Measuring Roots: An Updated Approach; Life sciences; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-22066-1. [Google Scholar]
- Sambuelli, L.; Bava, S. Case study: A GPR survey on a morainic lake in northern Italy for bathymetry, water volume and sediment characterization. J. Appl. Geophys. 2012, 81, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Jonasz, M.; Fournier, G.R. Light Scattering by Particles in Water: Theoretical and Experimental Foundations, 1st ed.; Elsevier, Academic Press: Amsterdam, The Netherlands, 2007; ISBN 978-0-12-388751-1. [Google Scholar]
- Smith, R.C.; Baker, K.S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 1981, 20, 177–184. [Google Scholar] [CrossRef]
- Lee, Z.-P. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res. 2005, 110, 1–9. [Google Scholar] [CrossRef]
- Kitchener, B.G.; Wainwright, J.; Parsons, A.J. A review of the principles of turbidity measurement. Prog. Phys. Geogr. Earth Environ. 2017, 41, 620–642. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Shang, S.; Du, K.; Wei, J. Resolving the long-standing puzzles about the observed Secchi depth relationships: Resolving puzzles about Secchi depth relationships. Limnol. Oceanogr. 2018, 2321–2336. [Google Scholar] [CrossRef]
- Poole, H.H.; Atkins, W.R.G. Photo-electric Measurements of Submarine Illumination throughout the Year. J. Mar. Biol. Assoc. UK 1929, 16, 297–324. [Google Scholar] [CrossRef] [Green Version]
- Gallegos, C.L.; Werdell, P.J.; McClain, C.R. Long-term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- AHAB. Bathymetric LiDAR Systems; Airborne Hydrography AB: Jonkoping, Sweden, 2014; Available online: http://www.bshc.pro/media/documents/lidar2014/04_140527_AHAB_Bathymetric_LiDAR.pdf (accessed on 25 July 2020).
- O’Dell, J.W. Method 180.1: Determination of Turbidity by Nephelometry; Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1993; pp. 1–8. Available online: https://www.epa.gov/sites/production/files/2015-08/documents/method_180-1_1993.pdf (accessed on 25 July 2020).
- Beć, K.B.; Huck, C.W. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front. Chem. 2019, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Cottin, A.G.; Forbes, D.L.; Long, B.F. Shallow seabed mapping and classification using waveform analysis and bathymetry from SHOALS lidar data. Can. J. Remote Sens. 2009, 35, 422–434. [Google Scholar] [CrossRef]
- Eren, F.; Pe’eri, S.; Rzhanov, Y.; Ward, L. Bottom characterization by using airborne lidar bathymetry (ALB) waveform features obtained from bottom return residual analysis. Remote Sens. Environ. 2018, 206, 260–274. [Google Scholar] [CrossRef]
- Allouis, T.; Bailly, J.-S.; Pastol, Y.; Le Roux, C. Comparison of Lidar waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals. Earth Surf. Process. Landf. 2010, 35, 640–650. [Google Scholar] [CrossRef]
- Pan, Z.; Glennie, C.; Hartzell, P.; Fernandez-Diaz, J.; Legleiter, C.; Overstreet, B. Performance assessment of high resolution airborne full waveform Lidar for shallow river bathymetry. Remote Sens. 2015, 7, 5133–5159. [Google Scholar] [CrossRef] [Green Version]
- Saylam, K.; Hupp, J.R.; Aaron, R.A. Quantifying the Bathymetry of the Lower Colorado River Basin, Arizona, with Airborne Lidar; Researchgate: Baltimore, MD, USA, 2017; Volume 1, pp. 1–11. [Google Scholar]
- Habib, A. Accuracy, quality assurance and quality control of Lidar data. In Topographic Laser Ranging and Scanning: Principles and Processing; Thot, C.K., Shan, J., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2009; pp. 269–294. ISBN 978-1-4200-5142-1. [Google Scholar]
- Delaunay, P.B. Sur la Sphere vide—A la Memoire de Georges Voronoi. Bull. Acad. Sci. URSS 1932, 6, 793. Available online: http://galiulin.narod.ru/delaunay_pdf (accessed on 25 July 2020).
- Chew, L.P. Constrained delaunay triangulations. Algorithmica 1989, 4, 97–108. [Google Scholar] [CrossRef]
- Klein, L.; Swift, C. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag. 1977, 25, 104–111. [Google Scholar] [CrossRef]
- Serkan, S.; Borecky, V. Estimation Methods for Obtaining GPR Signal Velocity. In Proceedings of the Third International Conference on Advances in Civil, Structural and Environmental Engineering—ACSEE 2015, Institute of Research Engineers and Doctors, Zurich, Switzerland, 10–11 October 2015; pp. 43–47. [Google Scholar]
- Spilker, J.J., Jr.; Axelrad, P.; Parkinson, B.W.; Enge, P. (Eds.) Global Positioning System: Theory and Applications; American Institute of Aeronautics and Astronautics: Washington, DC, USA, 1996; Volume I, ISBN 978-1-56347-106-3. [Google Scholar]
- Kaufmann, J.E. USGS Lidar Base Specification. 2019. Available online: https://www.usgs.gov/media/files/lidar-base-specification-version-21 (accessed on 25 July 2020).
- Forfinski-Sarkozi, N.A.; Parrish, C.E. Active-Passive Spaceborne Data Fusion for Mapping Nearshore Bathymetry. Photogramm. Eng. Remote Sens. 2019, 85, 281–295. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gao, H.; Jasinski, M.F.; Zhang, S.; Stoll, J.D. Deriving High-Resolution Reservoir Bathymetry from ICESat-2 Prototype Photon-Counting Lidar and Landsat Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7883–7893. [Google Scholar] [CrossRef]
In Situ Location | Latitude (N) | Longitude (W) | Secchi Depth (Zsd, m) | Sonar Depth (m) | Turbidity (NTU) | Kd (m−1) | Dmax (m) |
---|---|---|---|---|---|---|---|
L1 | 29°53′52″ | 100°59′50″ | 2.1 | 2.2 | 1.85 | 0.76 | 1.97 |
L2 | 29°54′08″ | 101°00′02″ | 1.4 | 2.0 | 3.35 | 1.14 | 1.31 |
L3 | 29°54′04″ | 100°59′59″ | VB | 1.1 | 2.86 | NA | NA |
L4 | 29°53′55″ | 100°59′51″ | 1.8 | 2.4 | 1.92 | 0.89 | 1.69 |
L5 | 29°53′32″ | 100°59′41″ | VB | 1.1 | 1.69 | NA | NA |
L6 | 29°53′03″ | 100°59′38″ | 2.9 | 5.8 | 1.31 | 0.55 | 2.72 |
L7 | 29°52′58″ | 100°59′38″ | VB | 1.0 | 1.46 | NA | NA |
L8 | 29°52′49″ | 100°59′38″ | VB | 1.8 | 6.14 | NA | NA |
L9 | 29°52′36″ | 100°59′33″ | 2.0 | 3.3 | 2.79 | 0.80 | 1.88 |
L10 | 29°52′20″ | 100°59′37″ | 1.6 | 2.4 | 2.86 | 1.00 | 1.50 |
L11 | 29°52′16″ | 100°59′36″ | VB | 1.5 | 4.13 | NA | NA |
Basin | CL0/CL5 Sample Ratio | Number of Patches | Sample Range (m) | Mean Elevation Difference (m) | Standard Deviation (m) |
---|---|---|---|---|---|
Upper | 1:37 | 32,339 | 1.87 | 0.085 | 0.16 |
Lower | 1:11 | 100,063 | 1.02 | 0.094 | 0.10 |
Surface | Samples | Sample Range (m) | Mean Difference (d, m) | RMSE (m) | R2 |
---|---|---|---|---|---|
Bottom | 102/487 | 0.82 | −0.03 | 0.12 | 0.86 |
Basin | Degrees of Freedom | Sample Range (m) | Mean Elevation Difference (cm) | RMSE (m) | R2 |
---|---|---|---|---|---|
Upper | 4910 | 2.75 | 11 | 0.27 | 0.78 |
Lower | 2330 | 5.54 | 9 | 0.36 | 0.72 |
EM Velocity (cm/ns) | Permittivity (ε) | Median Depth Difference (m) | Sample Range (m) | Mean Depth Lidar/GPR (m) | RMSE (m) | Depth, R2 |
---|---|---|---|---|---|---|
3.3 | 80 | 0.05 | 2.44 | 1.99/1.77 | 0.16 | 0.92 |
3.7 | 78.4 | 0.05 | 2.73 | 1.99/1.99 | 0.18 | 0.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saylam, K.; R. Averett, A.; Costard, L.; D. Wolaver, B.; Robertson, S. Multi-Sensor Approach to Improve Bathymetric Lidar Mapping of Semi-Arid Groundwater-Dependent Streams: Devils River, Texas. Remote Sens. 2020, 12, 2491. https://doi.org/10.3390/rs12152491
Saylam K, R. Averett A, Costard L, D. Wolaver B, Robertson S. Multi-Sensor Approach to Improve Bathymetric Lidar Mapping of Semi-Arid Groundwater-Dependent Streams: Devils River, Texas. Remote Sensing. 2020; 12(15):2491. https://doi.org/10.3390/rs12152491
Chicago/Turabian StyleSaylam, Kutalmis, Aaron R. Averett, Lucie Costard, Brad D. Wolaver, and Sarah Robertson. 2020. "Multi-Sensor Approach to Improve Bathymetric Lidar Mapping of Semi-Arid Groundwater-Dependent Streams: Devils River, Texas" Remote Sensing 12, no. 15: 2491. https://doi.org/10.3390/rs12152491
APA StyleSaylam, K., R. Averett, A., Costard, L., D. Wolaver, B., & Robertson, S. (2020). Multi-Sensor Approach to Improve Bathymetric Lidar Mapping of Semi-Arid Groundwater-Dependent Streams: Devils River, Texas. Remote Sensing, 12(15), 2491. https://doi.org/10.3390/rs12152491