Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. GOSAT Observations
2.2.2. OCO-2 Observations
2.2.3. CarbonTracker Measurements
2.3. Methods
3. Results and Discussion
3.1. Comparison of NOAA CarbonTracker with GOSAT and OCO-2
3.1.1. Monthly Averaged Time-Series Comparison
3.1.2. Seasonal Climatology Comparison
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Umezawa, T.; Matsueda, H.; Sawa, Y.; Niwa, Y.; Machida, T.; Zhou, L. Seasonal evaluation of tropospheric CO2 over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements. Atmos. Chem. Phys. 2018, 18, 14851–14866. [Google Scholar] [CrossRef] [Green Version]
- Santer, B.D.; Painter, J.F.; Bonfils, C.; Mears, C.A.; Solomon, S.; Wigley, T.M.L.; Gleckler, P.J.; Schmidt, G.A.; Doutriaux, C.; Gillett, N.P.; et al. Human and natural influences on the changing thermal structure of the atmosphere. Proc. Natl. Acad. Sci. USA 2013, 110, 17235–17240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stocker, B.D.; Roth, R.; Joos, F.; Spahni, R.; Steinacher, M.; Zaehle, S.; Bouwman, L.; Xu-Ri; Prentice, I.C. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Chang. 2013, 3, 666–672. [Google Scholar] [CrossRef]
- Ballantyne, A.P.; Alden, C.B.; Miller, J.B.; Trans, P.P.; White, J.W.C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 2012, 488, 70–73. [Google Scholar] [CrossRef]
- Dlugokencky, T.P. (Ed.) Trends in Atmospheric Carbon Dioxide. Available online: Ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt (accessed on 3 May 2020).
- Were, D.; Kansiime, F.; Fetahi, T.; Cooper, A.; Jjuuko, C. Carbon Sequestration by Wetlands: A Critical Review of Enhancement Measures for Climate Change Mitigation. Earth Syst. Environ. 2019, 3, 327–340. [Google Scholar] [CrossRef]
- Keeling, C.D.; Piper, S.C.; Heimann, M. A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. ASP Clim. Var. Pacific West. Am. 1989, 55, 305–363. [Google Scholar]
- Khalil, A.; Javed, A.; Bashir, H. Evaluation of Carbon Emission Reduction via GCIP Projects: Creating a Better Future for Pakistan. Earth Syst. Environ. 2019, 3, 19–28. [Google Scholar] [CrossRef]
- Zhang, H.F.; Chen, B.Z.; Machida, T.; Matsueda, H.; Sawa, Y.; Fukuyama, Y. Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO 2 observations for the period 2006–2010. Atmos. Chem. Phys. 2014, 1, 5807–5824. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Patra, P.K.; Canadell, J.G.; Houghton, R.A.; Piao, S.L.; Oh, N.H.; Ciais, P.; Manjunath, K.R.; Chhabra, A.; Wang, T.; Bhattacharya, T.; et al. The carbon budget of South Asia. Biogeosciences 2013, 10, 513–527. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.L.; Patra, P.K.; Chevallier, F.; Maksyutov, S.; Law, R.M.; Ziehn, T.; Van Der Laan-Luijkx, I.T.; Peters, W.; Ganshin, A.; Zhuravlev, R.; et al. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, P.K.; Canadell, J.G.; Lal, S. The rapidly changing greenhouse gas budget of Asia. EOS Trans. Am. Geophys. Union 2012, 93, 237. [Google Scholar] [CrossRef]
- Toon, G.; Blavier, J.-F.; Washenfelder, R.; Wunch, D.; Keppel-Aleks, G.; Wennberg, P.; Connor, B.; Sherlock, V.; Griffith, D.; Deutscher, N.; et al. Total Column Carbon Observing Network (TCCON). In Proceedings of the Advances in Imaging; Optical Society of America: Washington, DC, USA, 2009; p. JMA3. [Google Scholar]
- Wunch, D.; Toon, G.C.; Wennberg, P.O.; Wofsy, S.C.; Stephens, B.B.; Fischer, M.L.; Uchino, O.; Abshire, J.B.; Bernath, P.; Biraud, S.C.; et al. Calibration of the total carbon column observing network using aircraft profile data. Atmos. Meas. Tech. 2010, 3, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Wennberg, P.O.; Toon, G.C.; Connor, B.J.; Fisher, B.; Osterman, G.B.; Frankenberg, C.; Mandrake, L.; O’Dell, C.; Ahonen, P.; et al. A method for evaluating bias in global measurements of CO 2 total columns from space. Atmos. Chem. Phys. 2011, 11, 12317–12337. [Google Scholar] [CrossRef] [Green Version]
- Velazco, V.; Morino, I.; Uchino, O.; Deutscher, N.; Bukosa, B.; Belikov, D.; Oishi, Y.; Nakajima, T.; Macatangay, R.; Nakatsuru, T.; et al. Total Carbon Column Observing Network Philippines: Toward Quantifying Atmospheric Carbon in Southeast Asia. Clim. Disaster Dev. J. 2017, 2, 1–12. [Google Scholar] [CrossRef]
- Hungershoefer, K.; Peylin, P.; Chevallier, F.; Rayner, P.; Klonecki, A.; Houweling, S.; Marshall, J. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes. Atmos. Chem. Phys. 2010, 10, 10503–10520. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.F.; Bösch, H.; Doney, S.C.; O’Brien, D.; Schimel, D.S. Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory. Atmos. Chem. Phys. 2010, 10, 4145–4165. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jiang, F.; Wang, J.; Ju, W.; Chen, J.M. Differences of the inverted terrestrial ecosystem carbon flux between using GOSAT and OCO-2 XCO2 retrievals. Atmos. Chem. Phys. Discuss. 2018, 19, 1–32. [Google Scholar] [CrossRef]
- Crisp, D.; Miller, C.E.; DeCola, P.L. NASA Orbiting Carbon Observatory: Measuring the column averaged carbon dioxide mole fraction from space. J. Appl. Remote Sens. 2008, 2, 1–14. [Google Scholar] [CrossRef]
- Crisp, D. Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2). In Earth Observing Systems; International Society for Optics and Photonics: Washington, DC, USA, 2015; Volume 9607. [Google Scholar]
- Wang, X.; Guo, Z.; Huang, Y.; Fan, H.; Li, W. A cloud detection scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT). Adv. Atmos. Sci. 2017, 34, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Liu, Y.; Cai, Z.; Chen, X.; Yao, L.; Lu, D. First Global Carbon Dioxide Maps Produced from TanSat Measurements. Adv. Atmos. Sci. 2018, 35, 621–623. [Google Scholar] [CrossRef]
- Kiel, M.; Dell, C.W.O.; Fisher, B.; Eldering, A.; Nassar, R.; Macdonald, C.G.; Wennberg, P.O. How bias correction goes wrong: Measurement of X CO 2 affected by erroneous surface pressure estimates. Atmos. Meas. Tech. 2019, 12, 2241–2259. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for CO 2 and CH 4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [Google Scholar] [CrossRef] [Green Version]
- Boesch, H.; Baker, D.; Connor, B.; Crisp, D.; Miller, C. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission. Remote Sens. 2011, 3, 270–304. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm-Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef] [Green Version]
- Crisp, D.; Fisher, B.M.; O’Dell, C.; Frankenberg, C.; Basilio, R.; Bösch, H.; Brown, L.R.; Castano, R.; Connor, B.; Deutscher, N.M.; et al. The ACOS CO 2 retrieval algorithm-Part II: Global X CO2 data characterization. Atmos. Meas. Tech. 2012, 5, 687–707. [Google Scholar] [CrossRef] [Green Version]
- Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.B.; Bruhwiler, L.M.P.; Pétron, G.; Hirsch, A.I.; et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshchepkov, S.; Bril, A.; Yokota, T.; Morino, I.; Yoshida, Y.; Matsunaga, T.; Belikov, D.; Wunch, D.; Wennberg, P.; Toon, G.; et al. Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO2 retrievals from GOSAT. J. Geophys. Res. Atmos. 2012, 117, 1493–1512. [Google Scholar] [CrossRef] [Green Version]
- Deng, A.; Yu, T.; Cheng, T.; Gu, X.; Zheng, F.; Guo, H. Intercomparison of Carbon Dioxide Products Retrieved from GOSAT Short-Wavelength Infrared Spectra for Three Years (2010-2012). Atmosphere 2016, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Wang, T.; Zhang, P.; Chen, L.; Xu, N.; Ma, Y. Global atmospheric CO2 concentrations simulated by GEOS-Chem: Comparison with GOSAT, carbon tracker and ground-based measurements. Atmosphere 2018, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Kulawik, S.; Wunch, D.; Dell, C.O.; Frankenberg, C.; Reuter, M.; Oda, T.; Chevallier, F.; Sherlock, V.; Buchwitz, M.; Osterman, G.; et al. Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmos. Meas. Tech. 2016, 9, 683–709. [Google Scholar] [CrossRef] [Green Version]
- Dando, W.A. Asia: Climate BT-Encyclopedia of Hydrology and Lakes; Springer: Dordrecht, The Netherlands, 1998; pp. 89–95. ISBN 978-1-4020-4497-7. [Google Scholar]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results. SOLA 2009, 5, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Imasu, R.; Saitoh, N.; Niwa, Y.; Suto, H.; Kuze, A.; Shiomi, K.; Nakajima, M. Radiometric calibration accuracy of GOSAT-TANSO-FTS (TIR) relating to CO2 retrieval error. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques, and Applications II; International Society for Optics and Photonics: Washington, DC, USA, 2008; Volume 7149. [Google Scholar]
- Jung, Y.; Kim, J.; Kim, W.; Boesch, H.; Lee, H.; Cho, C.; Goo, T.Y. Impact of aerosol property on the accuracy of a CO2 retrieval algorithm from satellite remote sensing. Remote Sens. 2016, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, N.; Imasu, R.; Ota, Y.; Niwa, Y. CO2 retrieval algorithm for the thermal infrared spectra of the Greenhouse Gases Observing Satellite: Potential of retrieving CO2 vertical profile from high-resolution FTS sensor. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Jones, D.B.A.; O’Dell, C.W.; Nassar, R.; Parazoo, N.C. Combining GOSAT XCO2 observations over land and ocean to improve regional CO2 flux estimates. J. Geophys. Res. Atmos. 2016, 121, 1896–1913. [Google Scholar] [CrossRef] [Green Version]
- Crisp, D.; Pollock, H.; Rosenberg, R.; Chapsky, L.; Lee, R.; Oyafuso, F.; Frankenberg, C.; Dell, C.; Bruegge, C.; Doran, G.; et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 2017, 10, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Haring, R.; Pollock, R.; Sutin, B.M.; Crisp, D. The Orbiting Carbon Observatory instrument: Performance of the OCO instrument and plans for the OCO-2 instrument. In Current Developments in Lens Design and Optical Engineering V.; International Society for Optics and Photonics: Washington, DC, USA, 2004; Volume 5523. [Google Scholar]
- Pollock, R.; Haring, R.E.; Holden, J.R.; Johnson, D.L.; Kapitanoff, A.; Mohlman, D.; Phillips, C.; Randall, D.; Rechsteiner, D.; Rivera, J.; et al. The Orbiting Carbon Observatory instrument. In Sensors, Systems, and Next-Generation Satellites XIV.; International Society for Optics and Photonics: Washington, DC, USA, 2010; Volume 7826. [Google Scholar]
- Peters, W.; Miller, J.B.; Whitaker, J.; Denning, A.S.; Hirsch, A.; Krol, M.C.; Zupanski, D.; Bruhwiler, L.; Tans, P.P. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Babenhauserheide, A.; Basu, S.; Houweling, S.; Peters, W.; Butz, A. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO 2 surface flux inversions. Atmos. Chem. Phys. 2015, 15, 9747–9763. [Google Scholar] [CrossRef] [Green Version]
- Krol, M.; Houweling, S.; Bregman, B.; van den Broek, M.; Segers, A.; van Velthoven, P.; Peters, W.; Dentener, F.; Bergamaschi, P. The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys. Discuss. 2004, 4, 3975–4018. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Rodgers, C.D.; Connor, B.J. Intercomparison of remote sounding instruments. J. Geophys. Res. D Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Kort, E.A.; Frankenberg, C.; Miller, C.E.; Oda, T. Space-based observations of megacity carbon dioxide. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Shim, C.; Han, J.; Henze, D.K.; Yoon, T. Identifying local anthropogenic CO 2 emissions with satellite retrievals: A case study in South Korea. Int. J. Remote Sens. 2019, 40, 1011–1029. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Lei, L.; Zeng, Z.; He, Z.; Zhong, H. An Assessment of Anthropogenic CO₂ Emissions by Satellite-Based Observations in China. Sensors 2019, 19, 1118. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Zhong, H.; He, Z.; Cai, B.; Yang, S.; Wu, C.; Zeng, Z.; Liu, L.; Zhang, B. Assessment of atmospheric CO2 concentration enhancement from anthropogenic emissions based on satellite observations. Kexue Tongbao/Chin. Sci. Bull. 2017, 62, 2941–2950. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Chen, B.; Measho, S. Spatio-temporal consistency evaluation of XCO2 retrievals from GOSAT and OCO-2 based on TCCON and model data for joint utilization in carbon cycle research. Atmosphere 2019, 10, 354. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.-R.; Wen, X.-F.; Sun, X.-M.; Tanner, B.D.; Lee, X.; Chen, J.-Y. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Yu, G.; Fu, Y.; Sun, X.; Wen, X.; Zhang, L. Recent progress and future directions of ChinaFLUX. Sci. China Ser. D Earth Sci. 2006, 49, 1–23. [Google Scholar] [CrossRef]
- Yu, G.-R.; Zhang, L.-M.; Sun, X.-M.; Fu, Y.-L.; Wen, X.-F.; WANG, Q.-F.; Li, S.-G.; Ren, C.-Y.; Song, X.I.A.; Liu, Y.-F.; et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Glob. Chang. Biol. 2008, 14, 2555–2571. [Google Scholar] [CrossRef]
- Yu, G.-R.; Zhu, X.-J.; Fu, Y.-L.; He, H.-L.; Wang, Q.-F.; Wen, X.-F.; Li, X.-R.; Zhang, L.-M.; Zhang, L.; Su, W.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Yi, C.; Bakwin, P.S.; Zhu, L. Links between global CO2 variability and climate anomalies of biomes. Sci. China Ser. D Earth Sci. 2008, 51, 740–747. [Google Scholar] [CrossRef]
- Miao, R.; Lu, N.; Yao, L.; Zhu, Y.; Wang, J.; Sun, J. Multi-year comparison of carbon dioxide from satellite data with ground-based FTS measurements (2003–2011). Remote Sens. 2013, 5, 3431–3456. [Google Scholar] [CrossRef] [Green Version]
- Golkar, F.; Al-Wardy, M.; Saffari, S.F.; Al-Aufi, K.; Al-Rawas, G. Using OCO-2 satellite data for investigating the variability of atmospheric CO2 concentration in relationship with precipitation, relative humidity, and vegetation over Oman. Water 2020, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Yihui, D.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Fang, S.X.; Zhou, L.X.; Tans, P.P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos. Chem. Phys. 2014, 14, 2541–2554. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Nayak, R.K.; Dadhwal, V.K.; Kant, Y.; Ali, M.M. Temporal variations of atmospheric CO2 in dehradun, India during 2009. Air Soil Water Res. 2012, 6, 37–45. [Google Scholar] [CrossRef]
- Anthwal, A.; Joshi, V.; Joshi, S.; Sharma, A.; Kim, K.-H. Atmospheric Carbon Dioxide Levels in Garhwal Himalaya, India. J. Korean Earth Sci. Soc. 2009, 30, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Sreenivas, G.; Mahesh, P.; Subin, J.; Kanchana, A.L.; Rao, P.V.N.; Dadhwal, V.K. Influence of Meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India. Atmos. Chem. Phys. 2016, 16, 3953–3967. [Google Scholar] [CrossRef] [Green Version]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Nalini, K.; Uma, K.N.; Sijikumar, S.; Tiwari, Y.K.; Ramachandran, R. Satellite- and ground-based measurements of CO2 over the Indian region: Its seasonal dependencies, spatial variability, and model estimates. Int. J. Remote Sens. 2018, 39, 7881–7900. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Baker, I.; Collatz, G.J.; Rödenbeck, C. Does terrestrial drought explain global CO 2 flux anomalies induced by El Niño? Biogeosciences 2011, 8, 2493–2506. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Kug, J.-S.; Yoon, J.-H.; Jeong, S.-J. Increased Atmospheric CO2 Growth Rate during El Niño Driven by Reduced Terrestrial Productivity in the CMIP5 ESMs. J. Clim. 2016, 29, 8783–8805. [Google Scholar] [CrossRef]
No. | Region | Countries |
---|---|---|
1 | Central Asia | Uzbekistan, Turkmenistan, Tajikistan, Kyrgyzstan, Kazakhstan |
2 | East Asia | China, Japan, Hong Kong, Macau, North Korea, South Korea, Taiwan, Mongolia |
3 | South Asia | Pakistan, Bangladesh, Afghanistan, India, Sri Lanka, Nepal, Bhutan, Maldives |
4 | Southeast Asia | Singapore, Thailand, Malaysia, Indonesia, Philippine, Brunei, Myanmar, Cambodia, Laos, Vietnam, Timor-Leste |
5 | Western Asia | Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Palestine, Qatar, Saudi Arabia, Syria, Turkey, United Arab Emirates, Yemen |
Region | R | RMSD | D (Std.) | Std. in CT | Std. in GOSAT | GOSAT Error |
---|---|---|---|---|---|---|
Asia | 0.93 | 2.61 | −0.61 ± 0.96 | 2.59 | 2.62 | 1.19 |
Central Asia | 0.96 | 1.87 | 0.03 ± 0.47 | 2.13 | 2.17 | 1.17 |
East Asia | 0.87 | 3.96 | 0.32 ± 1.60 | 2.45 | 2.73 | 1.32 |
South Asia | 0.94 | 2.34 | −0.67 ± 0.64 | 2.94 | 2.99 | 1.16 |
Southeast Asia | 0.95 | 2.19 | −0.43 ± 1.01 | 3.65 | 3.49 | 1.02 |
Western Asia | 0.96 | 1.87 | 0.02 ± 0.48 | 2.12 | 2.17 | 1.17 |
Region | R | RMSD | D (Std.) | Std. in CT | Std. in OCO-2 | OCO-2 Error |
---|---|---|---|---|---|---|
Asia | 0.89 | 2.16 | 0.31 ± 0.71 | 1.07 | 1.10 | 0.62 |
Central Asia | 0.93 | 2.04 | 0.72 ± 0.64 | 0.92 | 0.65 | 0.60 |
East Asia | 0.84 | 2.94 | 0.33 ± 0.92 | 1.30 | 1.31 | 0.70 |
South Asia | 0.89 | 2.09 | 0.25 ± 0.73 | 0.72 | 0.67 | 0.63 |
Southeast Asia | 0.93 | 1.54 | 0.29 ± 0.39 | 1.78 | 1.19 | 0.53 |
Western Asia | 0.94 | 1.49 | 0.06 ± 0.34 | 0.55 | 0.49 | 0.57 |
Month. | Central Asia | East Asia | South Asia | Southeast Asia | Western Asia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | G | C-G | C | G | C-G | C | G | C-G | C | G | C-G | C | G | C-G | |
Jan | 403.42 | 404.92 | −1.50 | 403.02 | 405.00 | −1.98 | 402.77 | 403.53 | −0.76 | 402.61 | 403.89 | −1.27 | 402.4 | 404.1 | −1.7 |
Feb | 403.41 | 404.45 | −1.03 | 403.04 | 404.92 | −1.88 | 402.53 | 403.61 | −1.07 | 402.63 | 403.89 | −1.25 | 402.6 | 404.0 | −1.4 |
Mar | 404.84 | 405.32 | −0.48 | 404.47 | 405.81 | −1.33 | 403.69 | 404.94 | −1.24 | 403.83 | 404.96 | −1.52 | 404.0 | 404.6 | −0.6 |
Apr | 406.16 | 405.95 | 0.21 | 406.22 | 406.70 | −0.47 | 404.96 | 406.20 | −1.23 | 404.95 | 405.54 | −0.58 | 404.4 | 405.4 | −0.9 |
May | 406.00 | 405.28 | 0.71 | 406.29 | 406.06 | 0.22 | 406.05 | 406.55 | −0.49 | 404.61 | 404.34 | 0.27 | 405.9 | 405.7 | 0.2 |
Jun | 403.41 | 402.65 | 0.76 | 404.75 | 402.79 | 1.95 | 405.67 | 404.59 | 1.07 | 404.06 | 403.16 | 0.90 | 405.1 | 404.8 | 0.3 |
Jul | 400.56 | 400.35 | 0.21 | 402.58 | 399.96 | 2.62 | 404.27 | 403.20 | 1.06 | 403.57 | 402.36 | 1.21 | 403.5 | 402.8 | 0.7 |
Aug | 398.84 | 398.79 | 0.05 | 400.46 | 398.92 | 1.53 | 401.71 | 400.76 | 0.94 | 402.94 | 402.12 | 0.81 | 401.5 | 401.2 | 0.3 |
Sep | 398.86 | 398.91 | −0.04 | 399.63 | 399.21 | 0.42 | 400.28 | 399.98 | 0.29 | 401.13 | 400.31 | 0.82 | 400.0 | 400.0 | 0 |
Oct | 400.27 | 400.59 | −0.31 | 401.67 | 401.73 | −0.05 | 400.47 | 400.71 | −0.23 | 400.80 | 400.35 | 0.44 | 400.3 | 400.8 | −0.5 |
Nov | 402.04 | 402.61 | −0.56 | 402.04 | 402.92 | −0.88 | 401.33 | 402.14 | −0.80 | 401.67 | 401.67 | 0.00 | 401.1 | 401.9 | −0.8 |
Dec | 402.85 | 404.27 | −1.42 | 402.55 | 404.64 | −2.09 | 402.28 | 403.25 | −0.96 | 402.22 | 403.29 | −1.07 | 401.9 | 403.4 | −1.5 |
Month | Central Asia | East Asia | South Asia | Southeast Asia | Western Asia | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | C-O | C | O | C-O | C | O | C-O | C | O | C-O | C | O | C-O | |
Jan | 404.98 | 404.88 | 0.10 | 404.45 | 404.67 | −0.22 | 404.10 | 403.89 | 0.21 | 404.67 | 404.41 | 0.26 | 403.98 | 404.33 | −0.3 |
Feb | 405.63 | 405.78 | −0.14 | 404.78 | 405.54 | −0.75 | 404.91 | 404.74 | 0.17 | 405.26 | 404.89 | 0.36 | 404.91 | 405.18 | −0.2 |
Mar | 406.64 | 406.29 | 0.35 | 406.19 | 406.34 | −0.15 | 405.76 | 406.22 | −0.45 | 405.73 | 405.39 | 0.34 | 405.90 | 405.90 | 0 |
Apr | 407.53 | 406.71 | 0.81 | 407.18 | 407.14 | 0.03 | 406.59 | 407.40 | −0.80 | 406.20 | 406.20 | 0 | 406.80 | 406.80 | 0 |
May | 407.10 | 405.97 | 1.12 | 407.82 | 406.79 | 1.03 | 407.28 | 407.72 | −0.44 | 405.55 | 405.51 | 0.04 | 407.12 | 407.16 | -.04 |
Jun | 404.71 | 403.64 | 1.07 | 405.85 | 404.08 | 1.77 | 406.70 | 406.19 | 0.50 | 405.26 | 404.79 | 0.46 | 406.43 | 406.18 | 0.25 |
Jul | 402.07 | 401.40 | 0.66 | 405.55 | 401.81 | 3.73 | 406.24 | 404.64 | 1.60 | 404.75 | 404.24 | 0.50 | 404.81 | 404.16 | 0.65 |
Aug | 400.20 | 399.58 | 0.62 | 403.06 | 400.65 | 2.41 | 404.67 | 402.49 | 2.17 | 404.27 | 403.76 | 0.50 | 402.91 | 402.44 | 0.46 |
Sep | 398.95 | 398.60 | 0.34 | 400.58 | 399.25 | 1.33 | 400.90 | 399.90 | 1.00 | 401.46 | 400.90 | 0.55 | 400.30 | 400.02 | 0.27 |
Oct | 400.62 | 400.51 | 0.11 | 401.46 | 401.07 | 0.39 | 400.84 | 400.50 | 0.34 | 401.47 | 400.79 | 0.67 | 400.61 | 400.61 | 0 |
Nov | 402.59 | 402.54 | 0.05 | 401.76 | 402.44 | −0.68 | 401.93 | 402.03 | −0.09 | 402.52 | 402.10 | 0.41 | 401.71 | 401.92 | −0.2 |
Dec | 403.82 | 404.28 | −0.45 | 402.96 | 403.99 | −1.02 | 403.15 | 403.21 | −0.06 | 403.49 | 403.56 | −0.06 | 403.10 | 403.32 | −0.2 |
Region | R | CT-GOSAT | RMSD | Dataset Quantity |
---|---|---|---|---|
Asia | 0.98 | −0.29 | 0.98 | 230,763 |
Central Asia | 0.99 | −0.25 | 0.83 | 57,838 |
East Asia | 0.94 | −0.11 | 1.74 | 74,982 |
South Asia | 0.98 | −0.27 | 0.99 | 36,256 |
Southeast Asia | 0.97 | −0.10 | 1.10 | 9974 |
Western Asia | 0.98 | −0.37 | 0.86 | 51,713 |
Region | R | CT-OCO2 | RMSD | Dataset Quantity |
---|---|---|---|---|
Asia | 0.98 | 0.37 | 0.49 | 25,841,330 |
Central Asia | 0.99 | 0.38 | 0.43 | 5,677,871 |
East Asia | 0.94 | −0.63 | 1.09 | 6,869,504 |
South Asia | 0.98 | 0.31 | 0.66 | 5,171,216 |
Southeast Asia | 0.99 | 0.34 | 0.36 | 1,306,978 |
Western Asia | 0.99 | 0.03 | 0.27 | 6,815,761 |
Region | Season | D (ppm) | R | RMSD | CT2019 Std | GOSAT Std | Dataset Quantity |
---|---|---|---|---|---|---|---|
Asia | DJF | −1.59 | 0.93 | 2.90 | 3.03 | 3.15 | 113,260 |
MAM | −0.61 | 0.94 | 2.49 | 2.85 | 2.60 | 78,882 | |
JJA | 0.91 | 0.92 | 2.95 | 3.25 | 3.12 | 78,543 | |
SON | −0.49 | 0.94 | 2.65 | 2.42 | 2.56 | 150,676 | |
Central Asia | DJF | −1.21 | 0.92 | 2.23 | 2.92 | 3.01 | 8150 |
MAM | 0.33 | 0.95 | 0.95 | 2.56 | 2.22 | 22,990 | |
JJA | 0.31 | 0.94 | 2.05 | 2.60 | 2.55 | 34,231 | |
SON | −0.18 | 0.98 | 1.48 | 1.99 | 2.23 | 38,009 | |
East Asia | DJF | −2.01 | 0.89 | 3.24 | 3.48 | 3.48 | 32,194 |
MAM | −0.90 | 0.90 | 3.12 | 2.67 | 2.48 | 24,525 | |
JJA | 1.19 | 0.88 | 3.39 | 3.53 | 3.58 | 19,237 | |
SON | −0.88 | 0.90 | 3.06 | 2.43 | 2.56 | 55,023 | |
South Asia | DJF | −1.01 | 0.95 | 2.18 | 2.72 | 2.85 | 30,398 |
MAM | −1.07 | 0.96 | 2.38 | 3.02 | 2.58 | 14,247 | |
JJA | 0.45 | 0.93 | 2.88 | 2.89 | 2.70 | 5614 | |
SON | −0.19 | 0.94 | 2.08 | 2.46 | 2.60 | 20,781 | |
Southeast Asia | DJF | −1.22 | 0.95 | 2.30 | 2.79 | 2.77 | 10,066 |
MAM | −0.52 | 0.95 | 2.10 | 3.50 | 3.19 | 3853 | |
JJA | 1.00 | 0.96 | 1.83 | 2.39 | 2.42 | 1164 | |
SON | 0.21 | 0.95 | 1.94 | 2.68 | 2.87 | 2531 | |
Western Asia | DJF | −1.58 | 0.96 | 2.39 | 1.49 | 1.48 | 32,452 |
MAM | −0.45 | 0.97 | 1.95 | 2.10 | 1.95 | 13,267 | |
JJA | 0.24 | 0.96 | 1.86 | 2.23 | 2.41 | 18,297 | |
SON | −0.55 | 0.97 | 1.65 | 1.58 | 1.59 | 34,332 |
Region | Season | D (ppm) | R | RMSD | CT Std | OCO-2 Std | Dataset Quantity |
---|---|---|---|---|---|---|---|
Asia | DJF | 0.10 | 0.85 | 2.22 | 1.69 | 1.66 | 5,895,404 |
MAM | 0.11 | 0.87 | 2.38 | 1.81 | 1.31 | 5,236,005 | |
JJA | 0.82 | 0.87 | 2.40 | 2.31 | 2.23 | 6,734,436 | |
SON | 0.10 | 0.88 | 1.95 | 1.31 | 1.25 | 7,975,485 | |
Central Asia | DJF | −0.11 | 0.89 | 2.33 | 1.73 | 2.05 | 363,017 |
MAM | 0.96 | 0.93 | 1.76 | 1.18 | 0.96 | 1,264,566 | |
JJA | 1.04 | 0.90 | 2.44 | 1.99 | 1.07 | 2,442,988 | |
SON | 0.19 | 0.95 | 1.33 | 0.88 | 0.85 | 1,607,300 | |
East Asia | DJF | −0.23 | 0.79 | 2.80 | 2.06 | 1.84 | 980,407 |
MAM | −0.07 | 0.80 | 2.70 | 1.63 | 1.27 | 1,465,443 | |
JJA | 1.12 | 0.81 | 3.17 | 2.61 | 2.09 | 1,884,846 | |
SON | −0.12 | 0.83 | 2.17 | 1.60 | 1.55 | 2,538,808 | |
South Asia | DJF | 0.02 | 0.90 | 1.80 | 0.81 | 0.58 | 2,135,507 |
MAM | −0.23 | 0.88 | 2.53 | 1.82 | 0.94 | 1,022,046 | |
JJA | 1.08 | 0.84 | 2.88 | 1.91 | 2.23 | 538,615 | |
SON | 0.37 | 0.88 | 1.88 | 0.84 | 0.97 | 1,475,048 | |
Southeast Asia | DJF | 0.45 | 0.91 | 1.64 | 1.60 | 1.75 | 539,871 |
MAM | 0.17 | 0.93 | 1.45 | 1.39 | 1.53 | 313,243 | |
JJA | 0.58 | 0.93 | 1.59 | 1.46 | 1.43 | 213,821 | |
SON | 0.43 | 0.90 | 1.71 | 1.49 | 1.43 | 240,043 | |
Western Asia | DJF | −0.32 | 0.92 | 1.44 | 0.77 | 0.90 | 1,876,602 |
MAM | 0.06 | 0.92 | 1.45 | 0.84 | 0.76 | 1,170,707 | |
JJA | 0.24 | 0.93 | 1.54 | 1.26 | 1.47 | 1,654,166 | |
SON | 0.01 | 0.93 | 1.31 | 0.55 | 0.49 | 2,114,286 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, F.; Bu, L.; Wang, Q.; Ali, M.A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. https://doi.org/10.3390/rs12152498
Mustafa F, Bu L, Wang Q, Ali MA, Bilal M, Shahzaman M, Qiu Z. Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia. Remote Sensing. 2020; 12(15):2498. https://doi.org/10.3390/rs12152498
Chicago/Turabian StyleMustafa, Farhan, Lingbing Bu, Qin Wang, Md. Arfan Ali, Muhammad Bilal, Muhammad Shahzaman, and Zhongfeng Qiu. 2020. "Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia" Remote Sensing 12, no. 15: 2498. https://doi.org/10.3390/rs12152498
APA StyleMustafa, F., Bu, L., Wang, Q., Ali, M. A., Bilal, M., Shahzaman, M., & Qiu, Z. (2020). Multi-Year Comparison of CO2 Concentration from NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia. Remote Sensing, 12(15), 2498. https://doi.org/10.3390/rs12152498