GF-1 Satellite Observations of Suspended Sediment Injection of Yellow River Estuary, China
Abstract
:1. Introduction
2. Data and Method
2.1. Study Area
2.2. Satellite Data
2.3. Sample Data
2.4. Data Processing
2.4.1. Data Preprocessing
2.4.2. SSC Retrieval Model
3. Results
3.1. Sensitive Band of SSC
3.2. SSSC Quantitative Retrieval Model
3.3. The SSSC Distribution of the Yellow River Estuary
4. Discussion
4.1. Applicability of Cubic Model
4.2. The Influence of Currents and Runoff on SSC Distribution
4.3. Other Reasons Contributing to SSC Distribution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramalingam, S.; Chandra, V. Experimental Investigation of Water Temperature Influence on Suspended Sediment Concentration. Environ. Process. 2019, 6, 511–523. [Google Scholar] [CrossRef]
- Pyrkin, Y.G.; Samolyubov, B.I. Equipment for measuring current velocity, water temperature, and suspended sediment concentration in a reservoir. Hydrotech. Constr. 1988, 22, 258–263. [Google Scholar] [CrossRef]
- Sari, V.; Castro, N.M.D.R.; Pedrollo, O. Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks. Water Resour. Manag. 2017, 31, 4909–4923. [Google Scholar] [CrossRef]
- Schoellhamer, D.H. Comparison of the basin-scale effect of dredging operations and natural estuarine processes on suspended sediment concentration. Estuaries 2002, 25, 488–495. [Google Scholar] [CrossRef]
- Li, P.; Ke, Y.; Bai, J.; Zhang, S.; Chen, M.; Zhou, D. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data. Mar. Pollut. Bull. 2019, 149, 110518. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Tang, D.; Li, X.; Zheng, H.; Shao, W. Remote sensing of spatial-temporal distribution of suspended sediment and analysis of related environmental factors in Hangzhou Bay, China. Remote Sens. Lett. 2015, 6, 597–603. [Google Scholar] [CrossRef]
- Zhan, C.; Yu, J.; Wang, Q.; Li, Y.; Zhou, D.; Xing, Q.; Chu, X. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary. Chin. Geogr. Sci. 2017, 27, 934–947. [Google Scholar] [CrossRef] [Green Version]
- Hua, M.; Huang-Liang, Z.; Zhang, L.; Lei, Z.; Feng, S. Suspended sediment concentrations in the Yangtze Estuary based on Landsat 8 remote sensing inversion. Shanghai Land Resour. 2018, 39, 80–84. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kisi, O.; Shiri, J. Evaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modeling. Environ. Sci. Pollut. Res. 2019, 26, 22670–22687. [Google Scholar] [CrossRef]
- Lee, G.; Kang, K. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea. Ocean Sci. J. 2018, 53, 583–594. [Google Scholar] [CrossRef]
- Kostaschuk, R.; Stephan, B.A.; Luternauer, J.L. Suspended sediment concentration in a buoyant plume: Fraser River, Canada. Geo Mar. Lett. 1993, 13, 165–171. [Google Scholar] [CrossRef]
- Cloutier, D.; Lecouturier, M.N.; Amos, C.L.; Hill, P.R. The effects of suspended sediment concentration on turbulence in an annular flume. Aquat. Ecol. 2006, 40, 555–565. [Google Scholar] [CrossRef]
- Chongguang, P.; Enbao, Z.; Yang, Y. Numerical simulation on the process of saltwater intrusion and its impact on the suspended sediment concentration in the Changjiang (Yangtze) estuary. Chin. J. Oceanol. Limnol. 2010, 28, 609–619. [Google Scholar] [CrossRef]
- Banasik, K.; Bley, D. An attempt at modelling suspended sediment concentration after storm events in an Alpine torrent. Dyn. Geomorphol. Mt. Rivers 1994, 52, 161–170. [Google Scholar] [CrossRef]
- Shenliang, C.; Guoan, Z.; Shilun, Y. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary. J. Geogr. Sci. 2003, 13, 498–506. [Google Scholar] [CrossRef]
- Admiraal, D.M.; Garcia, M.H. Laboratory measurement of suspended sediment concentration using an Acoustic Concentration Profiler (ACP). Exp. Fluids 2000, 28, 116–127. [Google Scholar] [CrossRef]
- Ya-ping, W.; Shu, G.; Kun-ye, L. A preliminary study on suspended sediment concentration measurements using an ADCP mounted on a moving vessel. Chin. J. Oceanol. Limnol. 2000, 18, 183–189. [Google Scholar] [CrossRef]
- Elci, S.; Aydin, R.; Work, P.A. Estimation of suspended sediment concentration in rivers using acoustic methods. Environ. Monit. Assess. 2009, 159, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Seyhan, E.; Dekker, A. Application of remote sensing techniques for water quality monitoring. Hydrobiol. Bull. 1986, 20, 41–50. [Google Scholar] [CrossRef]
- Wani, M.M.; Choubey, V.K.; Joshi, H. Quantification of suspended solids in Dal lake, Srinagar using remote sensing technology. J. Indian Soc. Remote Sens. 1996, 24, 25–32. [Google Scholar] [CrossRef]
- Yanjiao, W.; Feng, Y.; Peiqun, Z.; Wenjie, D. Experimental Research on Quantitative Inversion Models of Suspended Sediment Concentration Using Remote Sensing Technology. Chin. Geogr. Sci. 2007, 17, 243–249. [Google Scholar] [CrossRef]
- Li, G.; Wang, F.; Liao, H. Feasibility study on the binary-parameter retrieval model of ocean suspended sediment concentration based on MODIS data. J. Geogr. Sci. 2008, 18, 443–454. [Google Scholar] [CrossRef]
- Hui, F.; Haijun, H. Changes in Huanghe (Yellow) River estuary since artificial re-routing in 1996. Chin. J. Oceanol. Limnol. 2005, 23, 299–305. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Morel, A. Light Emerging from the Sea—Interpretation and Uses in Remote Sensing. Remote Sens. Appl. Mar. Sci. Technol. 1983, 106, 323–357. [Google Scholar] [CrossRef]
- Chauhan, P.; Nayak, S.; Ramesh, R.; Krishnamoorthy, R.; Ramachandran, S. Remote Sensing of suspended sediments along the Tamil Nadu coastal waters. J. Indian Soc. Remote Sens. 1996, 24, 105–114. [Google Scholar] [CrossRef]
- Quan, W. Scaling Effects on MODIS Band Ratio of 645 to 859 nm Aggregated from 250 m to 1 km Resolution: A Case Study in Yellow River Estuary. J. Indian Soc. Remote Sens. 2014, 42, 495–503. [Google Scholar] [CrossRef]
- Yu, S.; Mantravadi, V.S. Study on Distribution Characteristics of Suspended Sediment in Yellow River Estuary Based on Remote Sensing. J. Indian Soc. Remote Sens. 2019, 47, 1507–1513. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Gong, W.; Zhao, X.; Chen, X.; Pang, X. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems. Remote Sens. Environ. 2016, 174, 56–68. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Nan, Y.; Jianhui, L.; Wenbo, M.; Wangjun, L.; Di, W.; Wanchao, G.; Changhao, S. Water depth retrieval models of East Dongting Lake, China, using GF-1 multi-spectral remote sensing images. Glob. Ecol. Conserv. 2020, 22. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Tian, L.; Huang, J.; Feng, L. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: Radiometric and spatial considerations. ISPRS J. Photogramm. Remote Sens. 2015, 106, 145–156. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, B. Retrieval of Suspended Sediment Concentration in Zhoushan Coastal Area Satellite Based on GF-1. Ocean Dev. Manag. 2011, 35, 126–131. [Google Scholar]
- Maochong, S.; Yueyan, S. The analyses of hydrographical characteristic in estuary of huanghe river. J. Ocean Univ. Gingdao 1985, 27, 81–95. [Google Scholar] [CrossRef]
- Ze, L.I. Basic Features of Hydrologic Elements in the Sea Area near the Yellow River Estuary. J. Oceanogr. Huanghai Bohai Seas 2000, 18, 20–28. [Google Scholar]
- Li, L.; Xin, Z.H. 2019 Big data released on the weather in Our city Temperature and precipitation are “abnormal”. Yellow River Mouth Evening J. 2020, 14, 3. [Google Scholar]
- Cui, B.; Yang, Q.; Yang, Z.; Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 2009, 35, 1090–1103. [Google Scholar] [CrossRef]
- Yucen, L.U.; Shen, Y. Influence of bathymetry evolution on position of tidal shear front and hydrodynamic characteristics around the Yellow River estuary. Front. Earth Sci. 2012, 6, 405–419. [Google Scholar] [CrossRef]
- Yang, X.; Jia, Y.; Li, X.; Shan, H. Experimental research on the marine hydrodynamic action on the consolidation process of the sediments in the Yellow River Estuary. China Ocean Eng. 2011, 25, 149–157. [Google Scholar] [CrossRef]
- Xu, X.; Guo, H.; Chen, X.; Lin, H.; Du, Q. A multi-scale study on land use and land cover quality change: The case of the Yellow River Delta in China. GeoJournal 2002, 56, 177–183. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, S.; Gu, G. Distribution characteristic and transport tendency of seafloor surficial sediments in the Dongying Harbor area. Mar. Geol. Quat. Geol. 2009, 29, 31–38. [Google Scholar]
- Liu, J.; Saito, Y.; Kong, X.; Wang, H.; Xiang, L.; Wen, C.; Nakashima, R. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last 13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. Quat. Sci. Rev. 2010, 29, 2424–2438. [Google Scholar] [CrossRef]
- Wang, H.; Bi, N.; Saito, Y.; Wang, Y.; Sun, X.; Zhang, J.; Yang, Z. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary. J. Hydrol. 2010, 391, 302–313. [Google Scholar] [CrossRef]
- Xu, B.; Burnett, W.C.; Dimova, N.T.; Diao, S.; Mi, T.; Jiang, X.; Yu, Z. Hydrodynamics in the Yellow River Estuary via radium isotopes: Ecological perspectives. Cont. Shelf Res. 2013, 66, 19–28. [Google Scholar] [CrossRef]
- Zheng, W.; Zhihua, M.; Qun, Z.; Liqiao, T.; Yong, F. Comparative study on water depth Remote Sensing in Yellow River Estuary based on BP ANN method and Bottom Albedo-independent Bathymetry Algorithm. J. Cent. China Norm. Univ. (Nat. Sci.) 2016, 50, 112–119. [Google Scholar] [CrossRef]
- Zhou, Q.-B.; Yu, Q.-Y.; Liu, J.; Wu, W.-B.; Tang, H.-J. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring. J. Integr. Agric. 2017, 16, 242–251. [Google Scholar] [CrossRef]
- Cai, L.; Zhou, M.; Liu, J.; Tang, D.; Zuo, J. HY-1C Observations of the Impacts of Islands on Suspended Sediment Distribution in Zhoushan Coastal Waters, China. Remote Sens. 2020, 12, 1766. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, C. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City. Remote Sens. Land Resour. 2019, 31, 137–142. [Google Scholar] [CrossRef]
- Peihao, W.; Haoran, M. Study on Landcover Classification in Baodi District Tianjin City Based on Gaofen-1 Satellite Image. Tianjin Agric. Sci. 2020, 26, 29–33. [Google Scholar]
- Yizhe, Y.; Gou, L.; Li, G.; Shihu, Z.; Xueli, Z. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor. Remote Sens. Land Resour. 2019, 33, 213–218. [Google Scholar]
- Li, Q.; Wang, M.; Wang, F.; Tan, Y.; Lu, L. Research on the Geological Disasters Information Extraction Method in GF-1 Remote Sensing Image. Geomat. Spat. Inf. Technol. 2016, 39, 213–218. [Google Scholar]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Tebbs, E.J.; Remedios, J.J.; Harper, D.M. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sens. Environ. 2013, 135, 92–106. [Google Scholar] [CrossRef]
- Rotta, L.; Alcântara, E.; Watanabe, F.S.Y.; Rodrigues, T.; Imai, N.N. Atmospheric correction assessment of SPOT-6 image and its influence on models to estimate water column transparency in tropical reservoir. Remote Sens. Appl. Soc. Environ. 2016, 4, 158–166. [Google Scholar] [CrossRef]
- Kawy, W.A.A.; Ali, R.R. Assessment of soil degradation and resilience at northeast Nile Delta, Egypt: The impact on soil productivity. Egypt. J. Remote Sens. Space Sci. 2012, 15, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102–111. [Google Scholar] [CrossRef]
- Zhu, W.; Pang, S.; Chen, J.; Sun, N.; Huang, L.; Zhang, Y.; Zhang, Z.; He, S.; Cheng, Q. Spatiotemporal variations of total suspended matter in complex archipelagic regions using a sigmoid model and Landsat-8 imagery. Reg. Stud. Mar. Sci. 2020, 36. [Google Scholar] [CrossRef]
- Ayeni, A.O.; Adesalu, T.A. Validating chlorophyll-a concentrations in the Lagos Lagoon using remote sensing extraction and laboratory fluorometric methods. MethodsX 2018, 5, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, L.; Kan, Z.; Bilal, M.; Li, Q. A novel water body extraction neural network (WBE-NN) for optical high-resolution multispectral imagery. J. Hydrol. 2020, 588. [Google Scholar] [CrossRef]
- Watanabe, F.; Alcântara, E.; Curtarelli, M.; Kampel, M.; Stech, J. Landsat-based remote sensing of the colored dissolved organic matter absorption coefficient in a tropical oligotrophic reservoir. Remote Sens. Appl. Soc. Environ. 2018, 9, 82–90. [Google Scholar] [CrossRef]
- Jinling, K. Study on remote sensing quantitative model of suspended sediments in the coastal waters of Caofeidian. Sci. Surv. Mapp. 2011, 36, 77–80. [Google Scholar] [CrossRef]
- Jiang, G.; Ma, R.; Loiselle, S.A.; Duan, H.; Su, W.; Cai, W.; Huang, C.; Yang, J.; Yu, W. Remote sensing of particulate organic carbon dynamics in a eutrophic lake (Taihu Lake, China). Sci. Total Environ. 2015, 532, 245–254. [Google Scholar] [CrossRef] [PubMed]
- LiangMing, L. Chapter 5—Marine Remote Sensing Satellite, 1st ed.; LiangMing, L., Ting, L., JianQiang, L., HongMei, Z., Eds.; Wuhan University Press: Wuhan, China, 2005; p. 26. [Google Scholar]
- Jie, J. Study on the method of remote sensing inversion of suspended sediment concentration. Mar. Geol. Front. 2006, 22, 32–34. [Google Scholar] [CrossRef]
- Jiang, J.-J.; Biyun, G. Inversion study of suspended sediment concentration in zhoushan offshore Sea area. China Water Transp. Second Half 2016, 16, 171–174. [Google Scholar]
- Cai, L.; Tang, D.; Levy, G.; Liu, D. Remote sensing of the impacts of construction in coastal waters on suspended particulate matter concentration—The case of the Yangtze River delta, China. Int. J. Remote Sens. 2016, 37, 2132–2147. [Google Scholar] [CrossRef]
- Cai, L.; Tang, D.; Li, C. An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data. Adv. Space Res. 2015, 56, 293–303. [Google Scholar] [CrossRef]
- Chu, C. Simulation of sea water reflectance and its application in retrieval of yellow substance by remote sensing data. J. Trop. Oceanogr. 2003. [Google Scholar] [CrossRef]
- Kuang, R.; Zhao, Y.; Luo, W.; Zhang, G.; Chen, Y. Study on Inversion Model of Suspended Sediment Concentration Based on Optical Classification of Water Body in Poyang Lake. J. China Hydrol. 2017, 6, 4. [Google Scholar]
- Hao, Z. Based on remote sensing spectral reflectance inversion of suspended sediment concentration model of surfase water at the Yellow River Estuary. Mar. Sci. 2010. [Google Scholar] [CrossRef]
- Zeng, Q.; Yue, Z.; Tian, L.Q.; Chen, X.L. Evaluation on the Atmospheric Correction Methods for Water Color Remote Sensing by Using HJ-1A/1B CCD Image-Taking Poyang Lake in China as a Case. Guang Pu Xue Yu Guang Pu Fen Xi 2013, 33, 1320–1326. [Google Scholar] [CrossRef]
- Fang, S. Statistic analysis of suspended sediment concentration in offshore waters based on field measurement of reflectance hyper-spectral. J. Hydraul. Eng. 2007. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Z.; Zhou, B.; Jiang, J.; Pan, Y.; Ling, Z. Assessment of suspended sediment concentration at the Hangzhou Bay using HJ CCD imagery. J. Remote Sens. 2013, 17, 905–918. [Google Scholar] [CrossRef]
- Guofeng, W.U.; Lijuan, C.; Weitao, J.I. Time-series MODIS images-based retrieval and change analysis of suspended sediment concentration during flood period in Lake Poyang. J. Lake Sci. 2009, 21, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Li, E.; Zhao, Y.; Liang, Q. Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary. Water Sci. Eng. 2017, 10, 311–319. [Google Scholar] [CrossRef]
- Jun, C. Dynamic Monitoring of Coastline in the Yellow River Delta by Remote Sensing. Geo Inf. Sci. 2004, 9, 94–98. [Google Scholar]
- Tao, F.; Zhang, Y.; Wang, J.J.; Zhang, Y. Study on quantitative remote sensing models for measuring suspended sediment concentration. Ocean Eng. 2007, 25, 96–101. [Google Scholar] [CrossRef]
- Yun, Z.; Ying, Z.; Wang, M. Analysis on the sensing model of suspended sediment concentrations. Mar. Sci. 2008, 32, 32–35+56. [Google Scholar]
- Zeng, Q.; Zhang, H.D.; Chen, X.L.; Tian, L.Q.; Wang, W.K.; Wang, G.L. Evaluation on the atmospheric correction methods for water color remote sensing by using MERIS image: A case study on chlorophyll-a concentration of Lake Poyang. J. Lake Sci. 2016, 28, 1306–1315. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Jing, Z.; Wei, W.H.; Mao, C.S. Huanghe (Yellow River) and its estuary: Sediment origin, transport and deposition. J. Hydrol. 1990, 120, 203–223. [Google Scholar] [CrossRef]
- Li, G. Suspended sediment dispersal and interaction of river-sea off the Yellow River Mouth. Mar. Geol. Quat. Geol. 1999, 19, 10. [Google Scholar] [CrossRef]
- Cauwet, G.; Mackenzie, F.T. Carbon inputs and distribution in estuaries of turbid rivers: The Yang Tze and Yellow rivers (China). Mar. Chem. 1993, 43, 235–246. [Google Scholar] [CrossRef]
- Guosheng, L.; Xuehau, H.; Ying, L.; Hailong, W.; Heping, L. Diagnostic experiments for transport mechanisms of suspended sediment discharged from the Yellow River in the Bohai Sea. J. Geogr. Sci. 2010, 20, 49–63. [Google Scholar] [CrossRef]
- Chen, X.; Hu, C.; An, Y.; Zhang, Z. Comprehensive evaluation method for sediment allocation effects in the Yellow River. Int. J. Sediment Res. 2020, 35, 651–658. [Google Scholar] [CrossRef]
- Cui, B.; Li, X. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology 2011, 127, 32–40. [Google Scholar] [CrossRef]
- Shiqing, H.; Liye, W.; Jifeng, L.; Guoqing, F. Precipitation and Runoff Characteristics and Meteorological Causes in the Yellow River Basin in the Flood Season of 2014. Yellow River 2015, 37. [Google Scholar] [CrossRef]
- Bi, N.; Yang, Z.; Wang, H.; Hu, B.; Ji, Y. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period. Estuar. Coast. Shelf Sci. 2010, 86, 352–362. [Google Scholar] [CrossRef]
- Li, G.; Wei, H.; Yue, S.; Cheng, Y.; Han, Y. Sedimentation in the Yellow River delta, part II: Suspended sediment dispersal and deposition on the subaqueous delta. Mar. Geol. 1998. [Google Scholar] [CrossRef]
- Xue, C. Numerical Simulation of Tides,Tidal Currents,Residual Currents and Shear front in Estuary. Period. Ocean Univ. China 2010, 40, 41–48. [Google Scholar] [CrossRef]
- Ji, H.; Pan, S.; Chen, S. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta. Mar. Geol. 2020, 425, 106210. [Google Scholar] [CrossRef]
- Cai, H.; Savenije, H.H.G.; Jiang, C. Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations. Hydrol. Earth Syst. Sci. 2014, 18, 4153–4168. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Wang, T. Characteristics of ocean dynamics and sediment diffusion in the Yellow River estuary. J. Sediment Res. 1996, 41, 2–11. [Google Scholar] [CrossRef]
- Yuhe, G.; Richen, X. On the Current and Storm Flow in the Bohai Sea and Their Role in Transporting Deposited Silt of the Yellow River. J. Oceanogr. Huanghai 1996, 16, 1–6. [Google Scholar]
- Hu, C.H.; Ji, Z.W.; Wang, T. Marine dynamic characteristics of Yellow River estuary and transport and diffusion of sediment. J. Sediment. Res. 1996, 4, 1–10. [Google Scholar]
- Fengyue, L.; Guiqiu, W. On Effect of the Coriolis Force on the Deposition, Extension and Swing of the Yellow River Mouth. Yellow River 1987, 4, 33–36. [Google Scholar]
- Kai, W. The relationship between the suspended sediment movement and tidal current dynamic characteristic in Old Yellow River Delta. Mar. Sci. 2011, 35, 73–81. [Google Scholar]
- Chen, B.; Liu, J.; Gao, F. Suspended sediment transport mechanism in Laizhou Bay. Adv. Water Ence 2015, 26, 857–866. [Google Scholar] [CrossRef]
- Lingping, W.; Jian, Z. Analysis of the Sediment Transport of Huanghe River Estuary and the Distribution of suspended Sediment in Bohai Bay by Using Remote Sensmg Technology. J. Waterw. Harb. 1989, 3, 33–37. [Google Scholar]
- Luo, Z.; Wu, J.; Hu, R.; Zhu, L. Characteristics of erosion and deposition in dongying harbor area. Mar. Geol. Front. 2016, 125, 40–45. [Google Scholar] [CrossRef]
Sensor | Band No. | Spectral Range/µm | Resolution/m | Repetition Cycle/d |
---|---|---|---|---|
GF-1 WFV1 | Band 1 (Blue) | 0.450–0.520 | 16 | 4 |
Band 2 (Green) | 0.520–0.590 | |||
Band 3 (Red) | 0.630–0.690 | |||
Band 4 (NIR) | 0.770–0.890 | |||
GF-1 PMS | Band 1 (Blue) | 0.450–0.520 | 8 | 41 |
Band 2 (Green) | 0.520–0.590 | |||
Band 3 (Red) | 0.630–0.690 | |||
Band 4 (NIR) | 0.770–0.890 | |||
Band 5 (PAN) | 0.450–0.900 | 2 |
Date of Data Acquisition (Y-M-D HH:MM:SS) | ||
---|---|---|
2013-08-21 10:52:34 | 2014-05-04 11:00:55 | 2015-01-01 11:11:04 |
2013-09-07 11:13:59 | 2014-08-07 11:20:39 | 2015-03-24 11:13:07 |
2013-12-04 10:54:16 | 2014-09-04 11:04:55 | 2018-04-20 11:09:31 |
2014-03-20 11:01:08 | 2014-10-15 11:06:14 | 2019-05-23 11:08:13 |
Band (X) | Quadratic Polynomial | Correlation Coefficient (R2) |
---|---|---|
Band 1 (Blue) | 0.5019 | |
Band 2 (Green) | 0.6138 | |
Band 3 (Red) | 0.8264 | |
Band 4 (NIR) | 0.9823 |
X | Function | Fitting Model | R2 | RMSE (mg/L) |
---|---|---|---|---|
B4 | exponential | 0.953 | 124.175 | |
B4 | linear | 0.933 | 209.314 | |
B4 | quadratic | 0.982 | 83.3048 | |
B4 | cubic | 0.983 | 1050.560 | |
B4 | power | 0.920 | 222.018 | |
B4/B1 | exponential | 0.998 | 37.342 | |
B4/B1 | linear | 0.971 | 146.141 | |
B4/B1 | logarithmic | 0.916 | 240.394 | |
B4/B1 | quadratic | 0.999 | 33.264 | |
B4/B1 * | Cubic * | * | 0.999 * | 13.110 * |
B4/B1 | power | 0.992 | 115.681 | |
B4/B2 | exponential | 0.961 | 98.125 | |
B4/B2 | linear | 0.924 | 204.531 | |
B4/B2 | quadratic | 0.986 | 85.899 | |
B4/B2 | cubic | 0.986 | 79.303 | |
B4/B2 | power | 0.920 | 187.968 | |
B1/(B2 + B3 + B4) | quadratic | 0.931 | 237.609 | |
B1/(B2 + B3 + B4) | cubic | 0.977 | 133.112 | |
B2/(B1 + B3 + B4) | quadratic | 0.971 | 123.611 | |
B2/(B1 + B3 + B4) | cubic | 0.990 | 155,700.517 | |
B2/(B1 + B3 + B4) | power | 0.916 | 236.042 | |
B4/(B1 + B2 + B3) | exponential | 0.941 | 128.962 | |
B4/(B1 + B2 + B3) | linear | 0.918 | 215.348 | |
B4/(B1 + B2 + B3) | quadratic | 0.977 | 114.790 | |
B4/(B1 + B2 + B3) | cubic | 0.979 | 103.838 | |
B4/(B1 + B2 + B3) | power | 0.909 | 174.847 | |
(B1 + B4)/2 | quadratic | 0.968 | 118.603 | |
(B1 + B4)/2 | cubic | 0.968 | 310.112 | |
(B2 + B4)/2 | quadratic | 0.973 | 9,176,046.028 | |
(B2 + B4)/2 | cubic | 0.975 | 3178.014 | |
(B3 + B4)/2 | quadratic | 0.967 | 146.347 | |
(B3 + B4)/2 | cubic | 0.976 | 3616.066 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Cai, L.; Liu, J.; Zhou, M. GF-1 Satellite Observations of Suspended Sediment Injection of Yellow River Estuary, China. Remote Sens. 2020, 12, 3126. https://doi.org/10.3390/rs12193126
Yao R, Cai L, Liu J, Zhou M. GF-1 Satellite Observations of Suspended Sediment Injection of Yellow River Estuary, China. Remote Sensing. 2020; 12(19):3126. https://doi.org/10.3390/rs12193126
Chicago/Turabian StyleYao, Ru, LiNa Cai, JianQiang Liu, and MinRui Zhou. 2020. "GF-1 Satellite Observations of Suspended Sediment Injection of Yellow River Estuary, China" Remote Sensing 12, no. 19: 3126. https://doi.org/10.3390/rs12193126
APA StyleYao, R., Cai, L., Liu, J., & Zhou, M. (2020). GF-1 Satellite Observations of Suspended Sediment Injection of Yellow River Estuary, China. Remote Sensing, 12(19), 3126. https://doi.org/10.3390/rs12193126