Development of a Machine Learning-Based Radiometric Bias Correction for NOAA’s Microwave Integrated Retrieval System (MiRS)
Abstract
:1. Introduction
1.1. MiRS
1.2. Radiometric Bias Correction
1.3. Radiometric Bias Correction in MiRS
1.4. Neural Networks
2. Materials and Methods
2.1. Satellite and Sensor
2.2. NN Training and Testing Datasets
2.3. MiRS Retrieval Validation Dataset
3. Algorithm and Experiment Design
3.1. MiRS Algorithm
3.2. Experiment Design
4. Results
4.1. Neural Network Performance
4.2. MiRS Retrievals
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boukabara, S.A.; Garrett, K.; Chen, W.C.; Iturbide-Sanchez, F.; Grassotti, C.; Kongoli, C.; Chen, R.Y.; Liu, Q.H.; Yan, B.H.; Weng, F.Z.; et al. MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3249–3272. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Garrett, K.; Grassotti, C.; Iturbide-Sanchez, F.; Chen, W.; Jiang, Z.; Clough, S.A.; Zhan, X.; Liang, P.; Liu, Q.; et al. A Physical Approach for a Simultaneous Retrieval of Sounding, Surface, Hydrometeor and Cryospheric Parameters from SNPP/ATMS. J. Geophys. Res. 2013, 118, 12600–12619. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Garrett, K.; Grassotti, C. Dynamic inversion of global surface microwave emissivity using a 1DVAR approach. Remote Sens. 2018, 10, 679–696. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Van Delst, P.; Liu, Q.H.; Weng, F.Z.; Yan, B.; Treadon, R.; Derber, J. Community Radiative Transfer Model (CRTM),—Version 1; NOAA Technical Report 122; Dept. of Commerce/NOAA/NESDIS: Washington, DC, USA, 2006; 33p. [Google Scholar]
- Ding, S.; Yang, P.; Weng, F.Z.; Liu, Q.H.; Han, Y.; Van Delst, P.; Li, J.; Baum, B. Validation of the community radiative transfer model. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1050–1064. [Google Scholar] [CrossRef]
- Liu, S.; Grassotti, C.; Chen, J.; Liu, Q.H. GPM Products from the Microwave-Integrated Retrieval System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2565–2574. [Google Scholar] [CrossRef]
- Forsythe, J.M.; Kidder, S.Q.; Fuell, K.K.; LeRoy, A.; Jedlovec, G.J.; Jones, A.S. A multisensor, blended, layered water vapor product for weather analysis and forecasting. J. Oper. Meteorol. 2015, 3, 41–58. [Google Scholar] [CrossRef]
- Chirokova, G.; DeMaria, M.; DeMaria, R.; Dostalek, J.; Beven, J. Use of JPSS ATMS-MiRS retrievals to improve tropical cyclone intensity forecasting. The 20th Conference on Satellite Meteorology and Oceanography, Phoenix, AZ, Amer. Meteor. Soc. 2015, 157. Available online: https://ams.confex.com/ams/95Annual/webprogram/Paper263652.html (accessed on 25 September 2020).
- Joyce, R.J.; Xie, P. Kalman filter based CMORPH. J. Hydrometeorol. 2011, 12, 1547–1563. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Auligné, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Zhu, Y.; Derber, J.; Collard, A.; Dee, D.P.; Treadon, R.; Gayno, G.; Jung, J.A. Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Q. J. R. Meteorol. Soc. 2014, 140, 1479–1492. [Google Scholar] [CrossRef]
- Dee, D.P. Bias and data assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3323–3343. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q. J. R. Meteorol. Soc. 2009, 135, 1830–1841. [Google Scholar] [CrossRef]
- Blackwell, W.J.; Chen, F.W. Neural Networks in Atmospheric Remote Sensing; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Gangwar, R.K.; Mathur, A.K.; Gohil, B.S.; Basu, S. Neural network based retrieval of atmospheric temperature profile using AMSU-A observations. Int. J. Atmos. Sci. 2014. [Google Scholar] [CrossRef] [Green Version]
- Krasnopolsky, V.M. Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S.; Belochitski, A.A. Decadal climate simulations using accurate and fast neural network emulation of full, longwave and shortwave, radiation. Monthly Weather Rev. 2008, 136, 3683–3695. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Han, D.; Ahn, M.H.; Im, J.; Lee, S.J. Retrieval of total precipitable water from Himawari-8 AHI data: A comparison of random forest, extreme gradient boosting, and deep neural network. Remote Sens. 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Manzato, A. Hail in Northeast Italy: A neural network ensemble forecast using sounding-derived indices. Weather Forecast 2013, 28, 3–28. [Google Scholar] [CrossRef]
- He, Q.; Wang, Z.; He, J. Bias Correction for Retrieval of Atmospheric Parameters from the Microwave Humidity and Temperature Sounder Onboard the Fengyun-3C Satellite. Atmosphere 2016, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Weng, F.; Zou, X.; Wang, X.; Yang, S.; Goldberg, M.D. Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Weng, F.; Zou, X.; Sun, N.; Yang, H.; Tian, M.; Blackwell, W.J.; Wang, X.; Lin, L.; Anderson, K. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J. Geophys. Res. 2013, 118, 11–187. [Google Scholar] [CrossRef]
- Bormann, N.; Fouilloux, A.; Bell, W. Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. 2013, 118, 12–970. [Google Scholar] [CrossRef]
- Doherty, A.; Atkinson, N.; Bell, W.; Smith, A. An assessment of data from the advanced technology microwave sounder at the Met Office. Adv. Meteorol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Weng, F.; English, S. An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1238–1250. [Google Scholar] [CrossRef]
- Liu, S.; Grassotti, C.; Liu, Q.; Lee, Y.K.; Honeyager, R.; Zhou, Y.; Fang, M. The NOAA Microwave Integrated Retrieval System (MiRS): Validation of Precipitation From Multiple Polar-Orbiting Satellites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3019–3031. [Google Scholar] [CrossRef]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
Channel | Central Frequency (GHz) | Polarization | Beam Width (deg) | NEΔT (K) | Peak WF (hPa) |
---|---|---|---|---|---|
1 | 23.8 | V | 5.2 | 0.9 | Window |
2 | 31.4 | V | 5.2 | 0.9 | Window |
3 | 50.3 | H | 2.2 | 1.2 | Window |
4 | 51.76 | H | 2.2 | 0.75 | 950 |
5 | 52.8 | H | 2.2 | 0.75 | 850 |
6 | 53.596 ± 0.115 | H | 2.2 | 0.75 | 700 |
7 | 54.4 | H | 2.2 | 0.75 | 400 |
8 | 54.94 | H | 2.2 | 0.75 | 250 |
9 | 55.5 | H | 2.2 | 0.75 | 200 |
10 | 57.290344 | H | 2.2 | 0.75 | 100 |
11 | 57.290344 ± 0.217 | H | 2.2 | 1.2 | 50 |
12 | 57.290344 ± 0.322 ± 0.048 | H | 2.2 | 1.2 | 25 |
13 | 57.290344 ± 0.322 ± 0.022 | H | 2.2 | 1.5 | 10 |
14 | 57.290344 ± 0.322 ± 0.010 | H | 2.2 | 2.4 | 5 |
15 | 57.290344 ± 0.322 ± 0.0045 | H | 2.2 | 3.6 | 2 |
16 | 88.2 | V | 2.2 | 0.5 | Window |
17 | 165.5 | H | 1.1 | 0.6 | Window |
18 | 183.31 ± 7.0 | H | 1.1 | 0.8 | 800 |
19 | 183.31 ± 4.5 | H | 1.1 | 0.8 | 700 |
20 | 183.31 ± 3.0 | H | 1.1 | 0.8 | 500 |
21 | 183.31 ± 1.8 | H | 1.1 | 0.8 | 400 |
22 | 183.31 ± 1.0 | H | 1.1 | 0.9 | 300 |
14-January-2019 | 15-July-2018 |
15-February-2019 | 1-August-2018 |
25-March-2019 | 1-September-2019 |
1-April-2019 | 20-October-2018 |
11-May-2019 | 1-November-2019 |
4-June-2019 | 1-December-2019 |
TPW (mm) | Static (868,412) | NN (875,423) | Change (%) | EM 23.8 GHz | Static (868,299) | NN (875,351) | Change (%) |
---|---|---|---|---|---|---|---|
Correlation | 0.99 | 0.99 | 0% | Correlation | 0.5862 | 0.6740 | +15.0% |
Bias | 1.52 | 0.60 | −60.5% | Bias | 0.0071 | 0.0099 | +42.9% |
Std. Dev | 2.33 | 2.62 | +12.9% | Std. Dev | 0.0353 | 0.0255 | −25.7% |
Tskin (K) | Static (868,299) | NN (875,351) | Change (%) | EM 88.2 GHz | Static (868,299) | NN (875,351) | Change (%) |
Correlation | 0.96 | 0.97 | +1.0% | Correlation | 0.7135 | 0.7229 | +1.3% |
Bias | 0.38 | −0.05 | −86.8% | Bias | 0.0022 | −0.0004 | −80.0% |
Std. Dev | 3.01 | 3.02 | +0.3% | Std. Dev | 0.0311 | 0.0301 | −3.2% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Grassotti, C. Development of a Machine Learning-Based Radiometric Bias Correction for NOAA’s Microwave Integrated Retrieval System (MiRS). Remote Sens. 2020, 12, 3160. https://doi.org/10.3390/rs12193160
Zhou Y, Grassotti C. Development of a Machine Learning-Based Radiometric Bias Correction for NOAA’s Microwave Integrated Retrieval System (MiRS). Remote Sensing. 2020; 12(19):3160. https://doi.org/10.3390/rs12193160
Chicago/Turabian StyleZhou, Yan, and Christopher Grassotti. 2020. "Development of a Machine Learning-Based Radiometric Bias Correction for NOAA’s Microwave Integrated Retrieval System (MiRS)" Remote Sensing 12, no. 19: 3160. https://doi.org/10.3390/rs12193160