Band Ranking via Extended Coefficient of Variation for Hyperspectral Band Selection
Abstract
:1. Introduction
2. Data Sets
- Indian Pines
- Kennedy Space Center (KSC)
- Pavia University
- Botswana
- Salinas
- Taita Hills
3. The BRECV Method
3.1. Underlying Impetus
3.2. Extend Scalar CVs to A 3 × 3 Matrix
3.3. Does Entropy Also Work?
3.4. Drop Adjacent Bands
3.5. Time Complexity Analysis
4. Results and Discussion
4.1. Comparison Methods
- Optimal neighborhood reconstruction (ONR) [32]
- Optimal clustering framework (OCF) [26]
4.2. Classifiers
4.3. Classification Results
- Indian Pines
- KSC
- Pavia University
- Botswana
- Salinas
- Taita Hills
- Average OAs over different selected bands
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marinelli, D.; Bovolo, F.; Bruzzone, L. A Novel Change Detection Method for Multitemporal Hyperspectral Images Based on Binary Hyperspectral Change Vectors. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4913–4928. [Google Scholar] [CrossRef]
- Geng, X.; Sun, K.; Ji, L. Band Selection for Target Detection in Hyperspectral Imagery Using Sparse CEM. Remote Sens. Lett. 2014, 5, 1022–1031. [Google Scholar] [CrossRef]
- Piiroinen, R.; Fassnacht, F.E.; Heiskanen, J.; Maeda, E.; Mack, B.; Pellikka, P. Invasive Tree Species Detection in the Eastern Arc Mountains Biodiversity Hotspot Using One Class Classification. Remote Sens. Environ. 2018, 218, 119–131. [Google Scholar] [CrossRef]
- Li, C.; Gao, L.; Wu, Y.; Zhang, B.; Plaza, J.; Plaza, A. A Real-Time Unsupervised Background Extraction-Based Target Detection Method for Hyperspectral Imagery. J. Real Time Image Process. 2018, 15, 597–615. [Google Scholar] [CrossRef]
- Sellami, A.; Farah, M.; Farah, I.R.; Solaiman, B. Hyperspectral Imagery Semantic Interpretation Based on Adaptive Constrained Band Selection and Knowledge Extraction Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1337–1347. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods. IEEE Signal Process. Mag. 2014, 31, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wei, C.; Ge, Y.; Feng, J.; Zhao, J.; Jiao, L. Semi-Supervised Hyperspectral Band Selection Based on Dynamic Classifier Selection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1289–1298. [Google Scholar] [CrossRef]
- Piiroinen, R.; Heiskanen, J.; Mõttus, M.; Pellikka, P. Classification of Crops across Heterogeneous Agricultural Landscape in Kenya Using AisaEAGLE Imaging Spectroscopy Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 1–8. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Hyperspectral Band Selection: A Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118–139. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, W.; Liao, B.; Cai, L. Scalable One-Pass Self-Representation Learning for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4360–4374. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Laplacian-Regularized Low-Rank Subspace Clustering for Hyperspectral Image Band Selection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1723–1740. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, Y.; Lu, X. Hyperspectral Image Denoising by Fusing the Selected Related Bands. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2596–2609. [Google Scholar] [CrossRef]
- Das, S.; Bhattacharya, S.; Routray, A.; Deb, A.K. Band Selection of Hyperspectral Image by Sparse Manifold Clustering. IET Image Process. 2019, 13, 1625–1635. [Google Scholar] [CrossRef]
- Chang, C.I.; Liu, K.H. Progressive Band Selection of Spectral Unmixing for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2002–2017. [Google Scholar] [CrossRef]
- Sumarsono, A.; Du, Q. Estimation of Number of Signal Subspaces in Hyperspectral Imagery Using Low-Rank Subspace Representation. In Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing; IEEE Computer Society: Lausanne, Switzerland, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Jimenez, L.O.; Landgrebe, D.A. Supervised Classification in High-Dimensional Space: Geometrical, Statistical, and Asymptotical Properties of Multivariate Data. IEEE Trans. Syst. Man Cybern. Part. C Appl. Rev. 1998, 28, 39–54. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Graph-Regularized Fast and Robust Principal Component Analysis for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3185–3195. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Zhao, L. Discovering the Representative Subset with Low Redundancy for Hyperspectral Feature Selection. Remote Sens. 2019, 11, 1341. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Tang, G.; Zhu, J.; Li, Q. A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 88–102. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, J.; Yuan, Y. Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking. IEEE Trans. Neural Networks Learn. Syst. 2016, 27, 1279–1289. [Google Scholar] [CrossRef]
- Geng, X.; Sun, K.; Ji, L.; Tang, H.; Zhao, Y. Joint Skewness and Its Application in Unsupervised Band Selection for Small Target Detection. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.; Sun, K.; Ji, L.; Zhao, Y. A Fast Volume-Gradient-Based Band Selection Method for Hyperspectral Image. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7111–7119. [Google Scholar] [CrossRef]
- Du, Q.; Yang, H. Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis. IEEE Geosci. Remote Sens. Lett. 2008, 5, 564–568. [Google Scholar] [CrossRef]
- Dos Santos, L.C.B.; Guimaraes, S.J.F.; Dos Santos, J.A. Efficient Unsupervised Band Selection through Spectral Rhythms. IEEE J. Sel. Top. Signal. Process. 2015, 9, 1016–1025. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, J.; Wang, Q. Dual-Clustering-Based Hyperspectral Band Selection by Contextual Analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1431–1445. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, X. Optimal Clustering Framework for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5910–5922. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Geng, X.; Ji, L. A New Sparsity-Based Band Selection Method for Target Detection of Hyperspectral Image. IEEE Geosci. Remote Sens. Lett. 2015, 12, 329–333. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, G.; Wang, Q. Hyperspectral Band Selection by Multitask Sparsity Pursuit. IEEE Trans. Geosci. Remote Sens. 2015, 53, 631–644. [Google Scholar] [CrossRef]
- Zhan, Y.; Hu, D.; Xing, H.; Yu, X. Hyperspectral Band Selection Based on Deep Convolutional Neural Network and Distance Density. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2365–2369. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, X.; Cai, Z. BS-Nets: An End-to-End Framework for Band Selection of Hyperspectral Image. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1969–1984. [Google Scholar] [CrossRef] [Green Version]
- Baumgardner, M.F.; Biehl, L.L.; Landgrebe, D.A. 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3. Purdue Univ. Res. Repos. 2015. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, X. Hyperspectral Band Selection via Optimal Neighborhood Reconstruction. IEEE Trans. Geosci. Remote Sens. 2020, 1–12. [Google Scholar] [CrossRef]
Data Sets | Indexes of Selected 30 Bands |
---|---|
Indian Pines | 13/18/32/90/26/65/117/163/190/181/161/168/193/178/128/49/173/51/170/70/186/88/183/84/72/145/196/131/176/165 |
KSC | 79/81/60/73/70/49/23/28/54/43/67/51/30/20/18/15/143/41/45/87/12/56/9/58/47/6/75/65/39/90 |
Pavia University | 3/12/63/26/20/60/39/47/100/88/42/31/90/53/49/93/5795/44/98/35/51/102/18/82/15/9/85/80/74 |
Botswana | 121/43/51/7/97/16/41/65/4/18/92/129/100/70/56/87/21/137/53/34/123/132/26/95/126/58/24/90/119/106 |
Salinas | 72/68/32/54/11/27/167/24/62/93/164/128/176/134/19/125/15/52/75/13/136/172/141/131/91/46/100/87/89/17 |
Taita Hills | (26 bands) 31/13/48/51/54/63/45/56/61/59/42/2/24/40/22/29/20/26/18/6/16/8/10/38/4/35 |
Indian Pines | Pavia University | Salinas | KSC | Botswana | Taita Hills | |
---|---|---|---|---|---|---|
BRCV | 0.55530.1122 | 0.66990.0967 | 0.64120.1490 | 0.65470.1110 | 0.48520.0852 | 0.79440.0567 |
BRE | 0.54760.0733 | 0.72290.1641 | 0.83890.1081 | 0.80010.0873 | 0.79880.1426 | 0.80050.0899 |
BRED | 0.58210.0868 | 0.80050.1526 | 0.85770.1146 | 0.80610.0866 | 0.81440.1363 | 0.80960.0881 |
BRECV | 0.70180.1093 | 0.81910.1085 | 0.88180.0841 | 0.80590.1027 | 0.82610.1067 | 0.79630.0332 |
BRECVD | 0.69840.1082 | 0.82720.1134 | 0.88830.0792 | 0.81580.1079 | 0.83930.1051 | 0.80590.0421 |
EFDPC | 0.70370.1216 | 0.70460.1432 | 0.88150.0769 | 0.76900.1818 | 0.80860.1325 | 0.77330.1046 |
OCF | 0.69740.0886 | 0.86060.0909 | 0.89740.0640 | 0.83690.1308 | 0.82750.1053 | 0.80910.0593 |
ONR | 0.72420.0954 | 0.88380.0830 | 0.89390.0795 | 0.83930.0924 | 0.85590.1038 | 0.81460.0871 |
Indian Pines | Pavia University | Salinas | KSC | Botswana | Taita Hills | |
---|---|---|---|---|---|---|
BRCV | 0.51740.0816 | 0.68130.0754 | 0.64840.1510 | 0.62290.0881 | 0.46600.0596 | 0.76030.0623 |
BRE | 0.50140.0583 | 0.71320.1217 | 0.82330.1020 | 0.77880.0741 | 0.76640.1269 | 0.75420.0700 |
BRED | 0.54220.0645 | 0.77600.1117 | 0.83730.1074 | 0.77230.0710 | 0.78700.1227 | 0.76060.0676 |
BRECV | 0.63410.0799 | 0.80420.0810 | 0.85870.0739 | 0.77070.0866 | 0.76560.0984 | 0.74080.0461 |
BRECVD | 0.63320.0795 | 0.80950.0838 | 0.86500.0691 | 0.77570.0893 | 0.78830.0939 | 0.75090.0524 |
EFDPC | 0.63930.0880 | 0.71050.1114 | 0.86100.0748 | 0.72730.1565 | 0.77800.1145 | 0.73010.0993 |
OCF | 0.63300.0705 | 0.82650.0717 | 0.87100.0568 | 0.79360.1192 | 0.79330.0891 | 0.75830.0429 |
ONR | 0.64010.0690 | 0.85490.0673 | 0.86360.0983 | 0.79640.0792 | 0.82100.0967 | 0.76380.0663 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, P.; Tarkoma, S.; Pellikka, P.K.E. Band Ranking via Extended Coefficient of Variation for Hyperspectral Band Selection. Remote Sens. 2020, 12, 3319. https://doi.org/10.3390/rs12203319
Su P, Tarkoma S, Pellikka PKE. Band Ranking via Extended Coefficient of Variation for Hyperspectral Band Selection. Remote Sensing. 2020; 12(20):3319. https://doi.org/10.3390/rs12203319
Chicago/Turabian StyleSu, Peifeng, Sasu Tarkoma, and Petri K. E. Pellikka. 2020. "Band Ranking via Extended Coefficient of Variation for Hyperspectral Band Selection" Remote Sensing 12, no. 20: 3319. https://doi.org/10.3390/rs12203319
APA StyleSu, P., Tarkoma, S., & Pellikka, P. K. E. (2020). Band Ranking via Extended Coefficient of Variation for Hyperspectral Band Selection. Remote Sensing, 12(20), 3319. https://doi.org/10.3390/rs12203319