Predicting Tree Sap Flux and Stomatal Conductance from Drone-Recorded Surface Temperatures in a Mixed Agroforestry System—A Machine Learning Approach
Abstract
Share and Cite
Ellsäßer, F.; Röll, A.; Ahongshangbam, J.; Waite, P.-A.; Hendrayanto; Schuldt, B.; Hölscher, D. Predicting Tree Sap Flux and Stomatal Conductance from Drone-Recorded Surface Temperatures in a Mixed Agroforestry System—A Machine Learning Approach. Remote Sens. 2020, 12, 4070. https://doi.org/10.3390/rs12244070
Ellsäßer F, Röll A, Ahongshangbam J, Waite P-A, Hendrayanto, Schuldt B, Hölscher D. Predicting Tree Sap Flux and Stomatal Conductance from Drone-Recorded Surface Temperatures in a Mixed Agroforestry System—A Machine Learning Approach. Remote Sensing. 2020; 12(24):4070. https://doi.org/10.3390/rs12244070
Chicago/Turabian StyleEllsäßer, Florian, Alexander Röll, Joyson Ahongshangbam, Pierre-André Waite, Hendrayanto, Bernhard Schuldt, and Dirk Hölscher. 2020. "Predicting Tree Sap Flux and Stomatal Conductance from Drone-Recorded Surface Temperatures in a Mixed Agroforestry System—A Machine Learning Approach" Remote Sensing 12, no. 24: 4070. https://doi.org/10.3390/rs12244070
APA StyleEllsäßer, F., Röll, A., Ahongshangbam, J., Waite, P.-A., Hendrayanto, Schuldt, B., & Hölscher, D. (2020). Predicting Tree Sap Flux and Stomatal Conductance from Drone-Recorded Surface Temperatures in a Mixed Agroforestry System—A Machine Learning Approach. Remote Sensing, 12(24), 4070. https://doi.org/10.3390/rs12244070