Quantifying Western U.S. Rangelands as Fractional Components with Multi-Resolution Remote Sensing and In Situ Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Methods
2.2.1. Field Sampling
2.2.2. Satellite High-Resolution Image Processing and Modeling
2.2.3. Landsat-Scale Image Processing and Modeling
2.2.4. Component Masking
2.3. Component Validation
2.4. Component Analysis
3. Results
3.1. Component Predictions
3.2. Spatial Patterns
3.3. Ecoregion Averages
3.4. Component Proportions
3.5. Component Accuracy
4. Discussion
4.1. Component Accuracy
4.2. Component Distributions
4.3. Next-Generation Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wessel, W.; Tietema, A.; Beier, C.; Emmett, B.A.; Peñuelas, J.; Riis–Nielsen, T. A qualitative ecosystem assessment for different shrublands in western Europe under impact of climate change. Ecosystems 2004, 7, 662–671. [Google Scholar] [CrossRef]
- Feld, C.K.; Martins da Silva, P.; Paulo Sousa, J.; De Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; et al. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales. Oikos 2009, 118, 1862–1871. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Pilmanis, A.M. Plant-soil interactions in deserts. Biogeochemistry 1998, 42, 169–187. [Google Scholar] [CrossRef]
- Wallace, O.C.; Qi, J.; Heilma, P.; Marsett, R.C. Remote sensing for cover change assessment in southeast Arizona. J. Range Manag. 2003, 56, 402–409. [Google Scholar] [CrossRef]
- Schwinning, S.; Starr, B.I.; Ehleringer, J.R. Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part II: Effects on plant carbon assimilation and growth. J. Arid Environ. 2005, 61, 61–78. [Google Scholar] [CrossRef]
- Leu, M.; Hanser, S.E.; Knick, S.T. The human footprint in the west: A large-scale analysis of anthropogenic impacts. Ecol. Appl. 2008, 18, 1119–1139. [Google Scholar] [CrossRef]
- Hamada, Y.; Stow, D.A.; Roberts, D.A.; Franklin, J.; Kyriakidis, C. Assessing and monitoring semi-arid shrublands using object-based image analysis and multiple endmember spectral mixture analysis. Environ. Monit. Assess. 2013, 185, 3173–3190. [Google Scholar] [CrossRef]
- McKell, C.M.; Garcia-Moya, E. North American Shrub Lands. In The Biology and Utilization of Shrubs; McKell, C.M., Ed.; Academic Press Inc.: San Diego, CA, USA, 1989; 656p. [Google Scholar]
- Mack, R.N. Temperate grasslands vulnerable to plant invasions: Characteristics and consequences. In Biological Invasions: A Global Perspective; Drake, J.A., Mooney, H.A., Di Castri, F., Eds.; Wiley: Chichester, UK, 1989; pp. 155–179. [Google Scholar]
- Schroeder, M.A.; Aldridge, C.L.; Apa, A.D.; Bohne, J.R.; Braun, C.E.; Bunnell, S.D.; Connelly, J.W.; Diebert, P.A.; Gardner, S.C.; Hilliard, M.A.; et al. Distribution of sage-grouse in North America. Condor 2004, 106, 363–376. [Google Scholar] [CrossRef]
- Brown, J.H.; Valone, T.J.; Curtin, C.G. Reorganization of an arid ecosystem in response to recent climate change. Proc. Natl. Acad. Sci. USA 1997, 94, 9729–9733. [Google Scholar] [CrossRef] [Green Version]
- Berlow, E.L.; D’Antonio, C.M.; Reynolds, S.A. Shrub expansion in montane meadows: The interaction of local-scale disturbance and site aridity. Ecol. Appl. 2002, 12, 1103–1118. [Google Scholar] [CrossRef]
- Knick, S.T.; Dobkin, D.S.; Rotenberry, J.T.; Schroeder, M.A.; Vander Haegen, W.M.; Van Riper, C., III. Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats. Condor 2003, 105, 611–634. [Google Scholar] [CrossRef]
- Bradley, B.A.; Houghton, R.A.; Mustard, J.F.; Hamburg, S.P. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Biol. 2006, 12, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.W.; Boyd, C.S.; Beck, J.K.; Bates, J.D.; Svejcar, T.J.; Gregg, M.A. Saving the sagebrush sea: An ecosystem conservation plan for big sagebrush plant communities. Biol. Conserv. 2011, 144, 2573–2584. [Google Scholar] [CrossRef] [Green Version]
- Walston, L.J.; Cantwell, B.L.; Krummel, J.R. Quantifying spatiotemporal changes in a sagebrush ecosystem in relation to energy development. Ecography 2009, 32, 943–952. [Google Scholar] [CrossRef]
- Green, A.W.; Aldridge, C.L.; O’Donnell, M.S. Investigating impacts of oil and gas development on greater sage-grouse. J. Wildl. Manag. 2017, 81, 46–57. [Google Scholar] [CrossRef]
- Branson, F.A.; Miller, R.F.; McQueen, I.S. Geographic distribution and factors affecting the distribution of salt desert shrubs in the United States. J. Range Manag. 1967, 20, 287–296. [Google Scholar] [CrossRef]
- Cook, J.G.; Irwin, L.L. Climate-vegetation Relationships between the Great Plains and Great Basin. Am. Midl. Nat. 1992, 127, 316–326. [Google Scholar] [CrossRef]
- Anderson, J.E.; Inouye, R.S. Landscape scale changes in plant species abundance and biodiversity of the sagebrush steppe over 45 Years. Ecol. Monogr. 2001, 71, 531–556. [Google Scholar] [CrossRef]
- Weltzin, J.F.; Loik, M.E.; Schwinning, S.; Williams, D.G.; Fay, P.; Haddad, B.; Harte, J.; Huxman, T.E.; Knapp, A.K.; Lin, G.; et al. Assessing the response of ecological systems to potential changes in precipitation. Bioscience 2003, 53, 941–952. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Aldridge, C. Effects of land cover and regional climate variations on long-term spatiotemporal changes in sagebrush ecosystems. GISci. Remote Sens. 2012, 49, 378–396. [Google Scholar] [CrossRef]
- Homer, C.; Xian, G.; Aldridge, C.; Meyer, D.; Loveland, T.; O’Donnell, M. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: Learning from past climate patterns and Landsat imagery to predict the future. Ecol. Indic. 2015, 55, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.C.; Bradley, B.A.; Brown, C.S.; D’Antonio, C.; Germino, M.J.; Grace, J.B.; Hardegree, S.P.; Miller, R.F.; Pyke, D.A. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in cold desert shrublands of western North America. Ecosystems 2014, 17, 360–375. [Google Scholar] [CrossRef]
- Boyte, S.P.; Wylie, B.K.; Major, D.J. Cheatgrass percent cover change—Comparing recent estimates to climate change–driven predictions in the northern Great Basin. Rangel. Ecol. Manag. 2016, 69, 265–279. [Google Scholar] [CrossRef]
- Suring, L.H.; Rowland, M.M.; Wisdom, M.J. Identifying species of conservation concern. In Habitat Threats in the Sagebrush Ecosystem—Methods of Regional Assessment and Applications in the Great Basin; Wisdom, M.J., Rowland, M.M., Suring, L.H., Eds.; Alliance Communications Group: Lawrence, KS, USA, 2005; pp. 150–162. [Google Scholar]
- Connelly, J.W.; Knick, S.T.; Schroeder, M.A.; Stiver, S.J. Conservation Assessment of Greater Sage-Grouse and Sagebrush Habitats; Unpublished Report; Western Association of Fish and Wildlife Agencies: Boise, ID, USA, 2004. [Google Scholar]
- Aldridge, C.L.; Nielsen, S.E.; Beyer, H.L.; Boyce, M.S.; Connelly, J.W.; Knick, S.T.; Schroeder, M.A. Range-wide patterns of greater sage-grouse persistence. Divers. Distrib. 2008, 14, 983–994. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.F.; Knick, S.T.; Pyke, D.A.; Meinke, C.W.; Hanser, S.E.; Wisdom, M.J.; Hild, A.L. Characteristics of sagebrush habitats and limitations to long-term conservation. Stud. Avian Biol. 2011, 38, 145–184. [Google Scholar]
- Sant, E.D.; Simonds, G.E.; Ramsey, R.D.; Larsen, R.T. Assessment of sagebrush cover using remote sensing at multiple spatial and temporal scales. Ecol. Indic. 2014, 43, 297–305. [Google Scholar] [CrossRef]
- Scott, J.M.; Davis, F.; Csuti, B.; Noss, R.; Butterfield, B.; Groves, G.; Anderson, H.; Caicco, S.; D’Erchia, F.; Edwards, T.C.; et al. Gap analysis: A geographic approach to protection of biological diversity. Wildl. Monogr. 1993, 123, 3–41. [Google Scholar]
- Homer, C.G.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–353. [Google Scholar]
- Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire 2009, 18, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Hagen, S.C.; Heilman, P.; Marsett, R.; Torbick, N.; Salas, W.; van Ravensway, J.; Qi, J. Mapping total vegetation cover across western rangelands with moderate-resolution imaging spectroradiometer data. Rangel. Ecol. Manag. 2012, 65, 456–467. [Google Scholar] [CrossRef]
- Sivanpillai, R.; Prager, S.D.; Storey, T.O. Estimating sagebrush cover in semi-arid environments using Landsat thematic mapper data. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 103–107. [Google Scholar] [CrossRef]
- Homer, C.G.; Aldridge, C.L.; Meyer, D.K.; Schell, S. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 233–244. [Google Scholar] [CrossRef]
- Sivanpillai, R.; Ewers, B.E. Relationship between sagebrush species and structural characteristics and Landsat thematic mapper data. Appl. Veg. Sci. 2013, 16, 122–130. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Meyer, D.; Granneman, B. An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD. ISPRS J. Photogramm. Remote Sens. 2013, 86, 136–149. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Rigge, M.; Shi, H.; Meyer, D. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sens. Environ. 2015, 168, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.O.; Allred, B.W.; Naugle, D.E.; Maestas, J.D.; Donnelly, P.; Metz, L.J.; Karl, J.; Smith, R.; Bestelmeyer, B.; Boyd, C.; et al. Innovation in rangeland monitoring: Annual, 30 m, plant functional type percent cover maps for U.S. rangelands, 1984–2017. Ecosphere 2018, 9, e02430. [Google Scholar] [CrossRef]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef]
- USDA; NRCS. The PLANTS Database; National Plant Data Team: Greensboro, NC, USA, 2019. Available online: http://plants.usda.gov (accessed on 24 April 2019).
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Assessment, Inventory, and Monitoring (AIM). Available online: https://landscape.blm.gov/geoportal/catalog/AIM/AIM.page (accessed on 5 September 2018).
- RuleQuest Research. Cubist; Version 2.08; RuleQuest Pty: St. Ives, New South Wales, Australia, 2008. [Google Scholar]
- Wylie, B.; Pastick, N.; Picotte, J.; Deering, C. Geospatial data mining for digital raster mapping. GISci. Remote Sens. 2019, 56, 406–429. [Google Scholar] [CrossRef]
- Jenkerson, C.B.; Maiersperger, T.K.; Schmidt, G.L. eMODIS: A User-Friendly Data Source; U.S. Geological Survey Open-File Report; USGS: Reston, VA, USA, 2010. Available online: https://doi.org/10.3133/ofr20101055 (accessed on 13 November 2017).
- Chander, G.; Huang, C.; Yang, L.; Homer, C.; Larson, C. Developing consistent Landsat data sets for large area applications: The MRLC 2001 protocol. IEEE Geosci. Remote Sens. Lett. 2009, 6, 777–781. [Google Scholar] [CrossRef]
- Jenkerson, C. User Guide: Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) on Demand Interface, 1.4 ed.; U.S. Geological Survey: Reston, VA, USA, 2013.
- Schmidt, G.; Jenkerson, C.B.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description. In U.S. Geological Survey Open-File Report; USGS: Reston, VA, USA, 2013. Available online: https://doi.org/10.3133/ofr20131057 (accessed on 7 July 2017).
- Boyte, S.P.; Wylie, B.K.; Rigge, M.B.; Dahal, D. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA. GISci. Remote Sens. 2018, 55, 376–399. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Chambers, J.C.; Beck, J.L.; Campbell, S.; Carlson, J.; Christiansen, T.J.; Clause, K.; Dinkins, J.B.; Doherty, K.E.; Griffin, K.A.; Havlina, D.W.; et al. Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and greater sage-grouse in their eastern range. In General Technical Report RMRS-GTR-356; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016; 143p. [Google Scholar]
- Geospatial Mulit-Agency Coordination. Available online: https://www.geomac.gov/ (accessed on 21 May 2016).
- Lesica, P.; Cooper, S.V.; Kudray, G. Recovery of big sagebrush following fire in southwest Montana. Rangel. Ecol. Manag. 2007, 60, 261–269. [Google Scholar] [CrossRef]
- Beck, J.L.; Connelly, J.W.; Reese, K.P. Recovery of greater sage-grouse habitat features in Wyoming big sagebrush following prescribed fire. Restor. Ecol. 2009, 17, 393–403. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Yue, P. A Geospatial Web Service Approach for Creating On-Demand Cropland Data Layer Thematic Maps. Trans. ASABE 2013, 57, 239–247. [Google Scholar]
- Thornton, P.E.; Thornton, M.M.; Mayer, B.W.; Wei, Y.; Devarakonda, R.; Vose, R.S.; Cook, R.B. Daymet: Daily Surface Weather Data on a 1-km Grid for NORTH AMERICA, Version 3. 2016. Available online: https://doi.org/10.3334/ORNLDAAC/1328 (accessed on 14 March 2017).
- West, N.E.; Young, J.A. Intermountain valleys and lower mountain slopes. In North American Terrestrial Vegetation; Barbour, M.G., Billing, W.D., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 255–284. [Google Scholar]
- Nekola, J.C.; White, P.S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 1999, 26, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Ku, N.-W.; Popescu, S.C. A comparison of multiple methods for mapping local-scale mesquite tree aboveground biomass with remotely sensed data. Biomass Bioenergy 2019, 122, 270–299. [Google Scholar] [CrossRef]
- Smith, J.T.; Tack, J.D.; Berkeley, L.I.; Szczypinski, M.; Naugle, D.E. Effects of livestock grazing on nesting sage-grouse in central Montana. J. Wildl. Manag. 2018, 82, 1503–1515. [Google Scholar] [CrossRef]
- Mordecai, E.A.; Molinari, N.A.; Stahlheber, K.A.; Gross, K.; D’Antonio, C. Controls over native perennial grass exclusion and persistence in California grasslands invaded by annuals. Ecology 2015, 96, 2643–2652. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.F.; Penniket, R.; Fent, L.; Nicholson, J.; Adams, B. Silver sagebrush community associations in southeastern Alberta, Canada. Rangel. Ecol. Manag. 2005, 58, 400–405. [Google Scholar] [CrossRef]
- Shultz, L.M. Monograph of Artemisia Subgenus Tridentatae (Asteraceae–Anthemideae). Syst. Botany Monogr. 2009, 89, 1–131. [Google Scholar]
- Chambers, J.C.; Beck, J.L.; Bradford, J.B.; Bybee, J.; Campbell, S.; Carlson, J.; Christiansen, T.J.; Clause, K.J.; Collins, G.; Crist, M.R.; et al. Science basis and applications. Gen. Tech. Rep. RMRS-GTR-360. In Science Framework for Conservation and Restoration of the Sagebrush Biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to Long-Term Strategic Conservation Actions. Part 1; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2017; 213p. [Google Scholar]
- Pyke, D.A.; Herrick, J.E.; Shaver, P.; Pellant, M. Rangeland health attributes and indicators for qualitative assessment. J. Range Manag. 2002, 55, 584–597. [Google Scholar] [CrossRef]
- Booth, D.T.; Tueller, P.T. Rangeland monitoring using remote sensing. Arid Land Res. Manag. 2003, 17, 455–467. [Google Scholar] [CrossRef]
- Karl, M.G.; Kachergis, E.; Karl, J.W. Bureau of Land Management Rangeland Resource Assessment—2011; U.S. Department of the Interior, Bureau of Land Management, National Operations Center: Denver, CO, USA, 2016; 96p.
- Shi, H.; Rigge, M.; Homer, C.G.; Xian, G.; Meyer, D.K.; Bunde, B. Historical cover trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management. Ecosystems 2018, 21, 913–929. [Google Scholar] [CrossRef]
- Rigge, M.; Shi, H.; Homer, C.; Danielson, P.; Granneman, B. Long-term trajectories of fractional component change in the Northern Great Basin. USA Ecosphere 2019, 10, e02762. [Google Scholar] [CrossRef]
- Rigge, M.B.; Homer, C.G.; Wylie, B.K.; Gu, Y.; Shi, H.; Xian, G.; Meyer, D.K.; Bunde, B. Using remote sensing to quantify ecosystem site potential community structure and deviation in the Great Basin, United States. Ecol. Indic. 2019, 96, 516–531. [Google Scholar] [CrossRef]
Component | Area (km2) | Pixels with Component Present (%) |
---|---|---|
Shrub * | 324,247 | 95.1 |
Shrub Height | 324,247 | 95.1 |
Sagebrush | 90,949 | 41.5 |
Sagebrush Height | 90,949 | 41.5 |
Big Sagebrush | 63,838 | 35.7 |
Herbaceous * | 490,517 | 99.5 |
Annual Herb. | 89,165 | 30.1 |
Litter * | 335,688 | 99.7 |
Bare Ground * | 968,792 | 99.9 |
Non-Rangeland | 833,836 | |
Mapped Area | 2,129,819 | |
Total Area | 2,993,655 |
(a) Independent Validation | |||||||||
Shrub | Sage | Big Sage | Herb | Annual Herb | Litter | Bare Ground | Shrub Ht | Sage Ht | |
Average | 11.8 | 5.7 | 2.9 | 24.0 | 6.7 | 16.8 | 47.3 | 44.5 | 17.7 |
Max | 82 | 69 | 69 | 97 | 97 | 83 | 100 | 400 | 150 |
Range | 82 | 69 | 69 | 97 | 97 | 83 | 100 | 400 | 150 |
R2 | 0.37 | 0.40 | 0.16 | 0.67 | 0.58 | 0.35 | 0.70 | 0.19 | 0.24 |
Slope | 0.50 | 0.52 | 0.34 | 0.61 | 0.55 | 0.42 | 0.73 | 0.29 | 0.31 |
RMSE | 10.6 | 7.5 | 7.8 | 13.1 | 9.8 | 8.9 | 14.6 | 39.5 | 25.6 |
nRMSE | 0.13 | 0.11 | 0.11 | 0.14 | 0.10 | 0.11 | 0.15 | 0.10 | 0.19 |
(b)Cross-Validation | |||||||||
Shrub | Sage | Big Sage | Herb | Annual Herb | Litter | Bare Ground | Shrub Ht | Sage Ht | |
Average | 15.7 | 5.6 | 4.1 | 22.6 | 6.0 | 16.3 | 44.4 | 40.8 | 13.3 |
Max | 87 | 59 | 59 | 100 | 92 | 74 | 100 | 865 | 239 |
Range | 87 | 59 | 59 | 100 | 92 | 74 | 100 | 865 | 239 |
R2 | 0.73 | 0.63 | 0.63 | 0.79 | 0.66 | 0.75 | 0.85 | 0.62 | 0.59 |
Slope | 0.70 | 0.63 | 0.62 | 0.74 | 0.64 | 0.71 | 0.78 | 0.62 | 0.59 |
RMSE | 6.0 | 3.4 | 4.1 | 6.3 | 4.1 | 3.8 | 8.0 | 17.8 | 7.8 |
nRMSE | 0.07 | 0.06 | 0.07 | 0.06 | 0.04 | 0.05 | 0.08 | 0.02 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigge, M.; Homer, C.; Cleeves, L.; Meyer, D.K.; Bunde, B.; Shi, H.; Xian, G.; Schell, S.; Bobo, M. Quantifying Western U.S. Rangelands as Fractional Components with Multi-Resolution Remote Sensing and In Situ Data. Remote Sens. 2020, 12, 412. https://doi.org/10.3390/rs12030412
Rigge M, Homer C, Cleeves L, Meyer DK, Bunde B, Shi H, Xian G, Schell S, Bobo M. Quantifying Western U.S. Rangelands as Fractional Components with Multi-Resolution Remote Sensing and In Situ Data. Remote Sensing. 2020; 12(3):412. https://doi.org/10.3390/rs12030412
Chicago/Turabian StyleRigge, Matthew, Collin Homer, Lauren Cleeves, Debra K. Meyer, Brett Bunde, Hua Shi, George Xian, Spencer Schell, and Matthew Bobo. 2020. "Quantifying Western U.S. Rangelands as Fractional Components with Multi-Resolution Remote Sensing and In Situ Data" Remote Sensing 12, no. 3: 412. https://doi.org/10.3390/rs12030412