Analysis of the Spatiotemporal Change in Land Surface Temperature for a Long-Term Sequence in Africa (2003–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MODIS Data
2.3. Ground Observation Data
2.4. LST Data Reconstruction Method
2.5. LST Pixel Filtering
2.6. LST Data Recovery
2.7. Estimation of Invalid Pixel Values
2.8. Validation
2.9. Mean LST
2.10. Trend Analysis of Change (Slope) and the Correlation Coefficient (R)
3. Results
3.1. Annual Change Analysis
3.1.1. Average LST Change
3.1.2. Daytime and Night Time Change Analysis
3.1.3. Analysis of the Diurnal Temperature Difference
3.2. Seasonal Change Analysis
3.3. Monthly Average Change Analysis
3.4. Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tan, J.; Noureldeen, N.; Mao, K.; Shi, J.; Li, Z. Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2. Sensors 2019, 19, 2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Tang, B.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Arnon, K.; Nurit, A.; Rachel, T.P.; Martha, A.; Marc, I.F.; Garik, G.; Gutman; Natalya, P.; Alexander, G. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2009, 23, 618–633. [Google Scholar] [CrossRef]
- Beurs, K.M.D.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Kumar, K.S.; Bhaskar, P.U.; Padmakumari, K. Estimation of land surface temperature to study urband heat island effect using landsat ETM + image. Int. J. Eng. Sci. Technol. 2012, 4, 771–778. [Google Scholar]
- Dash, P.; Göttsche, F.M.; Olesen, H.; Fischer, F.S. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2010, 37–41. [Google Scholar] [CrossRef]
- Laura, P. Climate change impacts on agriculture across Africa. Oxford Res. Encycl. Environ. Sci. 2017, 1–35. [Google Scholar] [CrossRef]
- Serdeczny, O.; Adams, S.; Coumou, D.; Hare, W.; Perrette, M. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2016, 17. [Google Scholar] [CrossRef]
- Itai, K.; Francesco, N.; Coull, B.A.; Schwartz, J. Predicting spatiotemporal mean air temperature using MODIS satellite surface temperature measurements across the Northeastern USA. Remote Sens. Environ. 2014, 150. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, S.D.; Cheng, M.M.; Shu, Y. Assess the effect of different degrees of urbanization on land surface temperature using remote sensing images. Procedia Environ. Sci. 2012, 8, 962–969. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Wang, W.; Cui, J.; Meng, F.; Kurban, A. Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central. Sci. Rep. 2017, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, H.; Katurji, M.; Appelhans, T.; Müller, M.U.; Nauss, T.; Roudier, P.; Zawar-Reza, P. Mapping daily air temperature for Antarctica based on MODIS LST. Remote Sens. 2016, 8, 732. [Google Scholar] [CrossRef] [Green Version]
- Ozelkan, E.; Bagis, S.; Ozelkan, E.C. Spatial interpolation of climatic variables using land surface temperature and modified inverse. Int. J. Remote 2015, 36. [Google Scholar] [CrossRef]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Heuvelink, G.B.M. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor. Appl. Climatol. 2012, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Mao, K.B.; Yuan, Z.J.; Zuo, Z.Y.; Xu, T.R.; Shen, X.Y.; Gao, C.Y. Changes in global cloud cover based on remote sensing data from 2003 to 2012. Chin. Geogr. Sci. 2019, 29, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Metz, M.; Andreo, V.; Neteler, M. A new fully gap-free time series of land surface temperature from MODIS LST Data. Remote Sens. 2017, 9, 1333. [Google Scholar] [CrossRef] [Green Version]
- Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens. 2010, 2, 333–351. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Liu, H.; Liu, G.; Li, S. Reconstruction of MODIS land-surface temperature in a flat terrain and fragmented landscape. Int. J. Remote Sens. 2014, 37–41. [Google Scholar] [CrossRef]
- He, J.; Zhao, W.; Li, A.; Wen, F.; Yu, D. The impact of the terrain effect on land surface temperature variation based on Landsat-8 observations in mountainous areas. Int. J. Remote Sens. 2018, 40, 1–20. [Google Scholar] [CrossRef]
- Lyon, S.W.; Rasmus, S.; Stendahl, J. Using landscape characteristics to define an adjusted distance metric for improving kriging interpolations. Int. J. Geogr. Inf. Sci. 2010, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Nan, Z.; Wang, Z.; Chen, H.; Wu, T.; Zhao, L. An effective interpolation method for MODIS land surface temperature on the Qinghai–Tibet plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4539–4550. [Google Scholar] [CrossRef]
- Shiode, N.; Shiode, S. Street-level spatial interpolation using network-based IDW and ordinary kriging. Trans. Gis. 2011, 15, 457–477. [Google Scholar] [CrossRef]
- Pede, T.; Mountrakis, G. An empirical comparison of interpolation methods for MODIS 8-day land surface temperature composites across the conterminous Unites States. ISPRS J. Photogramm. Remote Sens. 2018, 142, 137–150. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, B.; Zhou, W. Reconstructing spatial–temporal continuous MODIS land surface temperature using the DINEOF method. J. Appl. Remote Sens. 2017. [Google Scholar] [CrossRef]
- Evgenieva, T.; Iliev, I.; Kolev, N.; Sobolewski, P.; Pieterczuk, A. Optical characteristics of aerosol determined by cimel, prede, and microtops ii sun photometers over belsk, poland. In Proceedings of the 15th International School on Quantum Electronics: Laser Physics and Applications, Bourgas, Bulgaria, 15–19 September 2008; Volume 7027, pp. 1–8. [Google Scholar] [CrossRef]
- Khalid, I.E.F.; Randall, S.; Christopher, C.B.; Philip, E.D.P.; Manola, B.; Thomas, C.P.; Gianpaolo, M.; Vinicio, P.; Pierre, B.; José, L.S.; et al. World meteorological organization assessment of the purported world record 58°C temperature extreme at El Azizia, Libya (13 September 1922). Am. Meteorol. Soc. 1997. [Google Scholar] [CrossRef]
- Measho, S.; Chen, B.; Trisurat, Y.; Pellikka, P.; Guo, L. Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the Semiarid Region, Eritrea. Remote Sens. 2019, 11, 724. [Google Scholar] [CrossRef] [Green Version]
- Martin, T. Climate change impacts: Vegetation. Encycl. Life Sci. 2009. [Google Scholar] [CrossRef]
- Na-u-dom, T.; Mo, X.; Garcίa, M. Assessing the climatic effects on vegetation dynamics in the Mekong river basin. Environments 2017, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Sedami, A.; Yevide, I.; Bingfang, W.U.; Xiubo, Y.U.; Xiaosong, L.I.; Yu, L.I.U.; Jian, L.I.U. Building African ecosystem research network for sustaining local ecosystem goods and services. Chin. Geogr. Sci. 2015, 25, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Abdrabo, M.; Ama, E.; Lennard, C.; Adelekan, I.O. Chapter 22 Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report; Cambridge Univ. Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265. [Google Scholar]
- Kaufman, Y.J.; Herring, D.D.; Ranson, K.J.; Collatz, G.J. Earth observing system AM1 mission to Earth. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1045–1055. [Google Scholar] [CrossRef]
- Ban, H.; Kwon, Y.; Shin, H.; Ryu, H.; Hong, S. Flood monitoring using satellite-based RGB composite imagery and refractive index retrie val in visible and near-infrared bands. Remote Sens. 2017, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podestá, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Brown, O.B.; Minnett, P.J.; Evans, R. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 2015, 165, 27–41. [Google Scholar] [CrossRef]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Remote sensing of environment estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Metz, M.; Rocchini, D.; Neteler, M. Surface temperatures at the continental scale: Tracking changes with remote sensing at unprecedented detail. Remote Sens. 2014, 6, 3822–3840. [Google Scholar] [CrossRef] [Green Version]
- Lecture Notes for MEA592 Geospatial Analysis and Modeling. Available online: https://ncsu-geoforall-lab.github.io/geospatial-modeling-course/resources/interpolation_notes.pdf (accessed on 12 August 2019).
- Attorre, F.; Alfo, M.; De Sanctis, M.; Bruno, F. Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int. J. Climatol. 2007, 1843, 1825–1843. [Google Scholar] [CrossRef] [Green Version]
- Ke, L.; Song, C.; Ding, X. Reconstructing complete MODIS LST based on temperature gradients in Northeastern Qinghai-Tibet plateau. Int. Geosci. Remote Sens. Symp. 2012, 3505–3508. [Google Scholar] [CrossRef]
- Yan, Y.B.; Mao, K.B.; Shi, J.C.; Piao, S.L.; Shen, X.Y.; Dozier, J.; Liu, Y.; Ren, H.L.; Bao, Q. Driving factors of LST anomalous changes in North America in 2002-2018. Sci. Rep. 2019. under review. [Google Scholar]
- Res, C.; Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; p. 212. [Google Scholar]
- Pettitt, A.N. A Non-parametric to the Approach Problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Salarijazi, M.; Adib, A.; Daneshkhah, A. Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. Afr. J. Agric. Res. 2012, 7, 4540–4552. [Google Scholar] [CrossRef] [Green Version]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2011, 2026, 2011–2026. [Google Scholar] [CrossRef]
- Omer, A.; Wang, W.G.; Basheer, A.K.; Yong, B. Integrated assessment of the impacts of climate variability and anthropogenic activities on river runoff: A case study in the Hutuo River Basin, China. Hydrol. Res. 2017, 416–430. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.; Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 37–41. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Myneni, R.; Zhou, L. Spatial-temporal trend of seasonally-integrated normalized difference vegetation index as an indicator of changes in Arctic Tundra vegetation in the early 1990s. Int. Geosci. Remote Sens. Symp. 2001, 1, 7031–7033. [Google Scholar] [CrossRef]
- Li, Q.; Ma, M.; Wu, X.; Yang, H. Snow cover and vegetation - induced decrease in global albedo from 2002 to 2016. JGR Atmos. 2016, 124. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Ma, M.; Kuang, H. Spatial-temporal characteristics and climatic responses of water level fluctuations of global major lakes from 2002 to 2010. Remote Sens. 2017, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Guo, B.; Kuang, H.; Yang, H. Lake area changes and their influence on factors in arid and semi-arid regions along the Silk road. Remote Sens. 2018, 10, 595. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Mao, K.; Cai, Y.; Shi, J.; Li, Z.; Qin, Z.; Meng, X. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003–2017. Earth Syst. Sci. 2019. under review. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yin, Q.; Li, L.; Xu, H. Ecosystem Health Assessment by Using Remote Sensing Derived Data: A case study of terrestrial region along the coast in Zhejiang province. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Ampou, E.E.; Johan, O.; Menkes, C.E.; Niño, F.; Birol, F.; Ouillon, S. Coral mortality induced by the 2015–2016 El-Niño in Indonesia: The effect of rapid sea level fall. Biogeosciences 2017, 14, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Garfinkel, C.I.; Butler, A.H. Reviews of geophysics the teleconnection of El Niño southern oscillation to the Stratosphere. Rev. Geophys. 2018, 57, 5–47. [Google Scholar] [CrossRef] [Green Version]
- Anet, J.G.; Muthers, S.; Rozanov, E.V.; Raible, C.C.; Stenke, A.; Shapiro, A.I.; Brönnimann, S. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Clim. Past 2014, 10, 921–938. [Google Scholar] [CrossRef] [Green Version]
- Tappan, G.G.; Sall, M.; Wood, E.C.; Cushing, M. Ecoregions and land cover trends in Senegal. J. Arid Environ. 2004, 59, 427–462. [Google Scholar] [CrossRef]
- Williams, A.P.; Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim. Dyn. 2011, 37, 2417–2435. [Google Scholar] [CrossRef] [Green Version]
- Dutra, E.; Magnusson, L.; Wetterhall, F.; Cloke, H.L.; Balsamo, G.; Pappenberger, F. The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int. J. Climatol. 2013, 1729, 1720–1729. [Google Scholar] [CrossRef] [Green Version]
- Dyn, C.; Hoell, A.; Funk, C. Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Int. J. Clim. Dyn. 2013, 43. [Google Scholar] [CrossRef]
- Ming, X.; Brian, L. Temperature and its variability in oak forests in the southeastern Missouri Ozarks. Clim. Res. 1997, 8, 209–223. [Google Scholar]
- Rustad, L.; Campbell, J.; Dukes, J.S.; Huntington, T.; Lambert, K.F.; Mohan, J.; Rodenhouse, N. Changing climate, changing forests: The impacts of climate change on forests of the Northeastern United States and Eastern Canada. US For. Serv. 2011. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Zou, X.; Lie, Z.; Xue, L. Variation in organ biomass with changing climate and forest characteristics across Chinese forests. Forests 2018, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Tian, G. Analysis of the impact of land use / land cover change on land surface temperature with remote sensing. Procedia Environ. Sci. 2010, 2, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.N. Land surface temperature variation due to changes in elevation in Northwest Vietnam. Climate 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Matuszko, D.; Stanisław, W. Relationship between sunshine duration and air temperature. Int. J. Climatol. 2015, 3653, 3640–3653. [Google Scholar] [CrossRef]
- Jin, Z.; Charlock, T.P.; Rutledge, K.; Stamnes, K.; Wang, Y. Analytical solution of radiative transfer in the coupled atmosphere—Ocean system with a rough surface. Opt. Soc. Am. 2006, 45, 7443–7455. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Y.; Zhu, J. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Liu, W. Seasonal and diurnal characteristics of land surface temperature and major explanatory factors in Harris County, Texas. Sustainability 2017, 9, 2324. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.I.; Njouom, R.; Viboud, C.; Niang, M.N.D.; Kadjo, H.; Ampofo, W.; Adebayo, A.; Diop, O.M. Multiyear persistence of 2 pandemic A / H1N1 In fluenza Virus Lineages in West Africa. J. Infect. Dis. 2014, 210, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Mao, K.B.; Ma, Y.; Tan, X.L.; Shen, X.Y.; Liu, G.; Li, Z.L.; Chen, J.M.; Xia, L. Global surface temperature change analysis based on MODIS data in recent twelve years. Adv. Sp. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Abatan, A.A.; Abiodun, B.J.; Lawal, K.A. Trends in extreme temperature over Nigeria from percentile-based threshold indices. Int. J. Climatol. 2016, 2540, 2527–2540. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Lischeid, G. Rainfall trends in Nigeria, 1901–2000. J. Hydrol. 2011, 411, 207–218. [Google Scholar] [CrossRef]
- Sylla, M.B.; Gaye, A.T.; Jenkins, G.S. On the fine-scale topography regulating changes in atmospheric hydrological cycle and extreme rainfall over west Africa in a regional climate model projections. Int. J. Geophys. 2012, 2012. [Google Scholar] [CrossRef]
- Dyn, C.; Ibrahim, B.; Karambiri, H.; Barbe, L. Changes in rainfall regime over Burkina Faso under the climate change conditions simulated by 5 regional climate models. Clim. Dyn. 2013. [Google Scholar] [CrossRef] [Green Version]
- Hat, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Kang, J. Reconstruction of MODIS land surface temperature products based on multi-temporal information. Remote Sens. 2018, 10, 1112. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.R.; He, X.L.; Bateni, S.M.; Auligne, T.; Liu, S.M.; Xu, Z.W.; Zhou, J.; Mao, K.B. Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites. Remote Sens. Environ. 2019, 221, 444–461. [Google Scholar] [CrossRef]
- Leroux, L.; Bégué, A.; Lo, D.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Mao, K.B.; Chen, J.M.; Li, Z.L.; Ma, Y.; Song, Y.; Tan, X.L.; Yang, K.X. Global water vapor content decreases from 2003 to 2012: An analysis based on MODIS data. Chin. Geogr. Sci. 2017, 27, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Town, D.T.; Gondar, S.; Halefom, A.; Teshome, A.; Sisay, E.; Ahmad, I. Dynamics of land use and land cover change using remote sensing and GIS: A Case Study of. J. Geogr. Inf. Syst. 2018, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.R.; Guo, Z.X.; Liu, S.M.; He, X.L.; Meng, Y.Y.; Xu, Z.W.; Xia, Y.L.; Xiao, J.F.; Zhang, Y.; Ma, Y.F.; et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J. Geophys. Res. Atmos. 2018, 123, 8674–8690. [Google Scholar] [CrossRef]
Time Series | Test Z | Significate | Time Series | Test Z | Significate |
---|---|---|---|---|---|
January | 0.49 | July | 2.329 | * | |
February | 0.395 | August | 1.536 | ||
March | 1.09 | September | 2.82 | ** | |
April | 0.098 | October | 0.74 | ||
May | 1.54 | November | 0.59 | ||
June | 2.083 | * | December | 0.099 | |
Annual | 1.68 | * |
Region Category | Region | Key Zone | ID | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|---|---|
I | Northeast Region | a | 62640 | 0.61 | 2.23 | 4.6 | 0.77 |
Northeast Region | a | 62650 | 1.2 | 3.5 | 0.67 | 0.54 | |
Northeast Region | a | 62660 | 0.85 | 4.01 | 0.93 | 0.24 | |
Northeast Region | a | 62721 | 0.56 | 0.06 | 0.76 | 1.23 | |
II | North Africa Region | b | 60611 | 0.51 | 2.02 | 0.66 | 0.9 |
North Africa Region | b | 60620 | 0.19 | 0.41 | 0.16 | 0.29 | |
North Africa Region | b | 60640 | 2.81 | 0.34 | 0.33 | 0.11 | |
North Africa Region | b | 60680 | 0.09 | 0.9 | 0.08 | 1.3 | |
III | West Africa Region | c | 61437 | 0.71 | 3.21 | 0.4 | 0.26 |
West Africa Region | c | 61499 | 0.44 | 5.01 | 0.09 | 2.43 | |
West t Africa Region | c | 61612 | 4.33 | 0.72 | 0.45 | 1.02 | |
West Africa Region | c | 61630 | 0.29 | 4.23 | 0.4 | 0.61 | |
IV | East Africa Region | d | 63820 | 0.17 | 0.8 | 0.32 | 3.02 |
East Africa Region | d | 63832 | 0.15 | 2.8 | 0.2 | 0.33 | |
East Africa Region | d | 63862 | 0.26 | 0.23 | 0.06 | 0.57 | |
East Africa Region | d | 63894 | 0.49 | 1.2 | 0.55 | 0.43 | |
V | South Africa Region | e | 68424 | 3.26 | 0.03 | 1.07 | 0.94 |
South Africa Region | e | 68438 | 0.36 | 0.67 | 0.82 | 1.3 | |
South Africa Region | e | 68512 | 2.01 | 0.08 | 0.29 | 0.92 | |
South Africa Region | e | 68538 | 0.23 | 0.43 | 0.26 | 3.52 | |
VI | Central Africa Region | f | 64601 | 0.73 | 0.86 | 4.6 | 0.77 |
Central Africa Region | f | 64709 | 0.61 | 1.02 | 0.77 | 0.08 | |
Central Africa Region | f | 64750 | 0.17 | 0.49 | 1.13 | 0.21 | |
Central Africa Region | f | 64860 | 0.36 | 0.4 | 0.89 | 2.93 | |
Average | 0.89 | 1.48 | 0.85 | 1.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
NourEldeen, N.; Mao, K.; Yuan, Z.; Shen, X.; Xu, T.; Qin, Z. Analysis of the Spatiotemporal Change in Land Surface Temperature for a Long-Term Sequence in Africa (2003–2017). Remote Sens. 2020, 12, 488. https://doi.org/10.3390/rs12030488
NourEldeen N, Mao K, Yuan Z, Shen X, Xu T, Qin Z. Analysis of the Spatiotemporal Change in Land Surface Temperature for a Long-Term Sequence in Africa (2003–2017). Remote Sensing. 2020; 12(3):488. https://doi.org/10.3390/rs12030488
Chicago/Turabian StyleNourEldeen, Nusseiba, Kebiao Mao, Zijin Yuan, Xinyi Shen, Tongren Xu, and Zhihao Qin. 2020. "Analysis of the Spatiotemporal Change in Land Surface Temperature for a Long-Term Sequence in Africa (2003–2017)" Remote Sensing 12, no. 3: 488. https://doi.org/10.3390/rs12030488
APA StyleNourEldeen, N., Mao, K., Yuan, Z., Shen, X., Xu, T., & Qin, Z. (2020). Analysis of the Spatiotemporal Change in Land Surface Temperature for a Long-Term Sequence in Africa (2003–2017). Remote Sensing, 12(3), 488. https://doi.org/10.3390/rs12030488