Droughts Amplify Differences Between the Energy Balance Components of Amazon Forests and Croplands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Land Surface Temperature 2007 | |||||
---|---|---|---|---|---|
∑b | ∑h | ||||
Uses | xAe | Δe | Teste de Tukey p | Δe | Teste de Tukey p |
Generally | 30.80 ± 0.8 °C | 0.4 ± 0.6 °C | 0.3 ± 0.6 °C | ||
Forest | 27.81 ± 0.6 °C | 0.2 ± 0.3 °C | Forest-Cerrado < 0.001 | 0.2 ± 0.3 °C | Forest-Cerrado < 0.001 |
Cerrado | 31.45 ± 2.2 °C | 0.5 ± 0.6 °C | Forest-Agriculture < 0.001 | 0.3 ± 0.6 °C | Forest-Agriculture < 0.001 |
Agriculture | 33.85 ± 1.3 °C | 0.3 ±1.0 °C | Cerrado-Agriculture < 0.001 | 0.1 ± 0.8 °C | Cerrado-Agriculture < 0.001 |
2010 | |||||
Generally | 30.10 ± 0.8 °C | 0.4 ± 0.7 °C | 0.7 ± 0.7 °C | ||
Forest | 27.80 ± 0.7 °C | 0.1 ± 0.4 °C | Forest-Cerrado < 0.001 | 0.3 ± 0.3 °C | Forest-Cerrado < 0.001 |
Cerrado | 31.43 ± 2.1 °C | 0.4 ± 0.7 °C | Forest-Agriculture < 0.001 | 0.6 ± 0.7 °C | Forest-Agriculture < 0.001 |
Agriculture | 33.81 ± 1.2 °C | 0.7 ± 0.9 °C | Cerrado-Agriculture < 0.001 | 0.8 ± 0.8 °C | Cerrado-Agriculture < 0.001 |
Albedo 2007 | |||||
Generally | 0.143 ± 0.006 | 0.002 ± 0.007 | 0.001 ± 0.007 | ||
Forest | 0.133 ± 0.003 | 0.000 | Forest-Cerrado ns | 0.000 | Forest-Cerrado ns |
Cerrado | 0.139 ± 0.012 | 0.002 ± 0.007 | Forest-Agriculture < 0.001 | 0.000 | Forest-Agriculture < 0.001 |
Agriculture | 0.179 ± 0.007 | 0.009 ± 0.009 | Cerrado-Agriculture < 0.001 | 0.007 ± 0.008 | Cerrado-Agriculture < 0.001 |
2010 | |||||
Generally | 0.147 ± 0.005 | 0.001 ± 0.007 | 0.004 ± 0.006 | ||
Forest | 0.132 ± 0.003 | 0.001 ± 0.005 | Forest-Cerrado < 0.001 | 0.003 ± 0.004 | Forest-Cerrado < 0.001 |
Cerrado | 0.139 ± 0.014 | 0.001 ± 0.007 | Forest-Agriculture < 0.001 | 0.002 ± 0.007 | Forest-Agriculture < 0.001 |
Agriculture | 0.180 ± 0.007 | 0.004 ± 0.010 | Cerrado-Agriculture < 0.001 | 0.010 ± 0.009 | Cerrado-Agriculture < 0.001 |
Evapotranspiration 2007 | |||||
Generally | 72.05 ± 19.06 mm | –0.8 ± 6.07 mm | 6.52 ± 5.07 mm | ||
Forest | 113.33 ± 6.03 mm | –1.0 ± 3.42 mm | Forest-Cerrado < 0.001 | 3.93 ± 3.08 mm | Forest-Cerrado < 0.001 |
Cerrado | 72.90 ± 23.35 mm | –1.2 ± 6.06 mm | Forest-Agriculture < 0.001 | 6.83 ± 6.06 mm | Forest-Agriculture < 0.001 |
Agriculture | 51.55 ± 10.51 mm | 4.33 ± 9.52 mm | Cerrado-Agriculture < 0.001 | 9.01 ± 8.06 mm | Cerrado-Agriculture < 0.001 |
2010 | |||||
Generally | 73.80 ± 15.60 mm | –4 ± 5.32 mm | 8.01 ± 7.02 mm | ||
Forest | 113.47 ± 22.56 mm | –3.97 ± 3.41 mm | Forest-Agriculture < 0.001 | 3.96 ± 4.19 mm | Forest-Agriculture < 0.001 |
Cerrado | 72.67 ± 21.36 mm | –4.10 ± 5.31 mm | Cerrado-Agriculture < 0.001 | 9.99 ± 8.06 mm | Cerrado-Agriculture < 0.001 |
Agriculture | 60.56 ± 11.62 mm | –2.85 ± 8.96 mm | Forest-Cerrado < 0.001 | 14.60 ± 8.57 mm | Forest-Cerrado < 0.001 |
Land Surface Temperature 2007 | |||||||
---|---|---|---|---|---|---|---|
xAe | Δe | Test t | N | ||||
Uses | DP ≥ 1.50 | DP ≤ 1.49 | DP ≥ 1.50 | DP ≤ 1.49 | p | DP ≥ 1.50 | DP ≤ 1.49 |
Generally | 31.29 ± 2.6 °C | 30.28 ± 2.5 °C | 0.4 ± 0.6 °C | 0.3 ± 0.3 °C | <0.001 | 3205 | 3205 |
Forest | 27.9 ± 0.5 °C | 27.8 ± 0.5 °C | 0.3 ± 0.3 °C | 0.2 ± 0.3 °C | <0.001 | 5914 | 129,982 |
Cerrado | 31.6 ± 2.3 °C | 31.4 ± 1.9 °C | 0.3 ± 0.6 °C | 0.3 ± 0.6 °C | <0.001 | 141,445 | 313,656 |
Agriculture | 34.3 ± 0.8 °C | 33.8 ± 0.9 °C | 0.3 ± 0.8 °C | 0.1 ± 0.7 °C | <0.001 | 3205 | 34,576 |
2010 | |||||||
Generally | 30.42 ± 2.6 °C | 29.87 ± 2.6 °C | 0.7 ± 0.7 °C | 0.7 ± 0.7 °C | <0.001 | 233,310 | |
Forest | 28.0 ± 0.7 °C | 27.8 ± 0.5 °C | 0.3 ± 04 °C | 0.3 ± 0.3 °C | <0.001 | 35,106 | 111,172 |
Cerrado | 31.5 ± 1.9 °C | 31.6 ± 2.0 °C | 0.7 ± 0.6 °C | 0.7 ± 0.8 °C | <0.001 | 177,554 | 309,650 |
Agriculture | 33.9± 1.0 °C | 33.7 ± 0.9 °C | 0.6 ± 0.8 °C | 0.7 ± 0.8 °C | <0.001 | 20,650 | 21,203 |
Albedo 2007 | |||||||
Generally | 0.143 ± 0.018 | 0.143 ± 0.017 | 0.001 ± 0.007 | 0.001 ± 0.006 | <0.001 | 601,683 | |
Forest | 0.132 ± 0.002 | 0.133 ± 0.003 | 0.001 ± 0.004 | −0.001 ± 0.004 | <0.001 | 23,540 | 520,359 |
Cerrado | 0.139 ± 0.012 | 0.140 ± 0.012 | 0.001 ± 0.006 | 0.000 | <0.001 | 565,467 | 1,253,626 |
Agriculture | 0.179 ± 0.007 | 0.179 ± 0.007 | 0.006 ± 0.008 | 0.007 ± 0.008 | <0.001 | 12,676 | 138,484 |
2010 | |||||||
Generally | 0.147 ± 0.017 | 0.146 ± 0.013 | 0.005 ± 0.008 | 0.002 ± 0.007 | <0.001 | 932,970 | |
Forest | 0.131 ± 0.003 | 0.133 ± 0.003 | 0.004 ± 0.004 | 0.003 ± 0.004 | <0.001 | 140,289 | 445,091 |
Cerrado | 0.142 ± 0.012 | 0.140 ± 0.012 | 0.003 ± 0.007 | 0.002 ± 0.007 | <0.001 | 709,736 | 1,236,756 |
Agriculture | 0.179 ± 0.007 | 0.178 ± 0.006 | 0.012 ± 0.009 | 0.009 ± 0.009 | <0.001 | 82,945 | 84,752 |
Evapotranspiration 2007 | |||||||
Generally | 64.88 ± 26.52 mm | 79.23 ± 26.51 mm | 5.33 ± 5,63 mm | 6.48 ± 6.48 mm | <0.001 | 150,685 | |
Forest | 107.24 ± 6.69 mm | 113.50 ± 7.02 mm | 5.59 ± 3.04 mm | 3.92 ± 3.06 mm | <0.001 | 5908 | 130,762 |
Cerrado | 72.60 ± 29.49 mm | 73.00 ± 25.02 mm | 5.09 ± 5.64 mm | 7.48 ± 6.15 mm | <0.001 | 141,610 | 177,544 |
Agriculture | 59.49 ± 8.50 mm | 61.04 ± 6.72 mm | 6.52 ± 7.35 mm | 9.08 ± 7.64 mm | <0.001 | 3167 | 34,601 |
2010 | |||||||
Generally | 70.73 ± 21.31 mm | 76.86 ± 23.77 mm | 9.34 ± 8.43 mm | 7.65 ± 8.65 mm | <0.001 | 223,437 | |
Forest | 107.73 ± 5.70 mm | 114.54 ± 6.99 mm | 4.95 ± 3.03 mm | 1.51 ± 4.12 mm | <0.001 | 35,167 | 111,936 |
Cerrado | 72.03 ± 25.31 mm | 71.07 ± 26.28 mm | 11.11 ± 7.56 mm | 9.98 ± 8.06 mm | <0.001 | 167,541 | 309,498 |
Agriculture | 61.59 ± 6.45 mm | 59.31 ± 6.68 mm | 15.25 ± 8.39 mm | 13.86 ± 8.54 mm | <0.001 | 20,729 | 21,146 |
Appendix B
References
- INPE-Projeto Prodes: Monitoramento da floresta Amazônica Brasileira por Satélite. 2014. Available online: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed on 20 April 2019).
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Acharda, F. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Brando, P.M.; Silvério, D.; Maracahipes-Santos, L.; Oliveira-Santos, C.; Levick, S.R.; Coe, M.T.; Trumbore, S. Prolonged tropical forest degradation due to compounding disturbances: Implications for CO2 and H2 O fluxes. Glob. Chang. Biol. 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Klink, C.A.; Machado, R.B. Conservation of the Brazilian Cerrado. Conserv. Biol. 2005, 19, 707–713. [Google Scholar] [CrossRef]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Armijo, E. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- INPE. TerraBrasilis. Monitoramento Do Cerrado. 2018. Available online: http://www.obt.inpe.br/cerrado/ (accessed on 20 April 2019).
- Foley, J.A.; Asner, G.P.; Costa, M.H.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Snyder, P. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Arnold, S.R.; Taylor, C.M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 2012, 489, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Estel, S.; Pongratz, J.; Ceschia, E.; Dolman, A.J. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Nepstad, D.; Lefebvre, P.; Lopes da Silva, U.; Tomasella, J.; Schlesinger, P.; Solorzano, L.; Guerreira Benito, J. Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Glob. Chang. Biol. 2004, 10, 704–717. [Google Scholar] [CrossRef]
- Silvério, D.V.; Brando, P.M.; Macedo, M.N.; Beck, P.S.A.; Bustamante, M.; Coe, M.T. Agricultural expansion dominates climate changes in southeastern Amazonia: The overlooked non-GHG forcing. Environ. Res. Lett. 2015, 10, 104015. [Google Scholar] [CrossRef]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Liq, W.; Nobre, C.A. Climate change, deforestation, and the fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.L.; Brando, P.; Phillips, O.L.; Van der Heijden, G.M.F.; Nepstad, D. The 2010 Amazon drought. Science 2011, 331, 554. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Nobre, C.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M.; Mendiondo, E.M.; Sampaio, G. A seca e a crise hídrica de 2014-2015 em São Paulo. Rev. USP 2015, 106, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, J.C.J.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Van Der Schrier, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Phillips, O.L.; Aragão, L.E.O.C.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; López-gonzález, G.; Salamão, R. Drought Sensitivity of the Amazon Rainforest. Science 2009, 323, 1344–1347. [Google Scholar] [CrossRef] [Green Version]
- Zeng, N.; Yoon, J.H.; Marengo, J.A.; Subramaniam, A.; Nobre, C.A.; Mariotti, A.; Neelin, J.D. Causes and impacts of the 2005 Amazon drought. Environ. Res. Lett. 2008, 3, 014002. [Google Scholar] [CrossRef]
- Nepstad, D.C.; de Carvalho, C.R.; Davidson, E.A.; Jipp, P.H.; Lefebvre, P.A.; Negreiros, G.H.; da Silva, E.D.; Stone, T.A.; Trumbore, S.E.; Vieira, S. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 1994, 372, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Sampaio, G.; Nobre, C.; Costa, M.H.; Satyamurty, P.; Soares-Filho, B.S.; Cardoso, M. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 2007, 34, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, W.J. Evaporation. In Handbook of Hydrology; Maidment, D.R., Ed.; McGRaw Hill: New York, NY, USA, 1993; pp. 1–53. [Google Scholar]
- Vourlitis, G.L.; de Souza Nogueira, J.; de Almeida Lobo, F.; Sendall, K.M.; de Paulo, S.R.; Antunes Dias, C.A.; Pinto, O.B., Jr.; de Andrade, N.L. Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resour. Res. 2008, 44, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Meir, P.; Wood, T.E.; Galbraith, D.R.; Brando, P.M.; Da Costa, A.C.; Rowland, L.; Ferreira, L.V. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: Insights from field experiments. BioScience 2015, 65, 882–892. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Butt, N.; de Oliveira, P.A.; Costa, M.H. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J. Geophys. Res. 2011, 116, 1–11. [Google Scholar] [CrossRef]
- Fu, R.; Yin, L.; Li, W.; Arias, P.A.; Dickinson, R.E.; Huang, L.; Chakraborty, S.; Fernandes, K.; Liebmann, B.; Fisher, R.; et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate. Proc. Natl. Acad. Sci. USA 2013, 110, 18110–18115. [Google Scholar] [CrossRef] [Green Version]
- Khanna, J.; Medvigy, D.; Fueglistaler, S.; Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Chang. 2017, 7, 200–204. [Google Scholar] [CrossRef]
- IBGE-Banco de dados por Estado. Instituto Brasileiro de Geografia e Estatística. 2017. Available online: https://ww2.ibge.gov.br/estadosat/ (accessed on 22 April 2019).
- CONAB-Companhia de Abastecimento. Acompanhamento da Safra Brasileira de Grãos. 2012. Available online: https://www.conab.gov.br (accessed on 5 April 2019).
- Silva, F.A.M.; Assad, E.D.; Evangelista, B.A. Caracterização climática do Bioma Cerrado. In Cerrado: Ecologia e Flora; Sano, S.M., Almeida, S.P., Ribeiro, J.F., Eds.; Embrapa Cerrados: Brasília, Brazil, 2008; Volume 1, pp. 69–88. [Google Scholar]
- Tarifa, J.R. Mato Grosso: Clima–Análise e Representação Cartográfica; Entrelinhas: Cuiaba, Brazil, 2011; pp. 69–96. [Google Scholar]
- BRASIL, Mapeamento do Uso e Cobertura da Terra do Cerrado–Projeto TerraClass Cerrado 2013. 2015. Available online: http://www.mma.gov.br/images/arquivo/80049/Cerrado/publicacoes/Livro%20EMBRAPA-WEB-1-TerraClass%20Cerrado.pdf (accessed on 21 April 2019).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21stcentury forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Zhu, Y. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Spera, S.A.; Cohn, A.S.; VanWey, L.K.; Mustard, J.F.; Rudorff, B.F.; Risso, J.; Adami, M. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 2014, 9, 064010. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- Nishida, K.; Nemani, R.R.; Running, S.W.; Glassy, J.M. An operational remote sensing algorithm for land surface evaporation. J. Geophys. Res. 2003, 108, 1–14. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Paz, A.R.; Aragao, L.E.O.C.; Mu, Q.; Malhi, Y.; Collischonn, W.; Running, S.W. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrol. Sci. J. 2013, 58, 1658–1676. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Aragão, L.E.O.C.; Malhi, Y.; Roman-Cuesta, R.M.; Saatchi, S.; Anderson, L.O.; Shimabukuro, Y.E. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J.; Etten, J.; van Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Andrew, B.; Racine, E.B.; Shortridge, A. Raster: Geographic Analysis and Modeling with Raster Data. R Package Version 2.2-31. 2014. Available online: https://cran.r-project.org/package=raster (accessed on 3 November 2019).
- Bonan, G.B.; Defries, R.S.; Coe, M.T.; Ojima, D.; Van Der Meer, F.D. Land use and climate. In Land Change Science, 1st ed.; Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Eds.; Kluwer Academic Publishers: London, UK, 2004; pp. 301–314. [Google Scholar]
- Omran, E.S.E. Detection of land-use and surface temperature change at different resolutions. J. Geogr. Inf. Syst. 2012, 4, 189–203. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Pegoraro, E.; Nobre, A.D.; Pereira, M.G.P.; Grace, J.; Culf, A.D.; Clement, B. Energy and water dynamics of a central Amazonian rain forest. J. Geophys. Res. 2002, 107, 8061. [Google Scholar] [CrossRef] [Green Version]
- Randow, C.; von Manzi, A.O.; Kruijt, B.; Oliveira, P.J.; de Zanchi, F.B.; Silva, R.L.; Kabat, P. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 2004, 78, 5–26. [Google Scholar] [CrossRef]
- Zelazowski, P.; Malhi, Y.; Huntingford, C.; Sitch, S.; Fisher, J.B. Changes in the potential distributions of humid tropical forests on a warmer planet. Philos. Trans. R. Soc. Lond. Biol. Sci. 2011, 369, 137–160. [Google Scholar] [CrossRef] [PubMed]
- Duffy, P.B.; Brando, P.; Asner, G.P.; Field, C.B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA 2015, 112, 13172–13177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coe, M.T.; Brando, P.M.; Deegan, L.A.; Macedo, M.N.; Neill, C.; Silverio, D.V. The forests of the Amazon and Cerrado moderate regional climate and are the key to the future. Trop. Conserv. Sci. 2017, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caioni, C.; Silvério, D.V.; Macedo, M.N.; Coe, M.T.; Brando, P.M. Droughts Amplify Differences Between the Energy Balance Components of Amazon Forests and Croplands. Remote Sens. 2020, 12, 525. https://doi.org/10.3390/rs12030525
Caioni C, Silvério DV, Macedo MN, Coe MT, Brando PM. Droughts Amplify Differences Between the Energy Balance Components of Amazon Forests and Croplands. Remote Sensing. 2020; 12(3):525. https://doi.org/10.3390/rs12030525
Chicago/Turabian StyleCaioni, Charles, Divino Vicente Silvério, Marcia N. Macedo, Michael T. Coe, and Paulo M. Brando. 2020. "Droughts Amplify Differences Between the Energy Balance Components of Amazon Forests and Croplands" Remote Sensing 12, no. 3: 525. https://doi.org/10.3390/rs12030525
APA StyleCaioni, C., Silvério, D. V., Macedo, M. N., Coe, M. T., & Brando, P. M. (2020). Droughts Amplify Differences Between the Energy Balance Components of Amazon Forests and Croplands. Remote Sensing, 12(3), 525. https://doi.org/10.3390/rs12030525