Quantifying Intertidal Habitat Relative Coverage in a Florida Estuary Using UAS Imagery and GEOBIA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Image Acquisition
2.2. Image Processing and Geographic Object-Based Image Analysis
2.3. Accuracy Assessment
3. Results
4. Discussion
4.1. GEOBIA Classification
4.2. Limitations and Considerations
4.3. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Object Feature | Description |
---|---|
Asymmetry | A measure of the variance in the x-direction and y-direction of an approximated ellipse around the object |
Border index | Measures how jagged an object is; border length of object compared to border length of smallest enclosing rectangle |
Brightness Index 1 | ((R2 + G2 + B2)/3)0.5 |
Compactness | Product of the length and width, divided by the number of pixels |
Density | Describes distribution in space of the pixels in an object; number of pixels forming object divided by its radius |
Elliptic fit | Measures what falls inside versus outside an ellipse with the same length and width of and object |
Green leaf index 4 | (2G − R − B)/(2G + R + B) |
Hue index 1 | (2 * R − G − B)/(G − B) |
Length/width | The length of the object divided by the width |
Main direction | The direction of the eigenvector belonging to the larger of the two eigenvalues |
Max difference | The maximum difference between mean values for layers of an object divided by the brightness of the respective objects |
Mean blue | Mean reflectance of the blue band of all pixels in an object |
Mean brightness | Mean brightness of all pixels in an object |
Mean DSM | Mean elevation of all pixels in an object in the DSM layer |
Mean green | Mean reflectance of the green band of all pixels in an object |
Mean red | Mean reflectance of the red band of all pixels in an object |
Normalized green red difference index 2 | (G − R)/(G + R) |
Number of neighbors | Number of neighbors in which an object shares a common border |
Radius of largest enclosed ellipse | Measures an object’s similarity to an ellipse; ratio of largest enclosed ellipse radius to the radius of an ellipse with the same area as the object |
Radius of smallest enclosing ellipse | How much of an object is similar to an ellipse; ratio of smallest enclosing ellipse radius to radius of and ellipse with the same area as the object |
Rectangular fit | Describes how well an object fits into a rectangle of similar size; are of image object inside versus outside a rectangle that has the same length and width as the object |
Redness Index 1 | R2/(B*G3) |
Relative border to image border | Border length an object shares with outer boundary of entire image |
Roundness | Describes how similar an object is to an ellipse; difference of enclosing ellipse and enclosed ellipse |
Shape index | Shape complexity; border length |
Spectral slope 2 | (R − B)/(R + B) |
Standard deviation blue | Standard deviation of blue band reflectance values over all pixels in an object |
Standard deviation brightness | Standard deviation of the brightness values over all pixels in an object |
Standard deviation DSM | Standard deviation of elevation values over all pixels in an object |
Standard deviation green | Standard deviation of green band reflectance values over all pixels in an object |
Standard deviation red | Standard deviation of red band reflectance values over all pixels in an object |
Standard deviation of length of edges | Measures how lengths of edges deviate from mean value |
Vegetation index 3 | (B + R − G)/(B + R + G) |
Water index 3 | (R − B + G)/(B + R + G) |
Description | |
---|---|
CPU | Intel Xeon CPU E5-2630 v4 2.20 GHz |
RAM | 192 GB |
GPU | NVIDIA Quadpro P4000 |
Initial processing time (image calibration, finding keypoints) | 1 h 37 min |
Point cloud densification | 5 h 25 min |
DSM generation | 2 h 17 min |
Orthomosaic generation | 1 h 37 min |
Total processing time | 10 h 56 min |
Description | |
---|---|
CPU | Intel Xeon Silver 4114 2.20 GHz 2.19 GHz (2 processors) |
RAM | 256 GB |
GPU | NVIDIA Quadpro P60000 |
Segmentation | 2 h |
Feature-space optimization | 3+ h |
Classification | 2 h 5 min |
Exporting results | 5 min |
Total processing time | 7+ h |
References
- Seavey, J.R.; Pine, W.E., III; Frederick, P.C.; Sturmer, L.; Berrigan, M. Decadal changes in oyster reefs in the Big Bend of Florida’s Gulf Coast. Ecosphere 2011, 2. [Google Scholar] [CrossRef]
- Beck, M.W.; Brumbaugh, R.D.; Airoldi, L.; Carranza, A.; Coen, L.D.; Crawford, C.; Defeo, O.; Edgar, G.J.; Hancock, B.; Kay, M.C.; et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 2011, 61, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Coen, L.D.; Brumbaugh, R.D.; Bushek, D.; Grizzle, R.; Luckenback, M.W.; Posey, M.H.; Powers, S.P.; Tolley, S.G. Ecosystem services related to oyster restoration. Mar. Ecol. Prog. Ser. 2007, 341, 303–307. [Google Scholar] [CrossRef]
- Scyphers, S.B.; Powers, S.P.; Heck, K.L., Jr.; Byron, D. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Tolley, S.G.; Volety, A.K.; Savarese, M. Influence of salinity on the habitat use of oyster reefs in three southwest Florida estuaries. J. Shellfish Res. 2005, 24, 127–137. [Google Scholar] [CrossRef]
- Shepard, C.C.; Crain, C.M.; Beck, M.W. The protective role of coastal marshes: A systematic review and meta-analysis. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Geselbracht, L.; Freeman, K.; Kelly, E.; Gordon, D.R.; Putz, F.E. Retrospective and prospective model simulations of sea level rise impacts on Gulf of Mexico coastal marshes and forests in Waccasassa Bay, Florida. Clim. Chang. 2011, 107, 35–57. [Google Scholar] [CrossRef] [Green Version]
- Raabe, E.A.; Stumpf, R.P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries Coasts 2016, 39, 145–157. [Google Scholar] [CrossRef]
- Krauss, K.W.; From, A.S.; Doyle, T.W.; Doyle, T.J.; Barry, M.J. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA. J. Coast Conserv. 2011, 15, 629–638. [Google Scholar] [CrossRef]
- Frederick, P.C.; Vitale, N.; Pine, W.E., III; Seavey, J.R. Reversing a rapid decline in oyster reefs: Effects of durable substrate on oyster populations, elevations, and aquatic bird community composition. J. Shellfish Res. 2016, 35, 359–367. [Google Scholar] [CrossRef]
- Kaplan, D.A.; Oblabarrieta, M.; Frederick, P.C.; Valle-Levinson, A. Freshwater detention by oyster reefs: Quantifying a keystone ecosystem service. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Radabaugh, K.R.; Geiger, S.P.; Moyer, P.P. Oyster Integrated Mapping and Monitoring Program Report for the State of Florida; FWRI Technical Report No. 22; Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission: St. Petersburg, FL, USA, 2019. [Google Scholar]
- Florida Fish and Wildlife Conservation Commission. Available online: https://myfwc.com/research/saltwater/fishstats/commercial-fisheries/landings-in-florida/ (accessed on 21 October 2019).
- Camp, E.V.; Pine, W.E., III; Havens, K.; Kane, A.S.; Walters, C.J.; Irani, T.; Lindsey, A.B.; Morris, J.G., Jr. Collapse of a historic oyster fishery: Diagnosing causes and identifying paths toward increase resilience. Ecol. Soc. 2015, 20. [Google Scholar] [CrossRef]
- North, E.W.; King, D.M.; Xu, J.; Hood, R.R.; Newell, R.I.E.; Paynter, K.; Kellogg, M.L.; Liddel, M.K.; Boesch, D.F. Linking optimization and ecological models in a decision support tool for oyster restoration and management. Ecol. Appl. 2010, 20, 851–866. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.; Beck, S.; Chapiesky, K.; Isaacs, J. Lousiana Oyster Fishery Management Plan; Louisiana Department of Wildlife and Fisheries Technical Report; Louisiana Department of Wildlife and Fisheries, Office of Fisheries: Baton Rouge, LA, USA, 2016; 214p. [Google Scholar]
- North Carolina Environmental Quality. Available online: http://portal.ncdenr.org/web/mf/habitat/enhancement/oyster-sanctuaries (accessed on 19 November 2019).
- Byers, J.E.; Grabowski, J.H.; Piehler, M.F.; Hughes, R.A.; Weiskel, H.W.; Malek, J.C.; Kimbro, D.L. Geographic variation in intertidal oyster reef properties and the influence of tidal prism. Limnol. Oceanogr. 2015, 60, 1051–1063. [Google Scholar] [CrossRef]
- Windle, A.E.; Poulin, S.K.; Johnston, D.W.; Ridge, J.T. Rapid and accurate monitoring of intertidal oyster habitat using unoccupied aircraft systems and structure from motion. Remote Sens. Environ. 2019, 11, 2394. [Google Scholar] [CrossRef] [Green Version]
- Grizzle, R.; Ward, K.; Geselbracht, L.; Birch, A. Distribution and condition of intertidal eastern oyster (Crassostrea virginica) reefs in Apalachicola Bay Florida based on high-resolution satellite imagery. J. Shellfish Res. 2018, 37, 1–12. [Google Scholar] [CrossRef]
- Escapa, M.; Isacch, J.P.; Daleo, P.; Alberti, J.; Iribarne, O.; Borges, M.; Dos Santos, E.P.; Gagliardini, D.A.; Lasta, M. The distribution and ecological effects of the introduced pacific oyster Crassostrea gigas (Thunberg, 1793) in northern Patagonia. J. Shellfish Res. 2004, 3, 765–772. [Google Scholar]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Hay, G.J.; Castilla, G. Geographic object-based image analysis (GEOBIA): A new name for a new discipline. In Lecture Notes in Geoinformation and Cartography; Springer: Berlin, Germany, 2008; pp. 75–89. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Gibbes, C.; Sanchayeeta, A.; Rostant, L.; Southworth, J.; Qiu, Y. Application of object based classification and high resolution satellite imagery for savanna ecosystem analysis. Remote Sens. Environ. 2010, 2, 2748–27772. [Google Scholar] [CrossRef] [Green Version]
- Moskal, L.M.; Styers, D.M.; Halabisky, M. Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data. Remote Sens. Environ. 2011, 3, 2243–2262. [Google Scholar] [CrossRef] [Green Version]
- Pande-Chhetri, R.; Abd-Elrahman, A.; Liu, T.; Morton, J.; Wilhelm, V.L. Object-based classification of wetland vegetation using very high-resoultion unmanned air system imagery. Eur. J. Remote Sens. 2017, 50, 564–576. [Google Scholar] [CrossRef] [Green Version]
- Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.A.; Dove, D. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont. Shelf Res. 2014, 84, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Florida Fish and Wildlife Conservation Commission. Available online: http://geodata.myfwc.com/datasets/oyster-beds-in-florida (accessed on 5 August 2019).
- NOAA Tides & Currents. Available online: https://tidesandcurrents.noaa.gov/stations.html?type=Water+Level+Reports (accessed on 4 November 2019).
- Frey, J.; Kovach, K.; Stemmler, S.; Kock, B. UAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB-image pipeline. Remote Sens. Environ. 2018, 10, 912. [Google Scholar] [CrossRef] [Green Version]
- Pix4D Mapper [computer software]. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 18 January 2019).
- ESRI ArcGIS Pro v 2.4 [computer software]. Available online: https://pro.arcgis.com/es/pro-app (accessed on 8 July 2019).
- eCognition Developer 9 [computer software]. Available online: http://www.ecognition.com/suite/ecognition-developer (accessed on 15 July 2019).
- Upadhyay, P.; Mahadik, S.; Kamble, A. Image classification using visible RGB bands. In Proceedings of the International Conference on Computing for Sustainable Global Development, New Delhi, India, 16 March 2016. [Google Scholar]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Mandal, U.K. Spectral color indices based geospatial modeling of soil organic matter in Chitwan District, Nepal. In Proceedings of the ISPRS Congress, Prague, Czech Republic, 12 July 2019. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Bialas, J. Object-Based Classification of Earthquake Damage from High-Resolution Optical Imagery Using Machine Learning. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2015. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Totora, R.D. A note on sample size estimation for multinomial populations. Am. Stat. 1978, 321, 1001–1002. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Fung, T.; LeDrew, E. The determination of optimal threshold levels for change detection using various accuracy indices. Photogramm. Eng. Remote Sens. 1988, 54, 1449–1454. [Google Scholar]
- Story, M.; Congalton, R.G. Accuarcy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Lecours, V.; Dolan, M.F.J.; Micallef, A.; Lucieer, V. A review of geomorphometry, the quantitative study of the seafloor. Hydrol. Earth Syst. Sc. 2016, 20, 3207–3244. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, D.; Lecours, V.; Brey, T. On the art of classification in spatial ecology: Fuzziness as an alternative for mapping uncertainty. Front. Ecol. Evol. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Lecours, V.; Devillers, R.; Schneider, D.C.; Lucieer, V. Spatial scale and geographic context in benthic habitat mapping: Review and future directions. Mar. Ecol. Prog. Ser. 2015, 535, 259–284. [Google Scholar] [CrossRef] [Green Version]
- Misiuk, B.; Lecours, V.; Bell, T. A multiscale approach to mapping seabed sediments. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, C.; Koski, W.; Pace, P.; McLuckie, B.; Bird, D.M. Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador. J. Unmanned Veh. Syst. 2015, 4, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Barnas, A.F.; Darby, B.J.; Vandeberg, G.S.; Rockwell, R.F.; Ellis-Felege, S.N. A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- American Society for Photogrammetry and Remote Sensing. ASPRS accuracy standards for digital geospatial data. Photogramm. Eng. Remote Sens. 2015, 81, A1–A26. [Google Scholar] [CrossRef]
- Clewley, D.; Bunting, P.; Shepherd, J.; Gillingham, S.; Flood, N.; Dymond, J.; Lucas, R.; Armston, J.; Moghaddam, M. A Python-based open source system for geographic object-based image analysis (GEOBIA) utilizing raster attribute tables. Remote Sens. Environ. 2014, 6, 6111–6135. [Google Scholar] [CrossRef] [Green Version]
- Brumbaugh, R.D.; Coen, L.D. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: A review and comments relevant for the olympia oyster, Osrea lurida carpenter 1864. J. Shellfish Res. 2009, 28, 147–161. [Google Scholar] [CrossRef]
Dimension | Separation | Object Features |
---|---|---|
1 | 0.108 | water index |
2 | 0.469 | water index, standard deviation green |
3 | 0.855 | water index, standard deviation red, main direction |
4 | 1.117 | water index, standard deviation red, main direction, asymmetry |
5 | 1.517 | water index, standard deviation green, main direction, asymmetry, vegetation index |
6 | 1.684 | water index, standard deviation red, main direction, asymmetry, vegetation index, standard deviation blue |
7 | 1.835 | water index, standard deviation red, main direction, asymmetry, vegetation index, standard deviation blue, max difference |
8 | 2.028 | water index, standard deviation red, main direction, asymmetry, vegetation index, standard deviation blue, max difference, radius of largest enclosed ellipse |
9 | 2.173 | water index, standard deviation red, main direction, asymmetry, vegetation index, standard deviation blue, max difference, radius of largest enclosed ellipse, spectral slope |
10 | 2.257 | water index, standard deviation red, main direction, asymmetry, vegetation index, standard deviation blue, max difference, radius of largest enclosed ellipse, spectral slope, border index |
Actual | ||||||
Oyster | Marsh | Mud | Water | UA (%) | ||
Oyster | 133 | 33 | 14 | 6 | 71.51 | |
Marsh | 17 | 130 | 2 | 1 | 86.67 | |
Classified | Mud | 6 | 3 | 119 | 17 | 82.07 |
Water | 10 | 0 | 31 | 142 | 77.60 | |
PA (%) | 80.12 | 78.31 | 71.69 | 85.54 | ||
OA (%) Kappa | 78.92 0.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espriella, M.C.; Lecours, V.; C. Frederick, P.; V. Camp, E.; Wilkinson, B. Quantifying Intertidal Habitat Relative Coverage in a Florida Estuary Using UAS Imagery and GEOBIA. Remote Sens. 2020, 12, 677. https://doi.org/10.3390/rs12040677
Espriella MC, Lecours V, C. Frederick P, V. Camp E, Wilkinson B. Quantifying Intertidal Habitat Relative Coverage in a Florida Estuary Using UAS Imagery and GEOBIA. Remote Sensing. 2020; 12(4):677. https://doi.org/10.3390/rs12040677
Chicago/Turabian StyleEspriella, Michael C., Vincent Lecours, Peter C. Frederick, Edward V. Camp, and Benjamin Wilkinson. 2020. "Quantifying Intertidal Habitat Relative Coverage in a Florida Estuary Using UAS Imagery and GEOBIA" Remote Sensing 12, no. 4: 677. https://doi.org/10.3390/rs12040677
APA StyleEspriella, M. C., Lecours, V., C. Frederick, P., V. Camp, E., & Wilkinson, B. (2020). Quantifying Intertidal Habitat Relative Coverage in a Florida Estuary Using UAS Imagery and GEOBIA. Remote Sensing, 12(4), 677. https://doi.org/10.3390/rs12040677