Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Hydrological Characteristics of the Study Reservoirs
4. Results
4.1. Land Use
4.2. Water Quality in Main Dam Reservoirs
4.3. Ecological Status
4.4. Relationships between Land Use and Water Quality
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Głodek, J. Jeziora Zaporowe Świata; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1985. [Google Scholar]
- Choiński, A. Limnologia Fizyczna Polski; Wydawnictwo Naukowe UAM: Poznań, Poland, 2007; p. 547. [Google Scholar]
- Statistical Yearbook 2014; Główny Urząd Statystyczny w Warszawie: Warsaw, Poland, 2015.
- Łajczak, A. Studium nad Zamulaniem Wybranych Zbiorników Zaporowych w Dorzeczu Wisły; Monografie Komitetu Gospodarki Wodnej PAN: Warsaw, Poland, 1995; Volume 8, p. 106. [Google Scholar]
- Allan, J.D. Ekologia wód Płynących; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1998. [Google Scholar]
- Kajak, Z. Hydrobiologia—Limnologia. Ekosystemy wód Śródlądowych; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1998. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Znamenski, V.A. The role of hydrological factors with respect to water quality in reservoirs. In The Effects of Storage on Water Quality; Water Research Centre: Medmenham, UK, 1975; pp. 567–573. [Google Scholar]
- Ward, J.S.; Stanford, J.A. The intermediate—Disturbance hypothesis: An explanation for biotic diversity patterns in lotic ecosystems. In Dynamic of Lotic Ecosystems; Fontaine, T.D., Bartell, S.M., Eds.; Ann Arbor Science Publishers, The Butterworth Group: Ann Arbor, MI, USA, 1983; pp. 347–356. [Google Scholar]
- Kajak, Z. Changes in river water quality in reservoirs, exemplified by studies in Poland. In Regulated Rivers; Lillehamer, A., Saltveit, S.J., Eds.; Publ. Universitetsforlanget AS: Oslo, Norway, 1984; pp. 521–531. [Google Scholar]
- Galicka, W.; Kruk, A.; Zięba, G. Bilans Azotu i Fosforu w Zbiorniku Jeziorsko; Wyd. Akademii Rolniczej im. A. Cieszkowskiego: Poznań, Poland, 2007. [Google Scholar]
- Giziński, J. Hydroelectricity and ecological considerations. Falsification of the environmental reality by the opponents of hydropower. Acta Energetica 2013, 3, 32–44. [Google Scholar] [CrossRef]
- Kentzer, A.; Dembowska, E.; Giziński, A.; Napiórkowski, P. Influence of the Włocławek Reservoir on hydrochemistry and plankton of a large, lowland river (the Lower Vistula River, Poland). Ecol. Eng. 2010, 36, 1747–1753. [Google Scholar] [CrossRef]
- Napiórkowski, P.; Kentzer, A.; Dembowska, E. Zooplankton of the lower Vistula River: The effect of Włocławek Dam Reservoir (Poland) on community structure. Ver. Theor. Angew. Limnol. 2006, 29, 2109–2114. [Google Scholar] [CrossRef]
- Giziński, A.; Kentzer, A.; Żytkowicz, R. Ekologiczne skutki kaskadowej zabudowy dolnej Wisły (prognoza oparta na wynikach badań zbiornika włocławskiego) [Ecological Consequences of Cascade Development of the Lower Vistula River (Forecast Based on Findings of Research of the Włocławek Reservoir)]. In Uwarunkowania Przyrodnicze i Społeczno-Ekonomiczne Zagospodarowania Dolnej Wisły [Environmental and Socio-Economic Considerations of Development of the Lower Vistula River]; Churski, Z., Ed.; Wyd. Uniwersytetu Mikołaja Kopernika: Torun, Poland, 1993; pp. 179–188. [Google Scholar]
- Cheng, X. Reservoir sedimentation at Chinese hydro systems. Water Power Dam Constr. 1992, 44, 44–47. [Google Scholar]
- Babiński, Z. Transport rumowiska unoszonego i wleczonego dolnej Wisły. Przegląd Geogr. 1994, 67, 82–95. [Google Scholar]
- Morris, G.L. Reservoir serimentation and sustiainable development in India. In Proceedings of the Sixth International Symposium on River Sedimentation, New Delhi, India, 7–11 November 1995; p. 227. [Google Scholar]
- Gierszewski, P.; Zakonnov, V.; Kaszubski, M.; Kordowski, J. Transformacja właściwości wody i osadów w profilu podłużnym zbiorników zaporowych Kaskady Górnej Wołgi. Przegląd Geogr. 2017, 89, 391–412. [Google Scholar]
- Szatten, D.; Habel, M.; Pellegrini, L.; Maerker, M. Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas. Water 2018, 10, 1681. [Google Scholar] [CrossRef] [Green Version]
- Wildi, W. Environmental hazards of dams and reservoirs. Nat. Environ. Sci. 2010, 88, 187–197. [Google Scholar]
- Vörosmarty, C.J.; Sharma, K.P.; Fekete, B.M.; Copeland, A.H.; Holden, J.; Marble, J.; Lough, J.A. The storage and aging of continental runoff in large reservoir systems of the world. Ambio 1997, 26, 269–278. [Google Scholar]
- Bu, H.; Meng, W.; Zhang, Y.; Wan, J. Relationships between land use patterns and water quality in the Taizi River basin. China. Ecol. Indic. 2014, 41, 187–197. [Google Scholar] [CrossRef]
- Zorzal-Almeida, S.; Salim, A.; Andrade, M.R.M.; Nascimento, M.N.; Bini, L.M.; Bicudo, D.C. Effects of land use and spatial processes in water and surface sediment of tropical reservoirs at local and regional scales. Sci. Total Environ. 2018, 644, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Ma, Y.J.; Xu, H.Y.; Wang, J.H.; Zhang, D.S. Impact of land use and land cover change on environmental degradation in lake Qinghai watershed, northeast Qinghai-Tibet Plateau. Land Degrad. Dev. 2009, 20, 69–83. [Google Scholar] [CrossRef]
- Effendi, H.; Muslimah, S.; Permatasari, P.A. Relationship between land use and water quality in Pesanggrahan River. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 12022. [Google Scholar] [CrossRef] [Green Version]
- Tolera, M.; Taffa, T. Effects of Land Use/Cover Type On Surface Water Quality: In The Case Of Chancho and Sorga Watershed, 010 East Wollega Zone, Oromia, Ethiopia. Int. J. Environ. Sci. Nat. Res. 2018, 12, 555842. [Google Scholar]
- Ding, J.; Jiang, Y.; Fu, L.; Liu, Q.; Peng, Q.; Kang, M. Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China. Water 2015, 7, 4427–4445. [Google Scholar] [CrossRef] [Green Version]
- Somura, H.; Yuwono, S.B.; Ismono, H.; Arifin, B.; Fitriani, F.; Kada, R. Relationship between water quality variations and land use in the Batutegi Dam Watershed, Sekampung, Indonesia. Lakes Reserv. 2018, 24, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Usta, A.; Yilmaz, M.; Kocamanoglu, Y.O. The Impacts on Water Quality Parameters of Different Land Uses on Catak Formation: Case of Galyan Dam, Trabzon. Int. J. Sci. Technol. Res. 2018, 4, 8. [Google Scholar]
- Cheng, P.; Meng, F.; Wang, Y.; Zhang, L.; Yang, Q.; Jiang, M. The Impacts of Land Use Patterns on Water Quality in a Trans-Boundary River Basin in Northeast China Based on Eco-Functional Regionalization. Int. J. Environ. Res. Public Health 2018, 15, 1872. [Google Scholar] [CrossRef] [Green Version]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Campling, P.; Terres, J.M.; Vande Walle, S.; Van Orshoven, J.; Crouzet, P. Estimation of nitrogen balances from agriculture for EU-15: Spatialisation of estimates to river basins using the CORINE Land Cover. Phys. Chem. Earth 2005, 30, 25–34. [Google Scholar] [CrossRef]
- Koc, J.; Ciećko, C.; Janicka, R.; Rochwerger, A. Czynniki kształtujące poziom mineralnych form azotu w wodach obszarów rolniczych. Zesz. Probl. Postępów Nauk Rol. 1996, 440, 175–183. [Google Scholar]
- Smoroń, S. Zagrożenie eutrofizacją wód powierzchniowych wyżyn lessowych małopolski. Woda-Środowisko-Obsz. Wiej. 2012, 12, 181–191. [Google Scholar]
- Dąbrowska, J.; Moryl, A.; Kucharczak-Moryl, E.; Żmuda, R.; Lejcuś, I. Zawartość związków azotu w wodach rzeki Strzegomki powyżej zbiornika Dobromierz. Desalin. Acta Sci. Pol. Form. Circumiectus 2016, 15, 57–69. [Google Scholar] [CrossRef]
- Ji, Z.G. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries; John Wiley & Sons, Inc.: New York, NY, USA, 2007. [Google Scholar]
- Ilnicki, P. Polskie Rolnictwo a Ochrona Środowiska; Wyd. AR: Poznań, Poland, 2004. [Google Scholar]
- Picińska-Fałtynowicz, J.; Błachuta, J. Wytyczne Metodyczne do Przeprowadzenia Monitoringu i Oceny Potencjału Ekologicznego Zbiorników Zaporowych w Polsce; Inspekcja Ochrony Środowiska: Warszawa, Poland, 2012; p. 65. [Google Scholar]
- Krengel, F.; Bernhofer, C.; Chalov, S.; Efimov, E.; Efimova, L.; Gorbachova, L.; Habel, M.; Helm, B.; Kruhlov, I.; Nabyvanets, Y.; et al. Challenges for Transboundary River Management in Eastern Europe—Three Case Studies. Erde 2018, 149, 1–16. [Google Scholar]
- Solarczyk, A. Jakość wody oraz stan ekologiczny jezior i zbiorników zaporowych. In Hydrologia Polski; Jokiel, P., Marszelewski, W., Pociask-Karteczka, J., Eds.; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 2017; pp. 247–255. [Google Scholar]
- Ciupa, T.; Łajczak, A.; Babiński, Z. Rumowisko klastyczne. In Hydrologia Polski; Jokiel, P., Marszelewski, W., Pociask-Karteczka, J., Eds.; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 2017; pp. 146–152. [Google Scholar]
- Pulikowski, K.; Czyżyk, F.; Pawęska, K.; Strzelczyk, M. Udział azotu azotanowego w ogólnej zawartości azotu w wodach odpływających ze zlewni użytkowanych rolniczo. Infrastrukt. Ekol. Teren. Wiej. 2012, 3/I, 155–165. [Google Scholar]
- Smoroń, S. Obieg fosforu w rolnictwie i zagrożenie dla jakości wody. Zesz. Eduk. 1996, 1, 86–104. [Google Scholar]
- Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (accessed on 17 March 2020).
- Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z Dnia 9 Października 2019 r. w Sprawie Form i Sposobu Prowadzenia Monitoringu Jednolitych Części Wód Powierzchniowych i Jednolitych Części Wód Podziemnych (Journal of Laws of 2019, item 2149). 2019. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190002147 (accessed on 17 March 2020).
- Li, S.; Gu, S.; Liu, W.; Han, H.; Zhang, Q. Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena 2008, 75, 216–222. [Google Scholar] [CrossRef]
- Teixeira, Z.; Teixeira, H.; Marques, J.C. Systematic processes of land use/land cover change to identify relevant driving forces: Implications on water quality. Sci. Total Environ. 2014, 470–471, 1320–1335. [Google Scholar] [CrossRef] [Green Version]
- Zampella, R.A.; Procopio, N.A.; Lathrop, R.G.; Dow, C.L. Relationship of land-use/land-cover patterns and surface-water quality in the Mullica river basin. J. Am. Water Resour. Assoc. 2007, 43, 594–604. [Google Scholar] [CrossRef]
- Matysik, M.; Absalon, D.; Ruman, M. Surface Water Quality in Relation to Land Cover in Agricultural Catchments (Liswarta River Basin Case Study). Pol. J. Environ. Stud. 2015, 24, 87–96. [Google Scholar] [CrossRef]
- Baker, A. Land use and water quality. Hydrol. Process. 2003, 17, 2499–2501. [Google Scholar] [CrossRef]
- Schoonover, J.E.; Lockaby, B.G. Land cover impacts on stream nutrients and fecal coliform in the lover Piedmont of West Georgia. J. Hydrol. 2006, 331, 371–382. [Google Scholar] [CrossRef]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfaz, R.A.; Baig, J.A.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Wang, Y.; Zhang, L.; Cheng, P.; Xue, H.; Meng, D. Organic pollutant types and concentration changes of the water from Songhua river, China in 1975–2013. Water Air Soil Pollut. 2016, 227, 214. [Google Scholar] [CrossRef]
- Dow, C.L.; Arscott, D.B.; Newbold, J.D. Relating major ions and nutrients to watershed conditions across a mixed-use water-supply watershed. J. N. Am. Benthol. Soc. 2006, 25, 887–991. [Google Scholar] [CrossRef]
- McGuckin, S.O.; Jordan, C.; Smith, R.V. Deriving phosphorus export coefficients for Corine Land Cover types. Water Sci. Technol. 1999, 39, 47–53. [Google Scholar] [CrossRef]
Reservoir | River Name | Main River Basin Name | Main Catchment Area (km2) | Sub-Catchment Area (km2) |
---|---|---|---|---|
Besko | Wisłok | Vistula | 207.1 | 11.24 |
Bukówka | Bóbr | Oder | 57.54 | 8.16 |
Czorsztyn | Dunajec | Vistula | 1126.28 | 30.55 |
Dobczyce | Raba | Vistula | 765.58 | 36.77 |
Goczałkowice | Vistula | Vistula | 523.47 | 67.83 |
Jeziorsko | Warta | Oder | 9006.95 | 76.96 |
Klimkówka | Ropa | Vistula | 214.8 | 16.89 |
Kozłowa Góra | Brynica | Vistula | 193.95 | 24.60 |
Mietków | Bystrzyca | Oder | 716.58 | 18.50 |
Nysa | Nysa Kłodzka | Oder | 3264.95 | 46.48 |
Pilchowice | Bóbr | Oder | 1207.28 | 11.70 |
Porąbka | Soła | Vistula | 1091.77 | 11.70 |
Rożnów | Dunajec | Vistula | 4855.54 | 47.00 |
Rybnik | Ruda | Oder | 240.59 | 13.16 |
Solina | San | Vistula | 1191.14 | 89.66 |
Sulejów | Pilica | Vistula | 4933.14 | 114.02 |
Tresna | Soła | Vistula | 1036.56 | 24.45 |
Turawa | Mała Panew | Oder | 1419.12 | 52.40 |
Włocławek | Vistula | Vistula | 171,468.65 | 208.19 |
Zegrze | Narew | Vistula | 68,973.57 | 238.86 |
Reservoir | Total Storage Capacity (m3) | Flood Storage Capacity (m3) | Full Supply Level (FSL) (m) | Surface Area of Reservoir at FLS (km2) | Water Exchange/Retention Time Day | Main Purpose * |
---|---|---|---|---|---|---|
Besko | 14,180,000 | 4,430,000 | 29.00 | 1.31 | 60 | F, S, E |
Bukówka | 16,790,000 | 3.870,000 | 22.00 | 1.99 | 194 | F, S |
Kozłowa Góra | 17,582,000 | 5,190,000 | 7.00 | 6.04 | 307 | F, R |
Rybnik | 23,400,000 | 1,380,000 | 1.30 | 4,635 | 76 | E, F, R |
Porąbka | 27,190,000 | 4,580,000 | 21.20 | 3.35 | 22 | S, E, N, R |
Klimkówka | 42,590,000 | 6,45,000–8,000,000 | 37.70 | 3.06 | 148 | S, E, F, R |
Pilchowice | 50,000,000 | 17,000,000–26,000,000 | 46.70 | 2.40 | 37 | F, R, S |
Mietków | 71,850,000 | 15,050,000 | 15.30 | 9.05 | 128 | N, F, R |
Sulejów | 84,330,000 | 9,220,000 | 11.25 | 23.80 | 38 | F, S, E, R |
Zegrze | 89,960,000 | none | 7.02 | 33.00 | 8,2 | E, R, S, W |
Tresna | 96,110,000 | 31,010,000–39,450,000 | 25.40 | 9.64 | 90 | S, F, N, R |
Turawa | 106,180,000 | 13,680,000 | 13.60 | 20.80 | 115 | E, R, W, R |
Nysa | 123,440,000 | 43,790,000–72,550,000 | 13.30 | 20.77 | 59 | F, N, S, E |
Dobczyce | 141,740,000 | 25,740,000 | 31.00 | 9.64 | 146 | S, F, E |
Rożnów | 159,290,000 | 0–50,000,000 | 31.50 | 16.00 | 31 | E, F, R |
Goczałkowice | 161,250,000 | 43,180,000 | 14.00 | 32.00 | 80 | S, F, W |
Jeziorsko | 202,800,000 | 81,300,000 | 11.50 | 36.65 | 56 | F, E, W |
Czorsztyn | 231,900,000 | 63,000,000 | 54.50 | 12.26 | 116 | F, E, R |
Włocławek | 370,000,000 | none | 12.70 | 75.00 | 4,5 | E, N, R, W |
Solina | 472,400,000 | 80.00 | 60.00 | 22.00 | 299 | F, E, R |
Reservoir | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 2.2 | 2.3 | 2.4 | 3.1 | 3.2 | 3.3 | 4.1 | 5.1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Besko total catchment | 0.7 | 0.0 | 0.0 | 0.0 | 9.7 | 0.0 | 16.4 | 2.7 | 69.1 | 0.8 | 0.0 | 0.0 | 0.6 |
Besko sub-catchment | 5.7 | 0.0 | 0.0 | 0.0 | 49.4 | 0.0 | 9.9 | 10.1 | 8.2 | 5.8 | 0.0 | 0.0 | 11.0 |
Bukówka total catchment | 5.5 | 0.0 | 0.0 | 0.0 | 23.1 | 0.0 | 15.1 | 7.4 | 44.2 | 2.4 | 0.0 | 0.0 | 2.2 |
Bukówka sub-catchment | 3.3 | 0.0 | 0.0 | 0.0 | 43.2 | 0.0 | 14.7 | 8.0 | 14.2 | 0.8 | 0.0 | 0.0 | 15.7 |
Czorsztyn total catchment | 7.1 | 0.1 | 0.0 | 0.3 | 14.1 | 0.0 | 22.4 | 7.1 | 32.1 | 11.3 | 3.8 | 0.6 | 1.0 |
Czorsztyn sub-catchment | 2.1 | 0.1 | 0.0 | 0.0 | 23.5 | 0.0 | 8.7 | 7.3 | 24.9 | 0.0 | 0.0 | 0.0 | 33.4 |
Dobczyce total catchment | 6.7 | 0.2 | 0.2 | 0.0 | 19.6 | 0.0 | 8.4 | 15.8 | 47.1 | 0.7 | 0.0 | 0.0 | 1.3 |
Dobczyce sub-catchment | 9.7 | 0.1 | 0.0 | 0.0 | 17.8 | 0.0 | 0.7 | 27.6 | 14.6 | 2.6 | 0.0 | 0.0 | 27.0 |
Goczałkowice total catchment | 13.0 | 0.7 | 0.0 | 0.3 | 21.1 | 0.0 | 3.3 | 12.7 | 38.1 | 2.9 | 0.0 | 0.4 | 7.5 |
Goczałkowice sub-catchment | 10.2 | 1.0 | 0.0 | 0.0 | 29.3 | 0.0 | 1.2 | 3.1 | 13.3 | 0.5 | 0.0 | 2.7 | 38.6 |
Jeziorsko total catchment | 6.2 | 0.7 | 1.1 | 0.1 | 40.4 | 0.1 | 11.2 | 8.5 | 28.5 | 2.4 | 0.0 | 0.1 | 0.7 |
Jeziorsko sub-catchment | 3.1 | 0.0 | 0.0 | 0.7 | 35.1 | 0.0 | 2.6 | 4.3 | 1.6 | 0.1 | 0.0 | 5.5 | 47.1 |
Klimkówka total catchment | 0.9 | 0.0 | 0.0 | 0.0 | 3.2 | 0.0 | 20.8 | 5.2 | 68.3 | 0.4 | 0.0 | 0.0 | 1.3 |
Klimkówka sub-catchment | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.4 | 11.9 | 58.6 | 4.2 | 0.0 | 0.0 | 13.9 |
Kozłowa Góra total catchment | 5.2 | 4.6 | 0.9 | 0.4 | 23.0 | 13.1 | 0.0 | 2.7 | 46.2 | 1.4 | 0.0 | 0.0 | 2.5 |
Kozłowa Góra sub-catchment | 9.3 | 1.9 | 0.0 | 0.0 | 27.1 | 0.0 | 20.7 | 0.6 | 24.4 | 0.0 | 0.0 | 0.0 | 16.0 |
Mietków total catchment | 8.4 | 0.8 | 0.2 | 0.8 | 51.3 | 0.0 | 3.1 | 6.3 | 26.9 | 0.8 | 0.0 | 0.0 | 1.3 |
Mietków sub-catchment | 3.1 | 0.5 | 0.0 | 0.0 | 45.8 | 0.0 | 0.0 | 2.9 | 2.5 | 0.0 | 0.0 | 0.0 | 45.2 |
Nysa total catchment | 4.8 | 0.3 | 0.2 | 0.3 | 35.7 | 0.0 | 9.3 | 7.9 | 36.8 | 3.3 | 0.0 | 0.1 | 1.2 |
Nysa sub-catchment | 6.1 | 1.5 | 0.9 | 0.0 | 45.0 | 0.0 | 7.1 | 1.0 | 4.6 | 0.0 | 0.0 | 1.6 | 32.1 |
Pilchowice total catchment | 9.2 | 0.3 | 0.3 | 0.7 | 23.5 | 12.9 | 0.0 | 7.7 | 40.0 | 4.5 | 0.2 | 0.0 | 0.6 |
Pilchowice sub-catchment | 2.2 | 0.0 | 0.0 | 0.0 | 39.6 | 0.0 | 0.0 | 7.4 | 38.1 | 0.7 | 0.0 | 0.0 | 12.0 |
Porąbka total catchment | 8.0 | 0.7 | 0.0 | 0.2 | 11.7 | 0.0 | 9.7 | 9.1 | 49.7 | 9.8 | 0.0 | 0.0 | 1.2 |
Porąbka sub-catchment | 13.2 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | 4.9 | 9.6 | 43.4 | 0.0 | 0.0 | 0.0 | 27.1 |
Rożnów total catchment | 4.9 | 0.4 | 0.1 | 0.3 | 17.0 | 0.5 | 12.4 | 11.5 | 45.6 | 4.3 | 1.9 | 0.2 | 0.8 |
Rożnów sub-catchment | 3.6 | 0.0 | 0.0 | 0.0 | 15.2 | 3.4 | 1.4 | 20.2 | 28.9 | 0.0 | 0.0 | 0.0 | 27.2 |
Rybnik total catchment | 18.2 | 4.4 | 0.1 | 1.2 | 18.1 | 0.0 | 0.0 | 7.4 | 46.6 | 0.7 | 0.0 | 0.0 | 3.3 |
Rybnik sub-catchment | 20.8 | 12.1 | 0.0 | 3.2 | 6.4 | 0.0 | 7.7 | 2.5 | 11.5 | 0.0 | 0.0 | 0.0 | 35.7 |
Solina total catchment | 0.7 | 0.0 | 0.0 | 0.2 | 1.1 | 0.0 | 9.5 | 2.2 | 80.0 | 4.1 | 0.0 | 0.0 | 2.1 |
Solina sub-catchment | 1.1 | 0.0 | 0.0 | 2.9 | 6.4 | 0.0 | 2.8 | 2.4 | 62.4 | 0.4 | 0.0 | 0.0 | 21.6 |
Sulejów total catchment | 4.2 | 0.1 | 0.0 | 0.1 | 35.9 | 0.0 | 11.3 | 7.1 | 36.8 | 3.3 | 0.0 | 0.2 | 0.9 |
Sulejów sub-catchment | 4.2 | 0.0 | 0.3 | 0.3 | 19.3 | 0.0 | 2.3 | 7.0 | 45.6 | 2.1 | 0.3 | 1.9 | 16.8 |
Tresna total catchment | 8.5 | 0.8 | 0.0 | 0.2 | 12.7 | 0.0 | 10.4 | 5.2 | 50.5 | 10.7 | 0.0 | 0.0 | 0.9 |
Tresna sub-catchment | 21.1 | 8.6 | 0.0 | 0.0 | 11.4 | 0.0 | 3.0 | 9.1 | 10.1 | 0.0 | 0.0 | 0.0 | 36.8 |
Turawa total catchment | 4.9 | 0.8 | 0.1 | 0.2 | 23.5 | 0.0 | 5.1 | 3.8 | 58.9 | 1.1 | 0.0 | 0.1 | 1.5 |
Turawa sub-catchment | 2.6 | 0.0 | 0.0 | 2.7 | 8.7 | 0.0 | 8.0 | 1.4 | 43.0 | 1.7 | 0.0 | 0.5 | 31.4 |
Włocławek total catchment | 5.6 | 0.6 | 0.2 | 0.2 | 39.6 | 1.1 | 10.9 | 8.3 | 29.8 | 2.1 | 0.1 | 0.4 | 1.2 |
Włocławek sub-catchment | 4.6 | 0.6 | 0.0 | 0.2 | 24.1 | 0.0 | 5.4 | 7.8 | 26.1 | 2.3 | 0.5 | 0.0 | 28.5 |
Zegrze total catchment | 3.5 | 0.3 | 0.1 | 0.1 | 39.1 | 0.1 | 15.4 | 6.5 | 30.4 | 1.7 | 0.0 | 1.1 | 1.6 |
Zegrze sub-catchment | 6.3 | 0.6 | 0.2 | 2.2 | 28.6 | 0.0 | 6.8 | 12.3 | 30.4 | 0.9 | 0.0 | 0.0 | 11.6 |
Water Quality Parameters | Artificial Surfaces | Agricultural Areas | Forest and Semi-Natural Areas | Wetlands | Water Bodies |
---|---|---|---|---|---|
TP | 0.36412 | 0.36110 | −0.57218 * | 0.42127 | 0.19224 |
TN | 0.37759 | 0.18052 | −0.24295 | −0.01969 | 0.06995 |
TP (R) | 0.36104 | 0.37082 | −0.47762 * | 0.35522 | 0.27529 |
TN (R) | 0.38210 | 0.24671 | −0.27755 | −0.02130 | 0.09703 |
Water Quality Parameters | Artificial Surfaces | Agricultural Areas | Forest and Semi-Natural Areas | Wetlands | Water Bodies |
---|---|---|---|---|---|
TP | 0.30833 | −0.06182 | 0.01282 | 0.21599 | 0.09046 |
TN | 0.31215 | 0.03761 | −0.19030 | 0.25900 | 0.14742 |
TP (R) | 0.50320 * | −0.02256 | −0.13689 | 0.38157 | 0.29033 |
TN (R) | 0.48214 * | 0.16698 | −0.36029 | 0.25900 | 0.22715 |
TN mg N/L | Artificial Surfaces 0.0–5.0% | Artificial Surfaces 5.1–10% | Artificial Surfaces 10.1–20% | Artificial Surfaces 20.1–30.0% | Artificial Surfaces >30.1% | Agricultural Areas 10.0–20.0% | Agricultural Areas 20.1–30.0% | Agricultural Areas 30.1–40.0% | Agricultural Areas 40.1–50.0% | Agricultural Areas 50.1–60.0% | Agricultural areas >60.0% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.50–1.00 R < 1.0 | Solina | Besko | Solina | Czorsztyn | Besko | ||||||
Czorsztyn | |||||||||||
0.50–1.00 R > 1.0 | Włocławek | Porąbka | Porąbka | Włocławek | |||||||
1.01–1.50 R < 1.0 | Rożnów | Klimkówka | Rożnów | Bukówka | |||||||
Klimkówka | |||||||||||
Bukówka | |||||||||||
1.01–1.50 R > 1.0 | Goczałkowice | Goczałkowice | |||||||||
1.01–1.50 R > 2.0 | Dobczyce | Tresna | Tresna | Dobczyce | |||||||
1.51–2.0 R < 1 | |||||||||||
1.51–2.0 R > 1 | Nysa | Nysa | |||||||||
1.51–2.0 R > 2 | Jeziorsko | Kozłowa Góra | Jeziorsko | ||||||||
Kozłowa Góra | |||||||||||
2.01–2.50 R > 1 | |||||||||||
2.01–2.50 R < 1.9 | Sulejów | Rybnik | Rybnik | Sulejów | |||||||
2.01–2.50 R > 2.0 | |||||||||||
2.51–3.00 R < 1.0 | |||||||||||
2.51–3.00 R < 2.0 | Pilchowice | Pilchowice | |||||||||
2.51–3.00 R > 2.0 | Mietków | Zegrze | Turawa | Mietków | |||||||
Turawa | Zegrze |
TP mg P/L | Forest and Semi-Natural Areas 0.0–10.0% | Forest and Semi-Natural Areas 10.1–20.0% | Forest and Semi-Natural Areas 20.1–30.0% | Forest and Semi-Natural Areas 30.1–40.0% | Forest and Semi-Natural Areas 40.1–60.0% | Forest and Semi-Natural Areas >60.0% | Wetlands 0.0–0.5% | Wetlands 0.6–1.0% | Wetlands 1.1–2.0% | Wetlands 2.1–5.0% | Wetlands >5.0% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.01–0.02 R < 0.010 | Besko | Solina | Solina | ||||||||
Besko | |||||||||||
0.01–0.02 R > 0.011 | Dobczyce | Klimkówka | Klimkówka | ||||||||
Dobczyce | |||||||||||
0.021–0.03 R < 0.020 | Bukówka | Bukówka | |||||||||
0.021–0.03 R > 0.021 | Jeziorsko | Czorsztyn | Rożnów | Tresna | Czorsztyn Rożnów Tresna | Jeziorsko | |||||
0.031–0.04 R < 0.020 | |||||||||||
0.031–0.04 R > 0.021 | Mietków | Goczałkowice | Kozłowa Góra | Porąbka | Mietków Kozłowa Góra Porąbka | Goczałkowice | |||||
0.041–0.05 R < 0.020 | |||||||||||
0.041–0.05 R > 0.021 | |||||||||||
0.051–0.09 R < 0.020 | |||||||||||
0.051–0.09 R > 0.021 | Nysa | Pilchowice | Sulejów Turawa | Pilchowice Turawa | Sulejów | ||||||
Nysa | |||||||||||
>0.091 R < 0.109 | |||||||||||
>0.091 R > 0.110 | Rybnik | Włocławek | Zegrze | Zegrze Włocławek Rybnik |
TN mg N/L | Forest and Semi-Natural Areas 0.0–10.0% | Forest and Semi-Natural Areas 10.1–20.0% | Forest and Semi-Natural Areas 20.1–30.0% | Forest and Semi-Natural Areas 30.1–40.0% | Forest and Semi-Natural Areas 40.1–60.0% | Forest and Semi-Natural Areas >60.0% | Wetlands 0.0–0.5% | Wetlands 0.6–1.0% | Wetlands 1.1–2.0% | Wetlands 2.1–5.0% | Wetlands >5.0% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.50–1.00 R < 1.0 | Czorsztyn | Solina | Solina | Czorsztyn | |||||||
Bukówka | Bukówka | ||||||||||
0.50–1.00 R > 1.0 | Włocławek | Besko | Besko | ||||||||
1.01–1.50 R < 1.0 | Porąbka Rożnów | Klimkówka | Porąbka | ||||||||
Rożnów | |||||||||||
Klimkówka | |||||||||||
1.01–1.50 R > 1.0 | Goczałkowice | Goczałkowice | |||||||||
1.01–1.50 R > 2.0 | Dobczyce | Dobczyce | |||||||||
1.51–2.0 R < 1 | |||||||||||
1.51–2.0 R > 1 | Nysa | Nysa | |||||||||
1.51–2.0 R > 2 | Jeziorsko | Kozłowa Góra | Jeziorsko Kozłowa Góra | ||||||||
2.01–2.50 R > 1 | |||||||||||
2.01–2.50 R < 1.9 | Rybnik | Rybnik | |||||||||
2.01–2.50 R > 2.0 | Sulejów | Sulejów | |||||||||
2.51–3.00 R < 1.0 | |||||||||||
2.51–3.00 R < 2.0 | Pilchowice | Pilchowice | |||||||||
2.51–3.00 R > 2.0 | Mietków | Zegrze | Turawa | Tresna | Mietków | Zegrze |
TP mg P/L | Forest and Semi-Natural Areas 0.0–10.0% | Forest and Semi-Natural Areas 10.1–20.0% | Forest and Semi-Natural Areas 20.1–30.0% | Forest and Semi-Natural Areas 30.1–40.0% | Forest and Semi-Natural Areas 40.1–60.0% | Forest and Semi-Natural Areas >60.0% | Wetlands 0.0–0.5% | Wetlands 0.6–1.0% | Wetlands 1.1–2.0% | Wetlands 2.1–5.0% | Wetlands >5.0% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.01–0.02 R < 0.010 | Solina | Solina | |||||||||
Besko | Besko | ||||||||||
0.01–0.02 R > 0.011 | Dobczyce | Klimkówka | Klimkówka Dobczyce | ||||||||
0.021–0.03 R < 0.020 | Bukówka | Bukówka | |||||||||
0.021–0.03 R > 0.021 | Jeziorsko | Czorsztyn Rożnów | Tresna | Jeziorsko Tresna | Czorsztyn Rożnów | ||||||
0.031–0.04 R < 0.020 | |||||||||||
0.031–0.04 R > 0.021 | Mietków | Goczałkowice | Mietków | ||||||||
Goczałkowice | |||||||||||
Kozłowa Góra | Kozłowa Góra | ||||||||||
Porąbka | Porąbka | ||||||||||
0.041–0.05 R < 0.020 | |||||||||||
0.041–0.05 R > 0.021 | |||||||||||
0.051–0.09 R < 0.020 | |||||||||||
0.051–0.09 R > 0.021 | Sulejów | Pilchowice | Sulejów | ||||||||
Turawa | Pilchowice | ||||||||||
Nysa | Turawa | ||||||||||
Nysa | |||||||||||
>0.091 R < 0.109 | |||||||||||
>0.091 R > 0.110 | Zegrze | Rybnik | Rybnik | Zegrze | |||||||
Włocławek | Włocławek |
TP mg P/L | Artificial Surfaces 0.0–5.0% | Artificial Surfaces 5.1–10% | Artificial Surfaces 10.1–20% | Artificial Surfaces 20.1–30.0% | Artificial Surfaces >30.1% | Agricultural Areas 10.0–20.0% | Agricultural Areas 0.1–30.0% | Agricultural Areas 30.1–40.0% | Agricultural Areas 40.1–50.0% | Agricultural Areas 50.1–60.0% | Agricultural Areas >60.0% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.01–0.02 R < 0.010 | Solina | Besko | Solina | Besko | |||||||
0.01–0.02 R > 0.011 | Klimkówka | Dobczyce | Klimkówka | Dobczyce | |||||||
0.021–0.03 R < 0.020 | Bukówka | Bukówka | |||||||||
0.021–0.03 R > 0.021 | Czorsztyn | Tresna | Tresna | Czorsztyn | Jeziorsko Rożnów | ||||||
Rożnów | |||||||||||
Jeziorsko | |||||||||||
0.031-0.04 R<0.020 | |||||||||||
0.031–0.04 R > 0.021 | Mietków | Kozłowa Góra | Porąbka | Mietków | |||||||
Porąbka | Kozłowa Góra | ||||||||||
0.041–0.05 R < 0.020 | Goczałkowice | Goczałkowice | |||||||||
0.041–0.05 R > 0.021 | |||||||||||
0.051–0.09 R < 0.020 | |||||||||||
0.051–0.09 R > 0.021 | Turawa | Nysa | Turawa | Sulejów | Pilchowice | Nysa | |||||
Sulejów | |||||||||||
Pilchowice | |||||||||||
> 0.091 R < 0.109 | Rybnik | Rybnik | |||||||||
> 0.091 R > 0.110 | Włocławek | Zegrze | Włocławek | Zegrze |
TP mg P/L | Artificial Surfaces 0.0–5.0% | Artificial Surfaces 5.1–10% | Artificial Surfaces 10.1–20% | Artificial Surfaces 20.1–30.0% | Artificial Surfaces >30.1% | Agricultural Areas 10.0–20.0% | Agricultural Areas 20.1–30.0% | Agricultural Areas 30.1–40.0% | Agricultural Areas 40.1–50.0% | Agricultural Areas 50.1–60.0% | Agricultural Areas >60.0% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.01–0.02 R < 0.010 | Solina | Solina | Besko | ||||||||
Besko | |||||||||||
0.01–0.02 R > 0.011 | Klimkówka | Dobczyce | Klimkówka | Dobczyce | |||||||
0.021–0.03 R < 0.020 | |||||||||||
0.021– 0.03 R > 0.021 | Czorsztyn | Czorsztyn | |||||||||
Rożnów | Rożnów | ||||||||||
Jeziorsko | Jeziorsko | ||||||||||
0.031–0.04 R < 0.020 | Bukówka | Bukówka | |||||||||
0.031–0.04 R > 0.021 | Tresna | Tresna | Mietków | ||||||||
Mietków | |||||||||||
0.041–0.05 R < 0.020 | |||||||||||
0.041–0.05 R > 0.021 | Kozłowa Góra | Goczałkowice | Porąbka | Kozłowa Góra | |||||||
Porąbka | Goczałkowice | ||||||||||
0.051–0.09 R < 0.020 | Sulejów | ||||||||||
0.051–0.09 R > 0.021 | Sulejów | Turawa | Pilchowice | Turawa | Pilchowice | Nysa | |||||
Nysa | |||||||||||
> 0.091 R < 0.109 | |||||||||||
> 0.091 R > 0.110 | Zegrze | Włocławek | Rybnik | Rybnik | Włocławek | Zegrze |
TN mg N/L | Forest and Semi-Natural Areas 0.0–10.0% | Forest and Semi-Natural Areas 10.1–20.0% | Forest and Semi-Natural Areas 20.1–30.0% | Forest and Semi-Natural Areas 30.1–40.0% | Forest and Semi-Natural Areas 40.1–60.0% | Forest and Semi-Natural Areas >60% | Wetlands 0.0–0.5% | Wetlands 0.6–1.0% | Wetlands 1.1–2.0% | Wetlands 2.1–5.0% | Wetlands >5.0% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.50–1.00 R < 1.0 | Czorsztyn | Solina | Czorsztyn | ||||||||
Solina | |||||||||||
0.50–1.00 R > 1.0 | Besko | Włocławek | Besko | ||||||||
Włocławek | |||||||||||
1.01–1.50 R < 1.0 | Bukówka | Rożnów | Porąbka | Klimkówka | Rożnów | ||||||
Bukówka | |||||||||||
Porąbka | |||||||||||
Klimkówka | |||||||||||
1.01–1.50 R > 1.0 | Nysa | Goczałkowice | Nysa | Goczałkowice | |||||||
1.01–1.50 R > 2.0 | Dobczyce | ||||||||||
1.51–2.0 R < 1 | |||||||||||
1.51–2.0 R > 1 | |||||||||||
1.51–2.0 R > 2 | Jeziorsko | Kozłowa Góra | Kozłowa Góra | Jeziorsko | |||||||
2.01–2.50 R > 1 | |||||||||||
2.01–2.50 R < 1.9 | Rybnik | Rybnik | |||||||||
2.01–2.50 R > 2.0 | Sulejów | Sulejów | |||||||||
2.51–3.00 R < 1.0 | |||||||||||
2.51–3.00 R < 2.0 | Pilchowice | Pilchowice | |||||||||
2.51–3.00 R > 2.0 | Mietków | Tresna | Zegrze | Turawa | Mietków | Zegrze | |||||
Tresna | |||||||||||
Włocławek | Turawa | ||||||||||
Włocławek |
TN mg N/L | Artificial Surfaces 0.0–5.0% | Artificial Surfaces 5.1–10% | Artificial Surfaces 10.1–20% | Artificial Surfaces 20.1–30.0% | Artificial Surfaces >30.1% | Agricultural Areas 10.0–20.0% | Agricultural Areas 20.1–30.0% | Agricultural Areas 30.1–40.0% | Agricultural Areas 40.1–50.0% | Agricultural Areas 50.1–60.0% | Agricultural Areas >60.0% |
---|---|---|---|---|---|---|---|---|---|---|---|
0.50–1.00 R <1.0 | Besko | Czorsztyn | Besko | Czorsztyn | |||||||
0.50–1.00 R > 1.0 | |||||||||||
1.01–1.50 R < 1.0 | Klimkówka | Rożnów | Klimkówka | Rożnów | |||||||
Bukówka | |||||||||||
Porąbka | Porąbka | Bukówka | |||||||||
1.01–1.50 R > 1.0 | Goczałkowice | Goczałkowice | |||||||||
1.01–1.50 R > 2.0 | Dobczyce | Tresna | Dobczyce | ||||||||
Tresna | |||||||||||
1.51–2.0 R < 1 | Nysa | Nysa | |||||||||
1.51–2.0 R > 1 | |||||||||||
1.51–2.0 R > 2 | Jeziorsko | Kozłowa Góra | Kozłowa Góra | Jeziorsko | |||||||
2.01–2.50 R > 1 | |||||||||||
2.01–2.50 R < 1.9 | Sulejów | Rybnik | Rybnik | Sulejów | |||||||
2.01–2.50 R > 2.0 | |||||||||||
2.51–3.00 R < 1.0 | |||||||||||
2.51–3.00 R < 2.0 | Pilchowice | Pilchowice | |||||||||
2.51–3.00 R > 2.0 | Mietków | Turawa | Mietków | ||||||||
Zegrze | |||||||||||
Turawa | Zegrze |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matysik, M.; Absalon, D.; Habel, M.; Maerker, M. Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland. Remote Sens. 2020, 12, 979. https://doi.org/10.3390/rs12060979
Matysik M, Absalon D, Habel M, Maerker M. Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland. Remote Sensing. 2020; 12(6):979. https://doi.org/10.3390/rs12060979
Chicago/Turabian StyleMatysik, Magdalena, Damian Absalon, Michał Habel, and Michael Maerker. 2020. "Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland" Remote Sensing 12, no. 6: 979. https://doi.org/10.3390/rs12060979
APA StyleMatysik, M., Absalon, D., Habel, M., & Maerker, M. (2020). Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland. Remote Sensing, 12(6), 979. https://doi.org/10.3390/rs12060979