Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy
Abstract
:1. Introduction
HLS Project
2. Materials and Methods
2.1. Dataset
2.2. Satellite Data Collection and Preprocessing
2.3. Satellite Precipitation Data Collection and Preprocessing
2.4. Ground Truth Acquisition
2.5. Machine Learning-Based Supervised Classification
3. Results and Discussion
3.1. Experimental Setting for Irrigated Area Classification Assessment
3.2. Experimental Results
3.3. Cross-Validation with Spatially Separated Folds
4. Discussion and Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vörösmarty, C.J. Global water assessment and potential contributions from Earth Systems Science. Aquat. Sci. 2002, 64, 328–351. [Google Scholar] [CrossRef]
- Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrol. Sci. J. 2003, 48, 339–348. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; McVicar, T.R.; Paydar, Z.; Li, L.; Guerschman, J.P.; Donohue, R.J.; Dutta, D.; Podger, G.M.; van Dijk, A.I.J.M.; Chiew, F.H.S. Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability. Remote Sens. Environ. 2014, 154, 139–152. [Google Scholar] [CrossRef]
- Pervez, S.; Budde, M.; Rowland, J. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Nelson, A. Mapping irrigated areas using MODIS 250 meter time-series data: A study on Krishna river basin (India). Water 2011, 3, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.F.; Pervez, M.S. Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture. Agric. Syst. 2014, 127, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A. Mapping Irrigated Areas of Ghana Using Fusion of 30 m and 250 m Resolution Remote-Sensing Data. Remote Sens. 2011, 3, 816–835. [Google Scholar] [CrossRef] [Green Version]
- Pun, M.; Mutiibwa, D.; Li, R. Land Use Classification: A surface energy balance and vegetation index application to map and monitor irrigated lands. Remote Sens. 2017, 9, 1256. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Claverie, M.; Masek, J.G.; Ju, J.; Dungan, J.L. Harmonized Landsat-8 Sentinel-2 (HLS) Product User’s Guide; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2017.
- Zhou, Q.; Rover, J.; Brown, J.; Worstell, B.; Howard, D.; Wu, Z.; Gallant, A.L.; Rundquist, B.; Burke, M. Monitoring landscape dynamics in Central U.S. grasslands with Harmonized Landsat-8 and Sentinel-2 time series data. Remote Sens. 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Pastick, N.J.; Wylie, B.K.; Wu, Z. Spatiotemporal analysis of Landsat-8 and Sentinel-2 data to support monitoring of dryland ecosystems. Remote Sens. 2018, 10, 791. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Franch, B.; Vermote, E.; Roger, J.; Justice, C.; Masek, J.; Murphy, E. Winter wheat yield assessment using Landsat 8 and Sentinel-2 data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5964–5967. [Google Scholar]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Pickert, J.; Hostert, P. Towards national-scale characterization of grassland use intensity from integrated Sentinel-2 and Landsat time series. Remote Sens. Environ. 2020, 238, 111124. [Google Scholar] [CrossRef]
- Hao, P.-Y.; Tang, H.-J.; Chen, Z.-X.; Yu, L.; Wu, M.-Q. High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data. J. Integr. Agric. 2019, 18, 2883–2897. [Google Scholar] [CrossRef]
- Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Jönsson, P.; Cai, Z.; Melaas, E.; Friedl, M.; Eklundh, L. A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data. Remote Sens. 2018, 10, 635. [Google Scholar] [CrossRef] [Green Version]
- DIANA. Available online: http://diana-h2020.eu/en/ (accessed on 14 April 2020).
- Gao, F.; Masek, J.G.; Wolfe, R.E. Automated registration and orthorectification package for Landsat and Landsat-like data processing. JARS 2009, 3, 033515. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. NASA-TM-79620, 1 May 1978. [Google Scholar]
- Ambika, A.K.; Wardlow, B.; Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 2016, 3, 160118. [Google Scholar] [CrossRef] [Green Version]
- Eilers, P.H.C. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef]
- Mattiuzzi, M.; Verbesselt, J.; Stevens, F.; Mosher, S.; Hengl, T.; Klisch, A.; Evans, B.; Lobo, A. MODIS: MODIS Acquisition and Processing Package. 2014. Available online: http://R-Forge.R-project.org/projects/modis (accessed on 14 April 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- GDAL. Available online: https://gdal.org/ (accessed on 14 April 2020).
- CHRS Data Portal. Available online: https://chrsdata.eng.uci.edu/ (accessed on 14 April 2020).
- mapitGIS. Available online: https://mapitgis.com/ (accessed on 14 April 2020).
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel function analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 54, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor non parametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Wright, M.N.; Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. arXiv 2015, arXiv:1508.04409. [Google Scholar] [CrossRef] [Green Version]
- Karatzoglou, A.; Smola, A.; Hornik, K. Kernlab: Kernel-based Machine Learning Lab. R Package Version 0.9-29. 2016. Available online: https://cran.r-project.org/web/packages/kernlab/index.html (accessed on 14 April 2020).
- Therneau, T.; Atkinson, B.; Ripley, B. rpart: Recursive Partitioning and Regression Trees. 2015. Available online: https://cran.r-project.org/web/packages/rpart/index.html (accessed on 14 April 2020).
- Kuhn, M.; Weston, S.; Coulter, N.; Quinlan, R. C50: C5.0 decision trees and rule-based models. R Package Version 0.1.0-21. 2014. Available online: http://CRAN.R-project.org/packageC (accessed on 14 April 2020).
- Ripley, B.; Venables, W. nnet: Feed-forward Neural Networks and Multinomial Log-linear Models. R Package Version 7.3-13. 2016. Available online: https://cran.r-project.org/web/packages/nnet/index.html (accessed on 14 April 2020).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team; et al. Caret: Classification and Regression Training. R Package Version 6.0-86. 2016. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 14 April 2020).
- Smeeton, C.N. Early history of the kappa statistic. Biometrics 1985, 41, 795. [Google Scholar]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Meyer, H.; Reudenbach, C.; Hengl, T.; Katurji, M.; Nauss, T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018, 101, 1–9. [Google Scholar] [CrossRef]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. blockCV: An R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 2019, 10, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.K.; Hubert-Moy, L.; Buvaneshwari, S.; Sekhar, M.; Ruiz, L.; Bandyopadhyay, S.; Corgne, S. Irrigation History Estimation Using Multitemporal Landsat Satellite Images: Application to an Intensive Groundwater Irrigated Agricultural Watershed in India. Remote Sens. 2018, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Traoré, F.; Bonkoungou, J.; Compaoré, J.; Kouadio, L.; Wellens, J.; Hallot, E.; Tychon, B. Using multi-temporal Landsat images and support vector machine to assess the changes in agricultural irrigated areas in the Mogtedo region, Burkina Faso. Remote Sens. 2019, 11, 1442. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Deines, J.M.; Kendall, A.D.; Basso, B.; Hyndman, D.W. Addressing challenges for mapping irrigated fields in subhumid temperate regions by integrating remote sensing and hydroclimatic Data. Remote Sens. 2019, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Demarez, V.; Helen, F.; Marais-Sicre, C.; Baup, F. In-season mapping of irrigated crops using Landsat 8 and Sentinel-1 time series. Remote Sens. 2019, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ. 2008, 112, 3520–3537. [Google Scholar] [CrossRef] [Green Version]
- Beltran, C.M.; Belmonte, A.C. Irrigated crop area estimation using Landsat TM imagery in La Mancha, Spain. Photogramm. Eng. Remote Sens. 2001, 67, 1177–1184. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
Satellite/Tile | T33TVE | T33TVF | T33TWE | T33TWF | Total | |
---|---|---|---|---|---|---|
(a) | L30 | 49 | 44 | 42 | 44 | 179 |
S30 | 118 | 117 | 121 | 115 | 471 | |
Total | 167 | 161 | 163 | 159 | 650 | |
(b) | L30 | 11 | 16 | 17 | 13 | 57 |
S30 | 30 | 57 | 27 | 27 | 141 | |
Total | 41 | 73 | 44 | 40 | 198 | |
(c) | L30 | 11 | 16 | 17 | 13 | 57 |
S30 | 31 | 58 | 28 | 28 | 145 | |
Total | 42 | 74 | 45 | 41 | 202 | |
Revisit time | 8.7 | 4.9 | 8.1 | 8.9 | – |
Bit Number | QA Description | Bit Combination (Description) |
---|---|---|
7–6 | Aerosol quality | 00 (Climatology), 01 (Low), 10 (Average), 11 (High) |
5 | Water | 0 (No), 1 (Yes) |
4 | Snow/ice | 0 (No), 1 (Yes) |
3 | Cloud shadow | 0 (No), 1 (Yes) |
2 | Adjacent cloud | 0 (No), 1 (Yes) |
1 | Cloud | 0 (No), 1 (Yes) |
0 | Cirrus | 0 (No), 1 (Yes) |
Integer Value | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
64 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
68 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
128 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
132 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
192 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
196 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
Class/Tile | T33TVE | T33TVF | T33TWE | T33TWF | Total |
---|---|---|---|---|---|
0 | 39 | 233 | 33 | 31 | 336 |
1 | 378 | 1179 | 244 | 96 | 1897 |
2 | 50 | 626 | 72 | 11 | 759 |
Total | 467 | 2038 | 349 | 138 | 2992 |
Algorithm | R Package | Reference |
---|---|---|
Random Forests (RF) | Ranger | [38] |
Support Vector Machines (SVM) | Kernlab | [39] |
Single Decision Trees (DT) | Rpart | [40] |
Boosted Decision Trees (Boosted DT) | C50 | [41] |
Artificial Neural Networks (ANN) | Nnet | [42] |
K-Nearest Neighbors (k-NN) | Caret | [43] |
Scenario | Preprocessing |
---|---|
1 | None |
2 | Balanced training data |
3 | Feature selection |
4 | Feature selection + Balanced training data |
Preprocessing | Accuracy Metric | RF | SVM | DT | Boosted DT | ANN | k-NN |
---|---|---|---|---|---|---|---|
None | OA | 86.3 | 84.1 | 78.5 | 86.0 | 81.2 | 75.8 |
Kappa | 0.725 | 0.698 | 0.596 | 0.719 | 0.639 | 0.535 | |
Balanced training data | OA | 87.8 | 82.7 | 77.2 | 86.2 | 78.7 | 64.2 |
Kappa | 0.766 | 0.699 | 0.595 | 0.730 | 0.604 | 0.440 | |
Feature selection | OA | 86.7 | 87.8 | 78.1 | 86.4 | 81.7 | 80.2 |
Kappa | 0.740 | 0.770 | 0.572 | 0.730 | 0.665 | 0.655 | |
Feature selection + Balanced training data | OA | 87.5 | 84.3 | 77.5 | 86.6 | 80.0 | 71.5 |
Kappa | 0.763 | 0.721 | 0.596 | 0.744 | 0.638 | 0.543 |
Preprocessing | Accuracy Metric | RF | SVM | DT | Boosted DT | ANN | k-NN |
---|---|---|---|---|---|---|---|
None | OA | 90.5 | 86.9 | 81.3 | 89.8 | 83.2 | 80.5 |
Kappa | 0.814 | 0.744 | 0.630 | 0.802 | 0.675 | 0.637 | |
Balanced training data | OA | 90.4 | 87.2 | 76.2 | 90.6 | 76.7 | 70.5 |
Kappa | 0.814 | 0.759 | 0.593 | 0.821 | 0.580 | 0.525 | |
Feature selection | OA | 90.5 | 88.0 | 81.3 | 90.8 | 83.7 | 81.3 |
Kappa | 0.880 | 0.766 | 0.630 | 0.821 | 0.691 | 0.653 | |
Feature selection + Balanced training data | OA | 90.6 | 88.2 | 76.2 | 90.1 | 81.4 | 71.4 |
Kappa | 0.820 | 0.777 | 0.595 | 0.809 | 0.653 | 0.540 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falanga Bolognesi, S.; Pasolli, E.; Belfiore, O.R.; De Michele, C.; D’Urso, G. Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy. Remote Sens. 2020, 12, 1275. https://doi.org/10.3390/rs12081275
Falanga Bolognesi S, Pasolli E, Belfiore OR, De Michele C, D’Urso G. Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy. Remote Sensing. 2020; 12(8):1275. https://doi.org/10.3390/rs12081275
Chicago/Turabian StyleFalanga Bolognesi, Salvatore, Edoardo Pasolli, Oscar Rosario Belfiore, Carlo De Michele, and Guido D’Urso. 2020. "Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy" Remote Sensing 12, no. 8: 1275. https://doi.org/10.3390/rs12081275
APA StyleFalanga Bolognesi, S., Pasolli, E., Belfiore, O. R., De Michele, C., & D’Urso, G. (2020). Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy. Remote Sensing, 12(8), 1275. https://doi.org/10.3390/rs12081275