Urban Heat Island Monitoring and Impacts on Citizen’s General Health Status in Isfahan Metropolis: A Remote Sensing and Field Survey Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study area
2.2. UHI Monitoring
2.2.1. Satellite Images and Pre-Possessing
2.2.2. Image Processing
2.2.3. Split Window Algorithm
2.2.4. Classification of Heat and Cold Islands
2.3. Health Assessment of the Study Subjects
2.4. Statistical Analysis
3. Results and Discussion
3.1. Temporal Variation of LST
3.2. Spatial Variation of LST
3.3. Relation Between UHI and General Health Sub-Scales
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sailor, D.J.; Lu, L. A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ. 2004, 38, 2737–2748. [Google Scholar] [CrossRef]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Singh, A.; Purohit, B.M. Public health impacts of global warming and climate change. Peace Rev. 2014, 26, 112–120. [Google Scholar] [CrossRef]
- Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Dwivedi, A.; Khire, M. Application of split-window algorithm to study Urban Heat Island effect in Mumbai through land surface temperature approach. Sustain. Cities Soc. 2018, 41, 865–877. [Google Scholar] [CrossRef]
- Reisi, M.; Ahmadi Nadoushan, M.; Aye, L. Remote sensing for urban heat and cool islands evaluation in semi-arid areas. Glob. J. Environ. Sci. Manag. 2019, 5, 319–330. [Google Scholar]
- Li, H.; Harvey, J.; Kendall, A. Field measurement of albedo for different land cover materials and effects on thermal performance. Build. Environ. 2013, 59, 536–546. [Google Scholar] [CrossRef]
- Odunuga, S.; Badru, G. Landcover change, land surface temperature, surface albedo and topography in the Plateau Region of North-Central Nigeria. Land 2015, 4, 300–324. [Google Scholar] [CrossRef] [Green Version]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Wang, X.; Prigent, C. Comparisons of Diurnal Variations of Land Surface Temperatures from Numerical Weather Prediction Analyses, Infrared Satellite Estimates and In Situ Measurements. Remote Sens. 2020, 12, 583. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Chen, Y.; Wang, D.; Chen, Z.; Gong, A.; Li, J. Study of the seasonal effect of building shadows on urban land surface temperatures based on remote sensing data. Remote Sens. 2019, 11, 497. [Google Scholar] [CrossRef] [Green Version]
- Howard, L. The Climate of London. 1818. Available online: https://www.urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf (accessed on 2 March 2020).
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, B.; Fu, D.; Atkinson, P.M. Spatiotemporal variation in surface urban heat island intensity and associated determinants across major Chinese cities. Remote Sens. 2015, 7, 3670–3689. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Enete, I.; Awuh, M.; Ikekpeazu, F. Assessment of Urban Heat Island (Uhi) situation in Douala Metropolis, Cameroon. J. Geogr. Earth Sci. 2014, 2, 55–57. [Google Scholar]
- Umar, U.M.; Kumar, J.S. Spatial and temporal changes of urban heat island in Kano Metropolis, Nigeria. Int. J. Res. Eng. Sci. Technol. 2014, 1, 1–9. [Google Scholar]
- De Faria Peres, L.; de Lucena, A.J.; Rotunno Filho, O.C.; de Almeida França, J.R. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 104–116. [Google Scholar] [CrossRef]
- Hashemi Darebadami, S.; Darvishi Boloorani, A.; AlaviPanah, S.K.; Bayat, R. Investigation of changes in surface urban heat-island (SUHI) in day and night using multi-temporal MODIS sensor data products (Case Study: Tehran metropolitan). Sci. J. Manag. Syst. 2019, 19, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Gawuc, L.; Struzewska, J. Impact of MODIS quality control on temporally aggregated urban surface temperature and long-term surface urban heat island intensity. Remote Sens. 2016, 8, 374. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U.; Avdan, Z.Y. Urban heat island analysis using the landsat 8 satellite data: A case study in Skopje, Macedonia. Proceedings 2018, 2, 358. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.A.; Odindi, J.; Mutanga, O. Land surface temperature and emissivity estimation for Urban Heat Island assessment using medium-and low-resolution space-borne sensors: A review. Geocarto Int. 2017, 32, 455–470. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Including the urban heat island in spatial heat health risk assessment strategies: A case study for Birmingham, UK. Int. J. Health Geogr. 2011, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Gosling, S.N.; Lowe, J.A.; McGregor, G.R.; Pelling, M.; Malamud, B.D. Associations between elevated atmospheric temperature and human mortality: A critical review of the literature. Clim. Chang. 2009, 92, 299–341. [Google Scholar] [CrossRef]
- Huynen, M.-M.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect. 2001, 109, 463–470. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Lázaro, P.; Muller-Karger, F.E.; Otis, D.; McCarthy, M.J.; Rodríguez, E. A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico. Int. J. Biometeorol. 2018, 62, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Hornigold, R.; Page, L.; Waite, T. Associations between high ambient temperatures and heat waves with mental health outcomes: A systematic review. Public Health 2018, 161, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Aghamohammadi, N.; Aghazadeh, S.; Sulaiman, N.M.N. Urban heat island experience, control measures and health impact: A survey among working community in the city of Kuala Lumpur. Sustain. Cities Soc. 2017, 35, 660–668. [Google Scholar] [CrossRef]
- König, H.H.; Bernert, S.; Angermeyer, M. Health Status of the German population: Results of a representative survey using the EuroQol questionnaire. Gesundh. Bundesverb. Der Arzte Des Offentlichen Gesundh. 2005, 67, 173–182. [Google Scholar]
- Joore, M.; Brunenberg, D.; Zank, H.; Van Der Stel, H.; Anteunis, L.; Boas, G.; Peters, H. Development of a questionnaire to measure hearing-related health state preferences framed in an overall health perspective. Int. J. Technol. Assess. Health Care 2002, 18, 528–539. [Google Scholar]
- Ebijuwa, A.S.; Ogunmodede, T.A.; Oyetola, S.O. Health information need and information sources of pregnant women in Ogbomoso Metropolis, Oyo State, Nigeria. Libr. Philos. Pract. 2013, 1, 9245530. [Google Scholar]
- Goldberg, D. Manual of the general health questionnaire. J. Norweg. Med. Assoc. 1989, 109, 1391–1394. [Google Scholar]
- Hughes, P. The Neer sign and Hawkins-Kennedy test for shoulder impingement. J. Physiother. 2011, 57, 260. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.G.; Price, T.R. Post-stroke depressive disorders: A follow-up study of 103 patients. Stroke 1982, 13, 635–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakakibara, B.M.; Miller, W.C.; Orenczuk, S.G.; Wolfe, D.L. A systematic review of depression and anxiety measures used with individuals with spinal cord injury. Spinal Cord 2009, 47, 841–851. [Google Scholar] [CrossRef]
- Failde, I.; Ramos, I.; Fernandez-Palacin, F. Comparison between the GHQ-28 and SF-36 (MH 1–5) for the assessment of the mental health in patients with ischaemic heart disease. Eur. J. Epidemiol. 2000, 16, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Sterling, M.; Kenardy, J.; Jull, G.; Vicenzino, B. The development of psychological changes following whiplash injury. Pain 2003, 106, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Feyer, A.-M.; Herbison, P.; Williamson, A.M.; de Silva, I.; Mandryk, J.; Hendrie, L.; Hely, M.C. The role of physical and psychological factors in occupational low back pain: A prospective cohort study. Occup. Environ. Med. 2000, 57, 116–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, M.; Roudbari, A.D. The Identification of Urban Thermal Islands based on an Environmental Approach, Case Study: Isfahan Province. Geogr. Environ. Plan. 2017, 28, 1–20. [Google Scholar]
- Nasrollahi, N.; Hatami, Z.; Taleghani, M. Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Build. Environ. 2017, 125, 356–372. [Google Scholar] [CrossRef]
- Madanian, M.; Soffianian, A.R.; Koupai, S.S.; Pourmanafi, S.; Momeni, M. Analyzing the effects of urban expansion on land surface temperature patterns by landscape metrics: A case study of Isfahan city, Iran. Environ. Monit. Assess. 2018, 190, 189. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.S. Land Surface Temperature Retrival of Landsat-8 Data Using Split Window Algorithm-A Case Study of Ranchi District. Int. J. Eng. Dev. Res. 2014, 2, 2840–3849. [Google Scholar]
- Rajeshwari, A.; Mani, N. Estimation of land surface temperature of Dindigul district using Landsat 8 data. Int. J. Res. Eng. Technol. 2014, 3, 122–126. [Google Scholar]
- Wang, Y.; Ientilucci, E. A practical approach to Landsat 8 TIRS stray light correction using multi-sensor measurements. Remote Sens. 2018, 10, 589. [Google Scholar] [CrossRef] [Green Version]
- Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Shirani-Bidabadi, N.; Nasrabadi, T.; Faryadi, S.; Larijani, A.; Roodposhti, M.S. Evaluating the spatial distribution and the intensity of urban heat island using remote sensing, case study of Isfahan city in Iran. Sustain. Cities Soc. 2019, 45, 686–692. [Google Scholar] [CrossRef]
- Stochl, J.; Böhnke, J.R.; Pickett, K.E.; Croudace, T.J. An evaluation of computerized adaptive testing for general psychological distress: Combining GHQ-12 and Affectometer-2 in an item bank for public mental health research. Bmc Med Res. Methodol. 2016, 16, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dierendonck, D. The construct validity of Ryff’s Scales of Psychological Well-being and its extension with spiritual well-being. Personal. Individ. Differ. 2004, 36, 629–643. [Google Scholar] [CrossRef]
- Noorbala, A.; Mohammad, K. The validation of general health questionnaire-28 as a psychiatric screening tool. Hakim Res. J. 2009, 11, 47–53. [Google Scholar]
- Cheng, S.-T.; Chan, A.C. Measuring psychological well-being in the Chinese. Personal. Individ. Differ. 2005, 38, 1307–1316. [Google Scholar] [CrossRef]
- Taghavi, M. Evaluate the validity and reliability of public health. J Psych 2001, 20, 81–89. [Google Scholar]
- Ghasemi, E.; Aliha, J.M.; Bastani, F.; Samiei, N.; Haghani, H. General health status in women with coronary artery disease. Koomesh 2013, 14, 474–482. [Google Scholar]
- Yaghoobi, H. Screening for Mental Disorders: The Place of Tests and How to Determine the Score and Credit Score. Ment. Health 2008, 1, 39–51. [Google Scholar]
- Askary-Ashtiani, A.; Ebrahimi-Takamejani, I.; Torkaman, G.; Amiri, M.; Mousavi, S.J. Reliability and validity of the persian versions of the fear avoidance beliefs questionnaire and tampa scale of kinesiophobia in patients with neck pain. Spine 2014, 39, E1095–E1102. [Google Scholar] [CrossRef] [PubMed]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.-H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The influence of small green space type and structure at the street level on urban heat island mitigation. Urban For. Urban Green. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Georgescu, M.; Moustaoui, M.; Mahalov, A.; Dudhia, J. An alternative explanation of the semiarid urban area “oasis effect”. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Lazzarini, M.; Molini, A.; Marpu, P.R.; Ouarda, T.B.; Ghedira, H. Urban climate modifications in hot desert cities: The role of land cover, local climate, and seasonality. Geophys. Res. Lett. 2015, 42, 9980–9989. [Google Scholar] [CrossRef] [Green Version]
- Jagai, J.S.; Grossman, E.; Navon, L.; Sambanis, A.; Dorevitch, S. Hospitalizations for heat-stress illness varies between rural and urban areas: An analysis of Illinois data, 1987–2014. Environ. Health 2017, 16, 38. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.Y.; Lam, H.C.; So, S.H.; Goggins, W.B.; Ho, J.Y.; Liu, S.; Chung, P.P. Association between ambient temperatures and mental disorder hospitalizations in a subtropical city: A time-series study of Hong Kong special administrative region. Int. J. Environ. Res. Public Health 2018, 15, 754. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.P.; Haridah, A.; Nasrin, A.; Sima, A.; Nik, M.N.S. Physical, psychological, and social health impact of temperature rise due to urban heat island phenomenon and its associated factors. Biomed. Environ. Sci. 2018, 31, 545–550. [Google Scholar]
- Dzhambov, A.M.; Markevych, I.; Tilov, B.; Arabadzhiev, Z.; Stoyanov, D.; Gatseva, P.; Dimitrova, D.D. Pathways linking residential noise and air pollution to mental ill-health in young adults. Environ. Res. 2018, 166, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Dzhambov, A.M.; Markevych, I.; Tilov, B.G.; Dimitrova, D.D. Residential greenspace might modify the effect of road traffic noise exposure on general mental health in students. Urban For. Urban Green. 2018, 34, 233–239. [Google Scholar] [CrossRef]
- Gasull, M.; Pallares, N.; Salcedo, N.; Pumarega, J.; Alonso, J.; Porta, M. Self-rated health and chronic conditions are associated with blood concentrations of persistent organic pollutants in the general population of Catalonia, Spain. Environ. Res. 2015, 143, 211–220. [Google Scholar] [CrossRef] [PubMed]
Input Name | Band 10 | Band 11 | Values |
---|---|---|---|
Emissivity | |||
εsoil | 0.971 | 0.977 | |
εvegetation | 0.987 | 0.989 | |
Thermal constant value | |||
K1 | 774.8853 | 480.8883 | |
K2 | 1321.0789 | 1201.1442 | |
Rescaling Factor | |||
RM | 0.0003342 | 0.0003342 | |
RA | 0.1000000 | 0.1000000 | |
SWA constant coefficients | |||
C0 | - | - | −0.268 |
C1 | - | - | 1.378 |
C2 | - | 0.183 | |
C3 | - | - | 54.300 |
C4 | - | - | −2.238 |
C5 | - | - | −129.200 |
C6 | - | - | 16.400 |
Class Name | Class Range |
---|---|
Very cold temperature | |
Cold temperature | |
Moderate temperature | |
Hot temperature | |
Very hot temperature |
Responses | Citizens in UHI | Citizens in UCI | p Value | ||
---|---|---|---|---|---|
Number | Percentage | Number | Percentage | ||
physical health | |||||
Mild | 29 | 7.3 | 32 | 8.1 | 0.102 |
Moderate | 318 | 80.7 | 320 | 80.8 | |
Severe | 47 | 12.0 | 44 | 11.1 | |
Social Function | |||||
Mild | 18 | 4.6 | 20 | 5.1 | 0.007 |
Moderate | 332 | 84.3 | 364 | 91.9 | |
Severe | 44 | 11.2 | 12 | 3 | |
Depression | |||||
Mild | 324 | 81.4 | 366 | 92.4 | 0.002 |
Moderate | 60 | 15.1 | 18 | 4.5 | |
Severe | 14 | 3.5 | 12 | 3 | |
Anxiety and Sleep | |||||
Mild | 216 | 54.3 | 230 | 58.4 | 0.012 |
Moderate | 124 | 32.2 | 142 | 36 | |
Severe | 58 | 14.6 | 22 | 5.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaei, M.; Verrelst, J.; Arbabi, M.; Shaklabadi, Z.; Lotfizadeh, M. Urban Heat Island Monitoring and Impacts on Citizen’s General Health Status in Isfahan Metropolis: A Remote Sensing and Field Survey Approach. Remote Sens. 2020, 12, 1350. https://doi.org/10.3390/rs12081350
Mirzaei M, Verrelst J, Arbabi M, Shaklabadi Z, Lotfizadeh M. Urban Heat Island Monitoring and Impacts on Citizen’s General Health Status in Isfahan Metropolis: A Remote Sensing and Field Survey Approach. Remote Sensing. 2020; 12(8):1350. https://doi.org/10.3390/rs12081350
Chicago/Turabian StyleMirzaei, Mohsen, Jochem Verrelst, Mohsen Arbabi, Zohreh Shaklabadi, and Masoud Lotfizadeh. 2020. "Urban Heat Island Monitoring and Impacts on Citizen’s General Health Status in Isfahan Metropolis: A Remote Sensing and Field Survey Approach" Remote Sensing 12, no. 8: 1350. https://doi.org/10.3390/rs12081350
APA StyleMirzaei, M., Verrelst, J., Arbabi, M., Shaklabadi, Z., & Lotfizadeh, M. (2020). Urban Heat Island Monitoring and Impacts on Citizen’s General Health Status in Isfahan Metropolis: A Remote Sensing and Field Survey Approach. Remote Sensing, 12(8), 1350. https://doi.org/10.3390/rs12081350