Enhanced Estimation of Significant Wave Height with Dual-Polarization Sentinel-1 SAR Imagery
Abstract
:1. Introduction
2. Methodology and Data
2.1. Methodology
2.2. SAR Dataset and Study Area
2.3. Data Pre-Processing
3. Dual-Polarization Enhancement of Wave Spectrum Estimates
3.1. Dual-Polarization Enhancement Processing
3.2. Peak of Dominant Wavelength and Azimuth Cut-off Wavelength
4. Results and Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valenzuela, G.R. Theories for The Interaction of Electromagnetic and Oceanic Waves—A Review. Bound-Lay Meteorol. 1978, 13, 61–85. [Google Scholar] [CrossRef]
- Alpers, W.; Ross, D.D.; Rufenach, C.L. On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res. 1981, 86, 6481–6498. [Google Scholar] [CrossRef]
- Alpers, W. Theory of radar imaging of internal waves. Nature 1985, 314, 245–247. [Google Scholar] [CrossRef]
- Yang, C.-S.; Ouchi, K. Application of Velocity Bunching Model to Estimate Wave Height of Ocean Waves using Multiple Synthetic Aperture Radar Data. J Coast. Res. 2017, 79, 94–98. [Google Scholar] [CrossRef]
- Marghany, M.; Ibrahim, Z.; van Genderen, J.L. Azimuth Cut—Off Model for Significant Wave Height Investigation along Coastal Water of Kuala Terengganu, Malaysia. Int. J. Appl. Earth. Obs. Geoinf. 2002, 4, 147–160. [Google Scholar] [CrossRef]
- Susanto, R.D.; Mitnik, L.; Zheng, Q. Ocean internal waves observed in the Lombok Strait. Oceanography 2005, 18, 80–87. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. 2007, 112, 225–237. [Google Scholar] [CrossRef]
- Shao, W.Z.; Zhang, Z.; Li, X.; Li, H. Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery. Remote Sens. 2016, 8, 707. [Google Scholar] [CrossRef] [Green Version]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.P. A Method for automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Plank, S. Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef] [Green Version]
- Chapron, B.; Johnsen, H.; Garello, R. Wave and wind retrieval from sar images of the ocean. Ann. Télécommun. 2001, 56, 682–699. [Google Scholar]
- Pramudya, F.S.; Pan, J.; Devlin, A.T. Estimation of Significant Wave Height of Near-Range Traveling Ocean Waves Using Sentinel-1 SAR Images. IEEE J. Sel. Top. Appl. Earth. Obs. Remote. Sens. 2019, 12, 1067–1075. [Google Scholar] [CrossRef]
- Hasselmann, K.; Hasselmann, S. On The Nonlinear Mapping of an Ocean Wave Spectrum Into a Synthetic Aperture Radar Image Spectrum. J. Geophys. Res. 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Hasselmann, S.; Bruning, C.; Hasselmann, K. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. J. Geophys. Res. Oceans 1996, 101, 16615–16629. [Google Scholar] [CrossRef]
- WAMDI Group. The WAM Model—A third-generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- Mastenbroek, C.; De Valk, C.F. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. J. Geophys. Res. Oceans 2000, 105, 3497–3516. [Google Scholar] [CrossRef]
- Sun, J.; Guan, C.L. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images. Chin. J. Oceanol. Limn. 2006, 24, 12–20. [Google Scholar]
- Lin, R.; Yang, J.; Mouche, A. Preliminary analysis of Chinese GF-3 SAR Quad-polarization measurements to extract winds in each polarization. Remote Sens. 2017, 9, 1215. [Google Scholar]
- Schulz-Stellenfleth, J.; Konig, T.; Lehner, S. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J. Geophys. Res. 2007, 112, 1–14. [Google Scholar] [CrossRef]
- Li, X.M.; Lehner, S.; Bruns, T. Ocean wave integral parameter measurements using Envisat ASAR wave mode data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Stopa, J.E.; Mouche, A. Significant wave heights from Sentinel-1: Validation and applications. J. Geophys. Res. Oceans 2017, 122, 1827–1848. [Google Scholar] [CrossRef] [Green Version]
- Kerbaol, V.; Chapron, B.; Vachon, P.W. Analysis of ERS-1/2 Synthetic Aperture Radar Wave Mode Imagettes. J. Geophys. Res. 1998, 115, 7833–7846. [Google Scholar] [CrossRef]
- Stopa, J.E.; Ardhuin, F.; Chapron, B. Estimating wave orbital velocity through the azimuth cut-off from spaceborne satellites. J. Geophys. Res. Oceans. 2015, 120, 7616–7634. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhu, J.; Yang, J.; Shi, C. A semi-empirical algorithm for SAR wave height retrieval and its validation using Envisat ASAR wave mode data. Acta Oceanol. Sin. 2012, 31, 59–66. [Google Scholar]
- Hua, F.; Fan, B.; Lu, Y.; Wang, J. An empirical relation between sea wave spectrum peak period and zero-crossing period. Adv. Mar. Sci. 2004, 22, 16–22. [Google Scholar]
- Sun, J.; Kawamura, H. Surface wave parameters retrieval in coastal seas from spaceborne SAR image mode data. Prog. Electromagn. Res. 2008, 4, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Yang, J.S.; Zheng, G.; Wang, J. Significant wave height estimation using azimuth cut-off of C-band RADARSAT-2 single-polarization SAR images. Acta Oceanol. Sin. 2015, 12, 1–9. [Google Scholar] [CrossRef]
- Grieco, G.; Nirchio, F.; Migliaccio, M.; Portabella, M. Dependency of The Sentinel-1 Azimuth Wavelength Cut-Off on Significant Wave Height and Wind Speed. Int. J. Remote Sens. 2016, 37, 5086–5104. [Google Scholar] [CrossRef]
- Li, J.; Holt, M. Comparison of Envisat ASAR Ocean Wave Spectra with Buoy and Altimeter Data via a Wave Model. J. Atmos. Oceanic Technol. 2009, 26, 593–614. [Google Scholar] [CrossRef]
- Sheng, Y.; Shao, W.; Zhu, S.; Jian, S.; Xinzhe, Y.; Shuiqing, L.; Jian, S.; Juncheng, Z. Significant Wave Height Retrieval from Co-Polarization Chinese Gaofen-3 SAR Imagery Using an Improved Algorithm. Acta Oceanol. Sin. 2018, 37, 1–10. [Google Scholar] [CrossRef]
- Shao, W.Z.; Sheng, Y.X.; Sun, J. Preliminary assessment of wind and wave retrieval from Chinese Gaofen-3 SAR imagery. Sensors 2017, 17, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.S.; Ren, L.; Wang, J. The first quantitative remote sensing of ocean surface waves by Chinese GF-3 SAR satellite. Oceanol. Limnol. Sin. 2017, 48, 207–209. [Google Scholar]
- European Space Agency. Sentinel-1 Acquisition Modes. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-instrument/acquisition-modes (accessed on 9 October 2020).
- Valenzuela, G.R. Depolarization of E.M. Waves by Slightly Rough Surfaces. IEEE Trans. Antennas Propag. 1967, AP-15, 552–557. [Google Scholar] [CrossRef]
- Hauser, D.; Kahma, K.K.; Krogstad, H.E. Measuring and Analyzing the Directional Spectra of Ocean Waves; E.U. Publications Office: Luxembourg, 2003; pp. 15–54. [Google Scholar]
- Lee, J.S.; Wen, J.H.; Ainsworth, T. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar]
- Mouche, A.; Chapron, B. Global C-Band Envisat, RADARSAT-2 and Sentinel-1 SAR Measurements in Copolarization and Cross-Polarization. J. Geophys. Res. 2015, 120, 7195. [Google Scholar] [CrossRef] [Green Version]
- Kudryavtsev, V.N.; Chapron, B.; Myasoedov, A.G.; Collard, F.; Johannessen, J.A. On Dual Co-Polarized SAR Measurements of the Ocean Surface. IEEE Geosci. Remote Sens. Lett. 2013, 10, 761–765. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N.; Fan, S.; Zhang, B.; Mouche, A.A.; Chapron, B. On Quad-Polarized SAR Measurements of the Ocean Surface. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8362–8370. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Vachon, P.W.; Li, X.; Pichel, W.G.; Guo, J.; He, Y. Ocean vector winds retrieval from C-band fully polarimetric SAR measurements. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4252–4261. [Google Scholar] [CrossRef] [Green Version]
- Voronovich, A.; Zavorotny, V. Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface. IEEE Trans. Antennas Propag. 2014, 62, 1362–1371. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Recent progress on high wind-speed retrieval from multi-polarization SAR imagery: A review. Int. J. Remote Sens. 2014, 35, 4031–4045. [Google Scholar] [CrossRef]
- Xie, T.; Perrie, W.; Zhang, G.; Yang, J.; He, Y. Comparison of C-Band Quad-Polarization Synthetic Aperture Radar Wind Retrieval Models. Remote Sens. 2018, 10, 1448. [Google Scholar]
- Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A. Future ocean scatterometry: On the use of cross-polar scattering to observe very high winds. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2601–2612. [Google Scholar] [CrossRef]
- Corcione, V.; Nunziata, F.; Migliaccio, M. Megi Typhoon Monitoring by X-Band Synthetic Aperture Radar Measurements. IEEE J. Ocean. Eng. 2018, 43, 184–194. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Perrie, W.; Hwang, P.A.; Zhang, B.; Yang, X. A Hurricane Wind Speed Retrieval Model for C-Band RADARSAT-2 Cross-Polarization ScanSAR Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4766–4774. [Google Scholar] [CrossRef]
- Corcione, V.; Grieco, G.; Nunziata, F.; Migliaccio, M. A New Azimuth Cut-Off Procedure to Retrieve Significant Wave Height Under High Wind Regimes. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018; pp. 6057–6059. [Google Scholar]
- Nunziata, F.; Gambardella, A.; Migliaccio, M. An educational SAR sea surface waves simulator. Int. J. Remote Sens. 2008, 29, 3051–3066. [Google Scholar] [CrossRef]
- Beal, R.C.; Tilley, D.G.; Monaldo, F.M. Large and Small Scale Spatial Evolution of Digitally Processed Ocean Wave Spectra from Seasat Synthetic Aperture Radar. J. Geophys. Res. 1983, 88, 1761–1778. [Google Scholar] [CrossRef]
- Goldfinger, A.D. Estimation of Spectra from Speckled Images. IEEE Trans. Aerosp. Electron. Syst. 1982, AES-18, 675–681. [Google Scholar] [CrossRef]
- Hemer, M.; Church, J.; Hunter, J. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 2009, 30, 475–491. [Google Scholar] [CrossRef]
- Arinaga, R.A.; Cheung, K.F. Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renew. Energy 2012, 39, 49–64. [Google Scholar] [CrossRef]
- Bromirski, P.D.; Cayan, D.R.; Flick, R.E. Wave spectral energy variability in the northeast Pacific. J. Geophys. Res. Space Phys. 2005, 110, 110. [Google Scholar] [CrossRef] [Green Version]
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, I.R.; Donelan, M.A. On the determination of global ocean wind and wave climate from satellite observations. Remote Sens. Environ. 2018, 215, 228–241. [Google Scholar] [CrossRef]
Station ID | Location | Water Depth | Wave Type | U10 (m s−1) | ||
---|---|---|---|---|---|---|
Wind | Swell | ≤10 | >10 | |||
51000 | 23°32′17″N 153°48′29″W | 4845 | 17 | 15 | 38 | 3 |
51002 | 24°25′0″N 162°6′0″W | 4865 | 29 | 17 | 47 | 1 |
51003 | 19°17′20″N 160°34′10″W | 4920 | 20 | 25 | 44 | 4 |
46069 | 33°40′28″N 120°12′42″W | 986 | 15 | 3 | 16 | 6 |
46054 | 34°15′53″N 120°28′37″W | 469.4 | 15 | 2 | 12 | 10 |
46053 | 34°15′9″N 119°51′12″W | 426.7 | 13 | 2 | 17 | 1 |
46025 | 33°45′38″N 119°2′56″W | 888 | 5 | 20 | 25 | 0 |
46262 | 33°42′14″N 119°0′14″W | 905 | 6 | 6 | ||
46251 | 33°45′38″N 119°33′34″W | 1920 | 22 | 22 | ||
46219 | 33°13′29″N 119°52′54″W | 274.3 | 36 | 36 | ||
46218 | 34°27′16″N 120°46′59″W | 548.6 | 20 | 20 | ||
Total | 282 |
Buoy ID | Pol. | Date/Time (UTC) | U10 (ms−1) | Buoy Hs (m) | λp (m) | λco (m) | Ψ (°) | Est. Hs (m) | |ΔHs| (m) |
---|---|---|---|---|---|---|---|---|---|
51000 | VV | 27 March 2017 16:23 | 6.6 | 3.72 | 382.9 | 105.75 | 68.7 | 3.48 | 0.24 |
51000 | VV + VH | 27 March 2017 16:23 | 6.6 | 3.72 | 382.9 | 109.50 | 68.7 | 3.61 | 0.11 |
46054 | VV | 26 April 2017 14:00 | 12.7 | 2.38 | 190.1 | 116.99 | 59.7 | 2.72 | 0.34 |
46054 | VV + VH | 26 April 2017 14:00 | 12.7 | 2.38 | 159.5 | 120.96 | 67.5 | 2.61 | 0.23 |
Polarization | Attribute | MAE (m) | SDE (m) | RMSE (m) | r2 | N (Image No.) |
VV | U10 < 4 ms−1 | 0.74 | 0.56 | 0.70 | 0.38 | 136 |
U10 > 10 ms−1 | 0.69 | 0.44 | 0.72 | 0.39 | 28 | |
Coastal | 0.65 | 0.45 | 0.75 | 0.54 | 159 | |
Deep-water | 0.45 | 0.39 | 0.59 | 0.49 | 123 | |
Total | 0.56 | 0.44 | 0.69 | 0.55 | 282 | |
VV + VH | U10 < 4 ms−1 | 0.50 | 0.36 | 0.65 | 0.59 | 136 |
U10 > 10 ms−1 | 0.46 | 0.29 | 0.55 | 0.67 | 28 | |
Coastal | 0.49 | 0.32 | 0.56 | 0.76 | 159 | |
Deep-water | 0.33 | 0.26 | 0.43 | 0.65 | 123 | |
Total | 0.41 | 0.31 | 0.52 | 0.73 | 282 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramudya, F.S.; Pan, J.; Devlin, A.T.; Lin, H. Enhanced Estimation of Significant Wave Height with Dual-Polarization Sentinel-1 SAR Imagery. Remote Sens. 2021, 13, 124. https://doi.org/10.3390/rs13010124
Pramudya FS, Pan J, Devlin AT, Lin H. Enhanced Estimation of Significant Wave Height with Dual-Polarization Sentinel-1 SAR Imagery. Remote Sensing. 2021; 13(1):124. https://doi.org/10.3390/rs13010124
Chicago/Turabian StylePramudya, Fabian Surya, Jiayi Pan, Adam Thomas Devlin, and Hui Lin. 2021. "Enhanced Estimation of Significant Wave Height with Dual-Polarization Sentinel-1 SAR Imagery" Remote Sensing 13, no. 1: 124. https://doi.org/10.3390/rs13010124
APA StylePramudya, F. S., Pan, J., Devlin, A. T., & Lin, H. (2021). Enhanced Estimation of Significant Wave Height with Dual-Polarization Sentinel-1 SAR Imagery. Remote Sensing, 13(1), 124. https://doi.org/10.3390/rs13010124