Salt Marsh Elevation Limit Determined after Subsidence from Hydrologic Change and Hydrocarbon Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Hydrocarbon Extraction
2.3. LIDAR Measurements
2.4. Mid-Transect Open Water
2.5. Subsidence and Hydrocarbon Production
2.6. Channel Width
3. Results
3.1. Elevation and Canal Widening
3.2. Subsidence and Hydrocarbon Production
3.3. Mid-Transect Open Water and Elevation
4. Discussion
4.1. Subsidence
4.2. Dredged Waterways Erode with Time
4.3. SLR Limits to Salt Marsh Habitat Space
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murria, J. Subsidence due to oil production in western Venezuela: Engineering problems and solutions. In Land Subsidence. Proceedings of the Fourth International Symposium on Land Subsidence; IAHS Publ.: Wallingford, UK, 1991; pp. 129–139. [Google Scholar]
- Ohimain, E.I. Environmental impacts of oil mining activities in the Niger Delta mangrove ecosystem. In Proceedings of the 8th International Congress on Mine Water & the Environment, Johannesburg, South Africa, 19–22 October 2003; pp. 503–517. [Google Scholar]
- Couvillion, B.R.; Beck, H.; Schoolmaster, D.; Fischer, M. Land Area Change in Coastal Louisiana (1932 to 2016); Pamphlet to Accompany Scientific Investigations Map 3381; U.S. Geological Survey: Reston, VA, USA, 2017.
- Fielding, E.J.; Blom, R.G.; Goldstein, R.M. Rapid subsidence over oil fields measured by SAR interferometry. Geophys. Res. Lett. 1998, 25, 3215–3218. [Google Scholar] [CrossRef]
- Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J.P.M. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 2013, 40, 3898–3902. [Google Scholar] [CrossRef]
- Xu, H.; Dvorkin, J.; Nur, A. Linking oil production to surface subsidence from satellite. Geophys. Res. Lett. 2001, 28, 1307–1310. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Q.; Zhao, C.; Yang, C.; Qif, Y.; Weiran, S.; Chen, W. Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sens. Environ. 2016, 188, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Mallman, E.P.; Zoback, M.D. Subsidence in the Louisiana coastal zone due to hydrocarbon production. J. Coastal Res. SI 2007, 50, 443–448. [Google Scholar]
- Chang, C.; Mallman, E.; Zoback, M. Time-dependent subsidence associated with drainage induced compaction in Gulf of Mexico shales bounding a severely depleted gas reservoir. Am. Assoc. Petrol. Geol. Bull. 2014, 98, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.W.; Zoback, M.D. Role of hydrocarbon production on land subsidence and fault reactivation in the Louisiana coastal zone. J. Coast. Res. 2007, 23, 771–786. [Google Scholar] [CrossRef]
- Hettema, M.; Papamichos, E.; Schutjens, P. Subsidence delay: Field observations and analysis. Oil Gas Sci. Tech. Rev. IFP 2002, 57, 443–458. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatin, P.; Ferronato, M. Anthropogenic land subsidence. In Encyclopedia of Hydrological Sciences; Anderson, M.G., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2005; Volume 158. [Google Scholar]
- Boesch, D.F.; Josselyn, M.N.; Mehta, A.J.; Morris, J.T.; Nuttle, W.K.; Simenstad, C.A.; Swift, J.P. Scientific assessment of coastal wetland loss restoration and management in Louisiana. J. Coast. Res. SI 1994, 20, 103. [Google Scholar]
- Coleman, J.M.; Roberts, H.H. Deltaic coastal wetlands. Geologie en Mijnbouw 1989, 68, 1–24. [Google Scholar]
- Morton, R.A.; Buster, N.A.; Drohn, M.D. Subsurface controls on historical subsidence rates and associated wetland loss in southcentral Louisiana. Trans. Gulf Coast Assoc. Geol. Soc. 2002, 52, 767–778. [Google Scholar]
- Morton, R.A.; Bernier, J.C.; Barras, J.A.; Ferina, N.F. Rapid subsidence and historical wetland loss in the Mississippi Delta Plain: Likely causes and future implications. In USGS Open File Report 2005-1216; USGS: Reston, VA, USA, 2005. [Google Scholar]
- Morton, R.A.; Bernier, J.C.; Barras, J.A.; Ferina, N.F. Historical subsidence and wetland loss in the Mississippi delta plain. Trans. Gulf Coast Assoc. Geol. Soc. 2006, 55, 555–571. [Google Scholar]
- Morton, R.A.; Bernier, J.C.; Barras, J.A. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ. Geol. 2006, 50, 261–274. [Google Scholar] [CrossRef]
- Morton, R.A.; Bernier, J.C.; Kelso, K.W.; Barras, J.A. Quantifying large-scale historical formation of accommodation in the Mississippi Delta. Earth Surf. Process Landf. 2010, 35, 1625–1641. [Google Scholar] [CrossRef]
- Turner, R.E.; McClenachan, G. Reversing wetland death from 35,000 cuts: Opportunities to restore Louisiana’s dredged canals. PLoS ONE 2018, 13, e0207717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swenson, E.M.; Turner, R.E. Spoil banks: Effects on a coastal marsh water level regime. Estuar. Coastal Shelf Sci. 1987, 24, 599–609. [Google Scholar] [CrossRef]
- Turner, R.E. Coastal wetland subsidence arising from local hydrologic manipulations. Estuaries 2004, 27, 265–273. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 2012, 100, 764–770. [Google Scholar] [CrossRef]
- Mendelssohn, I.A.; McKee, K.L.; Patrick, W.H., Jr. Oxygen deficiency in Spartina alterniflora roots: Metabolic adaptation to anoxia. Science 1981, 214, 439–441. [Google Scholar] [CrossRef]
- Turner, R.E.; Swenson, E.M.; Milan, C.S. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In Concepts and Controversies in Tidal Marsh Ecology; Weinstein, M., Kreeger, D.A., Eds.; Kluwer Academic Publishing: Dordrecht, The Netherlands, 2000; pp. 583–595. [Google Scholar]
- Turner, R.E.; Swenson, E.M.; Lee, J.M. A rationale for coastal wetland restoration through spoil bank management in Louisiana. Environ. Manag. 1994, 18, 271–282. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Osland, M.J.; Griffith, K.T.; Larriviere, J.C.; Feher, L.C.; Cahoon, D.R.; Enwright, N.M.; Oster, D.A.; Tirpak, J.M.; Woodrey, M.S.; Collini, R.C.; et al. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network. PLoS ONE 2017, 12, e0183431. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.E. Of manatees, mangroves, and the Mississippi River: Is there an estuarine signature for the Gulf of Mexico? Estuaries 2001, 24, 139–150. [Google Scholar] [CrossRef]
- O’Neill, T. The Muskrat in the Louisiana Coastal Marshes: A Study of the Ecological, Geological, Biological, Tidal, and Climatic Factors Governing the Production and Management of the Muskrat Industry in Louisiana; Louisiana Department of WildLife and Fisheries: New Orleans, LA, USA, 1949. [Google Scholar]
- Stoker, J.; Parrish, J.; Gisclair, D.; Harding, D.; Haugerud, R.; Flood, M.; Andersen, K.S.; Schuckman, K.; Maune, D.; Rooney, P.; et al. Report of the First National Lidar Initiative Meeting, Reston, VA, USA, 14–16 February 2007; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2007.
- Cunningham, R.; Gisclair, D.; Craig, J. The Louisiana Statewide Lidar Project; Louisiana State University: Baton Rouge, LA, USA, 2004. [Google Scholar]
- Alizad, K.; Medeiros, S.C.; Foster-Martinez, M.R.; Hagen, S.C. Model sensitivity to topographic uncertainty in meso-and microtidal marshes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 807–814. [Google Scholar] [CrossRef]
- Stagg, C.L.; Osland, M.J.; Moon, J.A.; Hall, C.T.; Feher, L.C.; Jones, W.R.; Couvillion, B.R.; Hartley, S.B.; Vervaeke, W.C. Quantifying hydrologic controls on local- and landscape-scale indicators of coastal wetland loss. Annal. Bot. 2019, 125, 365–376. [Google Scholar] [CrossRef]
- Monte, J.A. The Impact of Petroleum Dredging on Louisiana’s Coastal Landscape: A Plant Biogeographical Analysis and Resource Assessment of Spoil. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 1978. [Google Scholar]
- Kirwan, M.L.; Guntenspergen, G.R.; D’Alpaos, A.; Morris, J.T.; Mudd, S.M.; Temmerman, S. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 2010, 37, L23401. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Wu, W. Accounting for spatial patterns in deriving sea-level rise thresholds for salt marsh stability: More than just total areas? Ecol. Indic. 2019, 103, 260–271. [Google Scholar] [CrossRef]
- Turner, R.E.; Swenson, E.M. The life and death and consequences of canals and spoil banks in salt marshes. Wetlands 2020. [Google Scholar] [CrossRef]
- Turner, R.E.; Rao, Y.S. Relationships between wetland fragmentation and recent hydrologic changes in a deltaic coast. Estuaries 1990, 13, 272–281. [Google Scholar] [CrossRef]
- Kolb, C.R.; Van Lopik, J.R. Deltaic environments of the Mississippi deltaic plain: Southeastern Louisiana. In Deltas in Their Geologic Framework; Shirley, M.L., Ragsdale, J.A., Eds.; Houston Geological Society: Houston, TX, USA, 1966; pp. 17–61. [Google Scholar]
- Mckee, K.L.; Patrick, W.H., Jr. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review. Estuaries 1998, 11, 143–151. [Google Scholar] [CrossRef]
- Turner, R.E.; Kearney, M.S.; Parkinson, R.W. Sea level rise tipping point of delta survival. J. Coast. Res. 2018, 34, 470–474. [Google Scholar] [CrossRef] [Green Version]
- Horton, B.P.; Shennan, I.; Bradley, S.L.; Cahill, N.; Kirwan, M.; Kopp, R.E.; Shaw, T.A. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nat. Comm. 2018, 9, 2687. [Google Scholar] [CrossRef] [PubMed]
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and Regional Sea Level Rise Scenarios for the United States; NOAA Technical Report NOS CO-OPS 083; NOAA: Washington, DC, USA, 2017. [Google Scholar]
- CPRA (Coastal Protection and Restoration Authority). Louisiana’s Comprehensive Master Plan for a Sustainable Coast 2017. 2017. Available online: http://coastal.la.gov/our-plan/2017-coastal-master-plan/ (accessed on 1 July 2017).
- Brown, G.L.; McAlpin, J.N.; Pevey, K.C.; Luong, P.V.; Price, C.R.; Kleiss, B.A. Mississippi River Hydrodynamic and Delta Management Study: Delta Management Modeling. In AdH/SEDLIB Multi-Dimensional Model Validation and Scenario Analysis Report; USAReport ERDC/CHL TR-19-2; U.S. Army Engineer Research and Development Center (ERDC): Vicksburg, MS, USA, 2019; Available online: https://hdl.handle.net/11681/32446 (accessed on 25 April 2019).
- Kearney, M.S.; Turner, R.E. Microtidal marshes: Can these widespread marshes made fragile by low tidal range survive increasing climate-sea level variability and human action? J. Coast. Res. 2016, 32, 686–699. [Google Scholar] [CrossRef]
- Morris, J.T.; Edwards, J.E.; Crooks, S.; Reyes, E. Assessment of carbon sequestration potential in coastal wetlands. In Recarbonization of the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J., Eds.; Springer: Dortrecht, The Netherlands, 2012; pp. 517–531. [Google Scholar]
- Kesel, R.H. The role of the Mississippi River in wetland loss in Southeastern Louisiana, U.S.A. Environ. Geol. Water Sci. 1989, 13, 183–193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, R.E.; Mo, Y. Salt Marsh Elevation Limit Determined after Subsidence from Hydrologic Change and Hydrocarbon Extraction. Remote Sens. 2021, 13, 49. https://doi.org/10.3390/rs13010049
Turner RE, Mo Y. Salt Marsh Elevation Limit Determined after Subsidence from Hydrologic Change and Hydrocarbon Extraction. Remote Sensing. 2021; 13(1):49. https://doi.org/10.3390/rs13010049
Chicago/Turabian StyleTurner, R. Eugene, and Yu Mo. 2021. "Salt Marsh Elevation Limit Determined after Subsidence from Hydrologic Change and Hydrocarbon Extraction" Remote Sensing 13, no. 1: 49. https://doi.org/10.3390/rs13010049
APA StyleTurner, R. E., & Mo, Y. (2021). Salt Marsh Elevation Limit Determined after Subsidence from Hydrologic Change and Hydrocarbon Extraction. Remote Sensing, 13(1), 49. https://doi.org/10.3390/rs13010049