Response of Multi-Incidence Angle Polarimetric RADARSAT-2 Data to Herbaceous Vegetation Features in the Lower Paraná River Floodplain, Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Scene Acquisition and Processing
2.4. Single Polarization and Phase Difference Analyses
2.5. Effects of Vegetation Features on Backscattering Coefficients
3. Results
3.1. Multivariate Models on the Effect of Vegetation Features
3.2. Phase Difference Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junk, W.J.; An, S.; Finlayson, C.M.; Gopal, B.; Květ, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 2013, 75, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Neiff, J.J.; Malvárez, A.I. Grandes Humedales Fluviales. In Documentos del Curso-Taller Bases Ecológicas Para la Clasificación e Inventario de Humedales en Argentina; Malvárez, A.I., Bó, R.F., Eds.; Ana Inés Malvárez editora: Buenos Aires, Argentina, 2004; pp. 77–85. [Google Scholar]
- Kandus, P.; Minotti, P.G.; Morandeira, N.S.; Grimson, R.; González Trilla, G.; González, E.B.; San Martin, L.; Gayol, M.P. Remote sensing of wetlands in South America: Status and challenges. Int. J. Remote. Sens. 2017, 39, 993–1016. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Neiff, J.J.; Malvárez, A.I. El Régimen de Pulsos en Ríos y Grandes Humedales de Sudamérica. In Tópicos sobre Humedales Subtropicales y Templados de Sudamérica; Malvárez, A.I., Ed.; UNESCO: Montevideo, Uruguay, 1999; pp. 99–150. [Google Scholar]
- Silva, T.S.F.; Costa, M.P.F.; Melack, J.M.; Novo, E.M.L.M. Remote sensing of aquatic vegetation: Theory and applications. Environ. Monit. Assess. 2008, 140, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Jakubauskas, M.; Kindscher, K.; Fraser, A.; Debinski, D.; Price, K.P. Close-range remote sensing of aquatic macrophyte vegetation cover. Int. J. Remote. Sens. 2000, 21, 3533–3538. [Google Scholar] [CrossRef] [Green Version]
- Brisco, B. Mapping and Monitoring Surface Water and Wetlands with Synthethic Aperture Radar. In Remote Sensing of Wetlands: Applications and Advances; Tiner, R.W., Lang, M.W., Klemas, V.V., Eds.; CRC Press: Boka Raton, FL, USA, 2015; p. 119. [Google Scholar]
- Henderson, F.M.; Lewis, A.J. Radar detection of wetland ecosystems: A review. Int. J. Remote. Sens. 2008, 29, 5809–5835. [Google Scholar] [CrossRef]
- Van Zyl, J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. Geosci. Remote. Sens. 1989, 27, 36–45. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications—A review. Remote. Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Wang, Y.; Hess, L.L.; Filoso, S.; Melack, J.M. Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling. Remote. Sens. Environ. 1995, 54, 324–332. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Novo, E.M.; Barbosa, C.C.; Gastil, M. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote. Sens. Environ. 2003, 87, 404–428. [Google Scholar] [CrossRef]
- Ahern, F.; Brisco, B.; Murnaghan, K.; Lancaster, P.; Atwood, D.K. Insights into Polarimetric Processing for Wetlands from Backscatter Modeling and Multi-Incidence Radarsat-2 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 11, 3040–3050. [Google Scholar] [CrossRef]
- Grings, F.; Ferrazzoli, P.; Karszenbaum, H.; Tiffenberg, J.; Kandus, P.; Guerriero, L.; Jacobo-Berrles, J. Modeling temporal evolution of junco marshes radar signatures. IEEE Trans. Geosci. Remote. Sens. 2005, 43, 2238–2245. [Google Scholar] [CrossRef]
- Grings, F.; Ferrazzoli, P.; Jacobo-Berlles, J.; Karszenbaum, H.; Tiffenberg, J.; Pratolongo, P.; Kandus, P. Monitoring flood condition in marshes using EM models and Envisat ASAR observations. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 936–942. [Google Scholar] [CrossRef]
- Ahern, F.; Brisco, B.; Battaglia, M.; Atwood, D.; Bourgeau-Chavez, L.L.; Murnaghan, K. Understanding polarimetric SAR backscatter from wetlands through cylinder modelling. Remote Sens. Under Review.
- Skriver, H.; Svendsen, M.; Thomsen, A. Multitemporal C- and L-band polarimetric signatures of crops. IEEE Trans. Geosci. Remote. Sens. 1999, 37, 2413–2429. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Davidson, M.W.J. Dense Temporal Series of C- and L-band SAR Data for Soil Moisture Retrieval Over Agricultural Crops. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2011, 4, 439–450. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; The University of Michigan Press: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Ulaby, F.T.; Held, D.; Donson, M.C.; McDonald, K.C.; Senior, T.B.A. Relating Polaization Phase Difference of SAR Signals to Scene Properties. IEEE Trans. Geosci. Remote. Sens. 1987, GE-25, 83–92. [Google Scholar] [CrossRef]
- Brisco, B.; Ahern, F.; Hong, S.-H.; Wdowinski, S.; Murnaghan, K.; White, L.; Atwood, D.K. Polarimetric Decompositions of Temperate Wetlands at C-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 3585–3594. [Google Scholar] [CrossRef]
- Hong, S.-H.; Wdowinski, S. Double-Bounce Component in Cross-Polarimetric SAR From a New Scattering Target Decomposition. IEEE Trans. Geosci. Remote. Sens. 2014, 52, 3039–3051. [Google Scholar] [CrossRef]
- Atwood, D.K.; Matthiss, B.; Jenkings, L.K.; Wdowinski, S.; Hong, S.-H. Wave propagation model for coherent scattering from a randomly distributed target. In Proceedings of the 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 28 January–1 February 2013; pp. 1–7. [Google Scholar]
- Thirion-Lefevre, L.; Guinvarc’H, R. The double Brewster angle effect. Comptes Rendus Phys. 2018, 19, 43–53. [Google Scholar] [CrossRef]
- Atwood, D.; Battaglia, M.; Bourgeau-Chavez, L.; Ahern, F.; Murnaghan, K.; Brisco, B. Exploring Polarimetric Phase of Microwave Backscatter from Typha Wetlands. Can. J. Remote. Sens. 2020, 46, 49–66. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing with Imaging Radar; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Freeman, A.; Durden, S. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. A Four-Component Decomposition of POLSAR Images Based on the Coherency Matrix. IEEE Geosci. Remote. Sens. Lett. 2006, 3, 292–296. [Google Scholar] [CrossRef]
- Atwood, D.K.; Thirion-Lefevre, L. Polarimetric Phase and Implications for Urban Classification. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 1278–1289. [Google Scholar] [CrossRef]
- Morandeira, N.S.; Grings, F.; Facchinetti, C.; Kandus, P. Mapping Plant Functional Types in Floodplain Wetlands: An Analysis of C-Band Polarimetric SAR Data from RADARSAT-2. Remote. Sens. 2016, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Grimson, R.; Morandeira, N.S.; Gayol, M.P.; Kandus, P. Freshwater marsh classification in the Lower Paraná River floodplain: An object-based approach on multitemporal X-band COSMO-SkyMed data. J. Appl. Remote. Sens. 2019, 13, 014531. [Google Scholar] [CrossRef]
- Morandeira, N.S.; Kandus, P. Multi-scale analysis of environmental constraints on macrophyte distribution, floristic groups and plant diversity in the Lower Paraná River floodplain. Aquat. Bot. 2015, 123, 13–25. [Google Scholar] [CrossRef]
- Enrique, C. Relevamiento y Caracterización Florística y Espectral de los Bosques de la Región del Delta del Paraná a Partir de Imágenes Satelitales. Bachelor’s Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, 2009. [Google Scholar]
- Borro, M.M.; Morandeira, N.S.; Salvia, M.M.; Minotti, P.G.; Perna, P.; Kandus, P. Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data. J. Hydrol. 2014, 512, 39–52. [Google Scholar] [CrossRef]
- Morandeira, N.S.; Kandus, P. Do taxonomic, phylogenetic and functional plant α- and β-diversity reflect environmental patterns in the Lower Paraná River floodplain? Plant Ecol. Divers. 2017, 10, 153–165. [Google Scholar] [CrossRef]
- Baigún, C.R.M.M.; Puig, A.; Minotti, P.G.; Kandus, P.; Quintana, R.D.; Vicari, R.L.; Bó, R.F.; Oldani, N.O.; Nestler, J.A. Resource use in the Parana River Delta (Argentina): Moving away from an ecohydrological approach? Ecohydrol. Hydrobiol. 2008, 8, 245–262. [Google Scholar] [CrossRef]
- Gurini, L.; Basilio, A.M. Flora apícola en el Delta del Paraná. Darwiniana 1995, 33, 337–346. [Google Scholar]
- McCarthy, B.C.; Magurran, A.E. Measuring Biological Diversity; Blackwell Science: Malden, MA, USA, 2004. [Google Scholar]
- Sartori, L.R.; Imai, N.; Mura, J.C.; Novo, E.M.L.D.M.; Silva, T. Mapping Macrophyte Species in the Amazon Floodplain Wetlands Using Fully Polarimetric ALOS/PALSAR Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4717–4728. [Google Scholar] [CrossRef]
- Caves, R.; Williams, D. Geolocation of RADARSAT-2 georeferenced products. RADARSAT-2. Appl. Tech. Note 2015, RN-TN-53-0, 1–25. [Google Scholar]
- European Space Agency. PolSARpro. V. 5.0. Available online: http://earth.eo.esa.int/polsarpro/ (accessed on 23 April 2019).
- European Space Agency. SNAP-ESA Sentinel Application Platform v8. Available online: http://step.esa.int (accessed on 23 April 2019).
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- López-Martínez, C.; Fabregas, X. Polarimetric sar speckle noise model. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2232–2242. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, L. All of Statistics: A Concise Course in Statistical Inference; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 9780387217369. [Google Scholar]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org/ (accessed on 22 May 2020).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. 2020. Available online: https://cran.r-project.org/web/packages/dplyr/index.html (accessed on 22 May 2020).
- Wickham, H.; Henry, L. Tidyr: Tidy Messy Data. 2020. Available online: https://cran.r-project.org/web/packages/tidyr/index.html (accessed on 22 May 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Canty, A.; Ripley, B.D. Boot: Bootstrap R (S-Plus) Functions. 2020. Available online: https://cran.r-project.org/web/packages/boot/index.html (accessed on 22 May 2020).
- Marti-Cardona, B.; López-Martínez, C.; Dolz-Ripolles, J.; Bladè-Castellet, E. ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring. Remote Sens. Environ. 2010, 114, 2802–2815. [Google Scholar] [CrossRef]
- Morandeira, N.S.; Kandus, P. Plant functional types and trait values in the Paraná River floodplain: Modelling their association with environmental features. Flora Morphol. Distrib. Funct. Ecol. Plants 2016, 220, 63–73. [Google Scholar] [CrossRef]
- Adeli, S.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Brisco, B.; Tamiminia, H.; Shaw, S. Wetland Monitoring Using SAR Data: A Meta-Analysis and Comprehensive Review. Remote Sens. 2020, 12, 2190. [Google Scholar] [CrossRef]
- Dabboor, M.; Brisco, B. Wetland Monitoring and Mapping Using Synthetic Aperture Radar. In Wetlands Management-Assessing Risk and Sustainable Solutions; Gokce, D., Ed.; IntechOpen: London, UK, 2020; pp. 61–86. [Google Scholar]
- Kandus, P.; Karszenbaum, H.; Pultz, T.; Parmuchi, G.; Bava, J. Influence of Flood Conditions and Vegetation Status on the Radar Backscatter of Wetland Ecosystems. Can. J. Remote. Sens. 2001, 27, 651–662. [Google Scholar] [CrossRef]
- Novo, E.D.M.; Costa, M.D.F.; Mantovani, J. RADARSAT Exploratory Survey on Macrophyte Biophysical Parameters in Tropical Reservoirs. Can. J. Remote. Sens. 1998, 24, 367–375. [Google Scholar] [CrossRef]
- Karszenbaum, H.; Kandus, P.; Martinez, J.M.; Le Toan, T.; Tiffenberg, J.; Parmuchi, G. ERS-2, RADARSAT SAR backscattering characteristics of the Paraná River Delta wetland, Argentina. In Proceedings of the ERS-ENVISAT Symposium. Looking down to Earth in the New Millennium, Gothenburg, Sweden, 16–20 October 2000; pp. 1–10. [Google Scholar]
- Ramsey, E., III. Radar remote sensing of wetlands. In Remote Sensing Change Detection: Environmental Monitoring Methods and Applications; Lunetta, R., Elviidge, C., Eds.; Ann Harbor Press: Chelsea, MA, USA, 1998; pp. 211–243. [Google Scholar]
- Thirion-Lefevre, L.; Guinvarc’H, R.; Colin-Koeniguer, E. Comparative Analysis of the Relative Polarimetric Radar Signature of Vegetation and Cities Districts. In Proceedings of the International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5221–5223. [Google Scholar]
- Matzler, C. Microwave (1–100 GHz) dielectric model of leaves. IEEE Trans. Geosci. Remote. Sens. 1994, 32, 947–949. [Google Scholar] [CrossRef]
- Salvia, M.; Franco, M.; Grings, F.; Perna, P.; Martino, R.; Karszenbaum, H.; Ferrazzoli, P. Estimating Flow Resistance of Wetlands Using SAR Images and Interaction Models. Remote. Sens. 2009, 1, 992–1008. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Santos, M.J.; Boyer, J.D.; Shapiro, K.D.; Bellvert, J.; Ustin, S.L. Water primrose invasion changes successional pathways in an estuarine ecosystem. Ecosphere 2018, 9, 1–18. [Google Scholar] [CrossRef]
- Salvia, M.; Grings, F.; Barraza, V.; Perna, P.; Karszenbaum, H.; Feirazzoli, P. Active and passive microwave systems in the assessment of flooded area fraction and mean water level in the Paraná River floodplain. In Proceedings of the 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), Rome, Italy, 5–9 March 2012; pp. 1–4. [Google Scholar]
- Neiff, J.J.; Casco, S.L.; Mari, E.K.A.; Di Rienzo, J.A.; Poi, A.S. Do aquatic plant assemblages in the Paraná River change along the river’s length? Aquat. Bot. 2014, 114, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, Z.Y.; Aceñolaza, P.G. Vegetation communities and their relationship with the pulse regime on islands of the Middle Parana River, Argentina. Iheringia Ser. Bot. 2011, 66, 209–225. [Google Scholar]
- Hussner, A. Growth response and root system development of the invasive Ludwigia grandiflora and Ludwigia peploides to nutrient availability and water level. Fundam. Appl. Limnol. 2010, 177, 189–196. [Google Scholar] [CrossRef]
No. | Date (2018) | Beam | Mean Angle | Orbit Direction | Wind Speed (km/h) |
---|---|---|---|---|---|
1 | 4 February | FQ 10 | 30.0 | Ascending | 7 |
2 | 6 February | FQ 2 | 20.7 | Descending | 0 |
3 | 7 February | FQ 26 | 45.1 | Ascending | 4 |
4 | 11 February | FQ 5 | 24.4 | Ascending | 11 |
5 | 13 February | FQ 8 | 27.8 | Descending | 4 |
6 | 14 February | FQ 21 | 40.9 | Ascending | 11 |
7 | 17 February | FQ 29 | 47.4 | Descending | 6 |
8 | 20 February | FQ 13 | 33.2 | Descending | 11 |
9 | 21 February | FQ 16 | 36.2 | Ascending | 11 |
10 | 27 February | FQ 18 | 38.2 | Descending | 9 |
11 | 28 February | FQ 10 | 30.0 | Ascending | 11 |
Dominant Species | Schoenoplectus californicus | Ludwigia peruviana | |||||
---|---|---|---|---|---|---|---|
Sampling site | Sch-1 | Sch-2 | Sch-3 | Sch-4 | Ludw-1 | Ludw-2 | Ludw-3 |
Accompanying species | - Emergent: Ludwigia peruviana, Panicum elephantipes, Polygonum punctatum, Mikania micrantha, Solanum amigdallyfolium. | - Emergent: Pontederia cordata, Eichhornia crassipes, Ludwigia peruviana, Oplismenopsis najada, Sagittaria montevidensis. - Floating: Azolla filiculoides. | - Emergent: Ludwigia peruviana, Polygonum acuminatum. - Floating: Salvinia biloba (*); Salvinia auriculata, Azolla filiculoides, Nymphoides indica. - Submerged: Ceratophyllum demersum. | - Emergent: Ludwigia peruviana, Ludwigia peploides, Echinochloa helodes, Eichhornia crassipes. - Floating: Azolla filiculoides. | - Emergent: Oplismenopsis najada, Myriophyllum aquaticum, Luziola peruviana. - Floating: Azolla filiculoides. | - Emergent: Myriophyllum aquaticum. - Floating: Salvinia auriculata, Nymphoides indica. | - Emergent: Ludwigia peploides, Echinochloa helodes, Myriophyllum aquaticum, Eichhornia crassipes. |
Water level (cm) | 15 | 52 | 120 | 60 | 43 | 55 | 55 |
Intercepted fPAR light (%) | 61–74 | 74–94 | NA | 90–99 | 57–59 | NA | 29–59 |
Estimated coverage of the emergent vegetation (%) | 65 | 65–85 | 65–85 | 85 | 65 | 65–85 | 40–85 |
No. stems m−2 | 48 green, 32 dry | 64–96 green, 32–96 dry | 128–208 green, 48 dry | 96–176 green, 208–240 dry | 128–144 green | 128–208 green | 112–144 green |
Emergent green biomass (g·m−2) | 352 | 912–944 | 784–1696 | 2512–2528 | 176–384 | 352–384 | 80–784 |
Emergent total biomass (g·m−2) | 624 | 960–1600 | 1056–1716 | 2804–2976 | 176–384 | 352–384 | 80–784 |
Maximum emergent height (cm) | 154 | 226 | 298 | 300 | 80 | 85 | 66 |
Mean emergent height (cm) | 119 | 156 | 138 | 210.5 | 63 | 37 | 33 |
Mean stem diameter (mm) | 11.2 | 10.35 | 10 | 12.76 | 4.3 | 4.2 | 4.5 |
Moisture content (%) | 62 | 67–70.1 | 66–67 | 72–77 | 77–80 | 69–75 | 75–78 |
Explanatory Variable | Schoenoplectus californicus | Ludwigia peruviana | ||||
---|---|---|---|---|---|---|
HH | HV | VV | HH | HV | VV | |
Incidence angle | (−), p < 0.0001, 64.3% | (−), p = 0.0213, 12.0% | (−), p = 0.0155, 13.2% | (−), p < 0.0001, 72.3% | . | (−), p = 0.0145, 18.3% |
Emergent plant height | (+), p = 0.0307, 10.6% | (+), p = 0.0005, 25.1% | (+), p = 0.0353, 10.1% | . | (−), p < 0.0001, 55.8% | . |
Number of green stems | . | (+), p = 0.0038, 18.2% | . | . | (−), p < 0.0001, 14.1% | . |
Stem diameter | . | (+), p < 0.0001, 37.5% | . | . | (+), p = 0.0002, 38.4% | . |
Emergent green biomass | . | (+), p < 0.0001, 39.3% | . | . | (+), p < 0.0001, 75.6% | . |
Moisture content | (+), p = 0.0206, 12.1% | (+), p < 0.0001, 21.2% | (+), p = 0.0041, 18.0% | . | . | . |
Species | Polarization | Model | DF | AIC | % Explained |
---|---|---|---|---|---|
Schoenoplectus californicus | HH | −10.83–1.29 incidence angle +0.94 emergent plant height −0.57 stem diameter | 40 | 103.7 | 80.6 |
HV | −17.00–0.50 incidence angle +0.63 number of green stems +0.90 stem diameter | 40 | 115.2 | 68.7 | |
VV | −11.36–0.64 incidence angle +1.98 emergent plant height −1.93 stem diameter | 40 | 67.0 | 78.1 | |
Ludwigia peruviana | HH | −7.88–1.34 incidence angle +0.36 stem diameter | 29 | 79.7 | 77.3 |
HV | −14.46–0.57 incidence angle +1.96 emergent green biomass −0.43 interaction (biomass:incidence angle) | 28 | 90.8 | 85.2 | |
VV | −9.38–0.35 incidence angle | 30 | 77.1 | 18.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morandeira, N.S.; Barber, M.E.; Grings, F.M.; Ahern, F.; Kandus, P.; Brisco, B. Response of Multi-Incidence Angle Polarimetric RADARSAT-2 Data to Herbaceous Vegetation Features in the Lower Paraná River Floodplain, Argentina. Remote Sens. 2021, 13, 2518. https://doi.org/10.3390/rs13132518
Morandeira NS, Barber ME, Grings FM, Ahern F, Kandus P, Brisco B. Response of Multi-Incidence Angle Polarimetric RADARSAT-2 Data to Herbaceous Vegetation Features in the Lower Paraná River Floodplain, Argentina. Remote Sensing. 2021; 13(13):2518. https://doi.org/10.3390/rs13132518
Chicago/Turabian StyleMorandeira, Natalia Soledad, Matías Ernesto Barber, Francisco Matías Grings, Frank Ahern, Patricia Kandus, and Brian Brisco. 2021. "Response of Multi-Incidence Angle Polarimetric RADARSAT-2 Data to Herbaceous Vegetation Features in the Lower Paraná River Floodplain, Argentina" Remote Sensing 13, no. 13: 2518. https://doi.org/10.3390/rs13132518
APA StyleMorandeira, N. S., Barber, M. E., Grings, F. M., Ahern, F., Kandus, P., & Brisco, B. (2021). Response of Multi-Incidence Angle Polarimetric RADARSAT-2 Data to Herbaceous Vegetation Features in the Lower Paraná River Floodplain, Argentina. Remote Sensing, 13(13), 2518. https://doi.org/10.3390/rs13132518