Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, D.H.; Park, J.H. Developing Inspection Methodology of Solar Energy Plants by Thermal Infrared Sensor on Board Unmanned Aerial Vehicles. Energies 2019, 12, 2928. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Wu, T.; Zhang, H.; Sun, X. Detection and location of fouling on photovoltaic panels using a drone-mounted infrared thermography system. J. Appl. Remote Sens. 2017, 11, 016026. [Google Scholar] [CrossRef]
- United States Census Bureau. National and State Housing Unit Estimates: 2010 to 2019; United States Census Bureau: Suitland, MD, USA, 2019.
- Wood Mackenzie. U.S. Solar Market Insight: Q2 2020; Solar Energy Industries Association: Washington, DC, USA, 2020. [Google Scholar]
- Um, J.S.; Wright, R. A comparative evaluation of video remote sensing and field survey for revegetation monitoring of a pipeline route. Sci. Total Environ. 1998, 215, 189–207. [Google Scholar] [CrossRef]
- Um, J.S.; Wright, R. Video strip mosaicking: A two-dimensional approach by convergent image bridging. Int. J. Remote Sens. 1999, 20, 2015–2032. [Google Scholar] [CrossRef]
- Um, J.-S.; Wright, R. ‘Video Strip Mapping (VSM)’ for Time-sequential Monitoring of Revegetation of a Pipeline Route. Geocarto Int. 1999, 14, 24–35. [Google Scholar] [CrossRef]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of Drone Altitude, Image Overlap, and Optical Sensor Resolution on Multi-View Reconstruction of Forest Images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef]
- Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [Google Scholar] [CrossRef]
- Um, J.-S. Evaluating patent tendency for UAV related to spatial information in South Korea. Spat. Inf. Res. 2018, 26, 143–150. [Google Scholar] [CrossRef]
- Robertson, S. Campus, City, Networks and Nation: Student-Migrant Activism as Socio-spatial Experience in Melbourne, Australia. Int. J. Urban Reg. Res. 2013, 37. [Google Scholar] [CrossRef]
- Srivanit, M.; Hokao, K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build. Environ. 2013, 66, 158–172. [Google Scholar] [CrossRef]
- Hwang, Y.-S.; Um, J.-S. Comparative Evaluation of Cool Surface Ratio in University Campus: A Case Study of KNU and UC Davis. KIEAE J. 2015, 15, 117–127. [Google Scholar] [CrossRef][Green Version]
- Park, S.-I.; Um, J.-S. Differentiating carbon sinks versus sources on a university campus using synergistic UAV NIR and visible signatures. Environ. Monit. Assess. 2018, 190, 652. [Google Scholar] [CrossRef] [PubMed]
- DJI. Manifold 2 Series User Guide v1.0; DJI: Shenzhen, China, 2019. [Google Scholar]
- DJI Developer. Telemetry. Available online: https://developer.dji.com/onboard-sdk/documentation/guides/component-guide-telemetry.html (accessed on 5 July 2021).
- Um, J.-S. Drones as Cyber-Physical Systems: Concepts and Applications for the Fourth Industrial Revolution, 1st ed.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Um, J.-S. Valuing current drone CPS in terms of bi-directional bridging intensity: Embracing the future of spatial information. Spat. Inf. Res. 2017, 25, 585–591. [Google Scholar] [CrossRef]
- Lee, J.-J.; Hwang, Y.-S.; Park, S.-I.; Um, J.-S. Comparative Evaluation of UAV NIR Imagery versus in-situ Point Photo in Surveying Urban Tributary Vegetation. J. Environ. Impact Assess. 2018, 27, 475–488. [Google Scholar] [CrossRef]
- Park, S.-I.; Hwang, Y.-S.; Um, J.-S. Estimating blue carbon accumulated in a halophyte community using UAV imagery: A case study of the southern coastal wetlands in South Korea. J. Coast. Conserv. 2021, 25, 38. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Ai, G.; Zhang, Y.; Zuo, Y. Generating a High-Precision True Digital Orthophoto Map Based on UAV Images. ISPRS Int. J. Geo-Inf. 2018, 7, 333. [Google Scholar] [CrossRef]
- Glenn, R.; Overbeck, J.R.; Heim, R. Color Indexed Elevation Maps for Flood-Vulnerable Coastal Communities in Western Alaska; State of Alaska, Department of Natural Resources, Division of Geological: Fairbanks, AK, USA, 2019. [Google Scholar]
- Liebermann, S.; Um, J.-S.; Hwang, Y.; Schlüter, S. Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts. Energies 2021, 14, 3030. [Google Scholar] [CrossRef]
- Kraak, M.-J.; Fabrikant, S.I. Of maps, cartography and the geography of the International Cartographic Association. Int. J. Cartogr. 2017, 3, 9–31. [Google Scholar] [CrossRef]
- Tobler, W. Resolution, Resampling, and All That. In Building Data Bases for Global Science; Taylor and Francis: London, UK, 1988. [Google Scholar]
- ICA. Multilingual Dictionary of Technical Terms in Cartography; Franz Steiner Verlag: Wiesbaden, Germany, 1973.
- ASPRS. ASPRS Accuracy Standards for Large-Scale Maps (Approval by the ASPRS Professional Practicing Division, March, 1990); The American Society for Photogrammetry and Remote Sensing: Bethesda, MA, USA, 1990. [Google Scholar]
- Mesas-Carrascosa, F.J.; Rumbao, I.C.; Berrocal, J.A.B.; Porras, A.G.-F. Positional Quality Assessment of Orthophotos Obtained from Sensors Onboard Multi-Rotor UAV Platforms. Sensors 2014, 14, 22394–22407. [Google Scholar] [CrossRef] [PubMed]
- NSDI. Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy; NSDI: Reston, VA, USA, 1998. [Google Scholar]
UAV (DJI Matrice 200 V2) | Camera (DJI Zenmuse XT2) | ||
---|---|---|---|
Maximum flight altitude | 3000 m (flight altitude applied for this experiment, 80 m) | Sensor | CMOS, 1/1.7” (height: 5.82 mm * width: 7.76 mm), Effective Pixels: 12 M |
Weight | 4.69 kg | Focal length | 8 mm |
Hovering accuracy Vertical, ±0.1 m | Horizontal, ±0.3 m | Video resolution | 4K UHD: 3840 × 2160 |
Sampling Frequency of GPS Signal | 2.4000~2.4835 GHz/ 5.725~5.850 GHz | Still imagery resolution | 4000 × 3000 |
Hovering accuracy (GPS) | Vertical, ±0.5 m or ±0.1 m (Downward Vision System) Horizontal, ±1.5 m or ±0.3 m (Downward Vision System) | Spectral band | Blue (450~495 nm) Green (495~570 nm) Red (620~750 nm) |
Maximum flight speed | 61.2 km/h (P-mode) | F-Stop (Full frame rate) | F/1.8 (30 Hz) |
Category | Sampling Frequency | Category | Sampling Frequency |
---|---|---|---|
Acceleration | 400 Hz | Angular Rate | 400 Hz |
Velocity | 200 Hz | Barometer Altitude | 200 Hz |
GNSS | 50 Hz | Compass | 100 Hz |
Remote Controller: | 50 Hz | Gimbal | 50 Hz |
Motor | 50 Hz | ||
Flight Status | 50 Hz | Battery | 50 Hz |
Frame Intervals | 3-D Points for Bundle Block Adjustment | 2-D Key Points Observations for Bundle Block Adjustment | Matched 2-D Keypoints per Image | Mean Reprojection Error (Pixels) | Overlap (%) | ||
---|---|---|---|---|---|---|---|
Min | Max | Mean | |||||
Path flight | 573,980 | 1,637,172 | 4177 | 22,867 | 12,891 | 0.224 | 80.0 |
2.5 s | 195,749 | 559,825 | 8453 | 20,819 | 14,732 | 0.295 | 89.3 |
4 s | 113,709 | 296,627 | 6022 | 18,301 | 12,359 | 0.288 | 83.2 |
5.5 s | 73,496 | 184,724 | 3367 | 18,672 | 10,866 | 0.277 | 77.3 |
Category | Frame Intervals | GCP Points | Min | Max | Mean | STDEV |
---|---|---|---|---|---|---|
Building boundary (Allowable RMSE: 0.028 m) | Path flight | 11 | 0.013 | 0.028 | 0.017 | 0.004 |
2.5 s | 11 | 0.011 | 0.027 | 0.019 | 0.006 | |
4 s | 11 | 0.016 | 0.044 | 0.025 | 0.009 | |
5.5 s | 11 | 0.017 | 0.046 | 0.027 | 0.010 | |
Photovoltaic panel location (Allowable RMSE: 0.028 m) | Path flight | 17 | 0.001 | 0.064 | 0.019 | 0.015 |
2.5 s | 17 | 0.004 | 0.039 | 0.024 | 0.010 | |
4 s | 17 | 0.012 | 0.073 | 0.030 | 0.015 | |
5.5 s | 17 | 0.017 | 0.078 | 0.035 | 0.015 | |
The altitude of the building boundary (Allowable RMSE: 0.028 m) | Path flight | 11 | 0.003 | 0.056 | 0.023 | 0.010 |
2.5 s | 11 | 0.019 | 0.053 | 0.026 | 0.018 | |
4 s | 11 | 0.021 | 0.082 | 0.041 | 0.019 | |
5.5 s | 11 | 0.022 | 0.095 | 0.052 | 0.018 |
Category | Frame Intervals | GCP Points | Min | Max | Mean | STDEV |
---|---|---|---|---|---|---|
Distance between photovoltaic panels and building boundary/structure (Allowable RMSE: 0.028 m) | Path flight | 17 | 0.006 | 0.055 | 0.019 | 0.014 |
2.5 s | 17 | 0.005 | 0.062 | 0.023 | 0.012 | |
4 s | 17 | 0.011 | 0.067 | 0.029 | 0.012 | |
5.5 s | 17 | 0.005 | 0.079 | 0.030 | 0.022 | |
Distance between photovoltaic panel array (Allowable RMSE: 0.028 m) | Path flight | 12 | 0.009 | 0.018 | 0.012 | 0.003 |
2.5 s | 12 | 0.011 | 0.038 | 0.019 | 0.009 | |
4 s | 12 | 0.026 | 0.075 | 0.059 | 0.017 | |
5.5 s | 12 | 0.002 | 0.106 | 0.053 | 0.032 | |
Detected photovoltaic panel size (Allowable RMSE: 0.053 m2) | Path flight | 286 | 0.001 | 0.031 | 0.022 | 0.004 |
2.5 s | 286 | 0.011 | 0.027 | 0.019 | 0.004 | |
4 s | 286 | 0.011 | 0.048 | 0.019 | 0.005 | |
5.5 s | 286 | 0.018 | 0.037 | 0.027 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, Y.-S.; Schlüter, S.; Park, S.-I.; Um, J.-S. Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel. Remote Sens. 2021, 13, 2745. https://doi.org/10.3390/rs13142745
Hwang Y-S, Schlüter S, Park S-I, Um J-S. Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel. Remote Sensing. 2021; 13(14):2745. https://doi.org/10.3390/rs13142745
Chicago/Turabian StyleHwang, Young-Seok, Stephan Schlüter, Seong-Il Park, and Jung-Sup Um. 2021. "Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel" Remote Sensing 13, no. 14: 2745. https://doi.org/10.3390/rs13142745
APA StyleHwang, Y.-S., Schlüter, S., Park, S.-I., & Um, J.-S. (2021). Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel. Remote Sensing, 13(14), 2745. https://doi.org/10.3390/rs13142745