Global Land Cover Assessment Using Spatial Uniformity Validation Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. The Degree Confluence Project (DCP)
2.1.2. Satellite Images
2.1.3. World Cities Database
2.1.4. Google Earth
2.2. Method for Creating Validation Data Sets with Guaranteed Spatial Uniformity
2.2.1. Visual Interpretation for Classes
2.2.2. Visual Interpretation for Uniformity/Non-Uniformity
2.2.3. Building the SVM Model
2.2.4. Accuracy Assessment of Existing Global Land Cover Maps
2.2.5. Land Cover Class Definition
3. Results and Discussion
3.1. Results of Visual Interpretation of DCP
3.2. Adjusting SVM Parameters
3.3. Guaranteed Spatial Uniformity
3.4. Accuracy Assessment of Existing Global Land Cover Maps
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Strahler, A.; Boschetti, L.; Foody, G.; Friedl, M.; Hansen, M.; Herold, M.; Mayaux, P.; Morisette, J.; Stehman, S.; Woodcock, C. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; Office for Official Publications of the European Communities: Luxembourg, 2006; pp. 1–60. [Google Scholar]
- Fonte, C.C.; Bastin, L.; See, L.; Foody, G.; Lupia, F. Usability of VGI for validation of land cover maps. Int. J. Geogr. Inf. Sci. 2015, 29, 1269–1291. [Google Scholar] [CrossRef] [Green Version]
- Iwao, K.; Nishida, K.; Kinoshita, T.; Yamagata, Y. Validating land cover maps with Degree Confluence Project information. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Joint Research Centre. Global Land Cover 2000—Products. Available online: https://bit.ly/2Vh1WdF (accessed on 29 June 2021).
- NASA. Status for: Land Cover/Dynamics (MCD12). Available online: https://go.nasa.gov/3iQ9lZQ (accessed on 2 June 2021).
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global Land Cover Classification at 1 km Spatial Resolution Using a Classification Tree Approach. Int. J. Remote Sens. 2010, 21, 1331–1364. [Google Scholar] [CrossRef]
- GLCC; USGS. Global Land Cover Characteristics Data Base Version 2.0. Available online: https://on.doi.gov/3rE9gfv (accessed on 2 June 2021).
- Iwao, K.; Nasahara, K.N.; Kinoshita, T.; Yamagata, Y.; Patton, D.; Tsuchida, S. Creation of New Global Land Cover Map with Map Integration. J. Geogr. Inf. Syst. 2011, 3, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Iwao, K.; Yamagata, Y. Creation of a global land cover and a probability map through a new map integration method. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 70–77. [Google Scholar] [CrossRef]
- Foody, G.M.; Boyd, D.S. Using volunteered data in land cover map validation: Mapping west African forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1305–1312. [Google Scholar] [CrossRef]
- Soyama, N.; Sasai, T.; Muramatsu, K.; Daigo, M.; Ochiai, F.; Nasahara, K. Production Method of Reference Data Focusing on Quality Assessment for Global Land Cover Map Validation using the Degree Confluence Project Information. Trans. Jpn. Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Jpn. 2016, 14, Pn_1–Pn_6. [Google Scholar] [CrossRef]
- Qian, T.; Kinoshita, T.; Fujii, M.; Bao, Y. Analyzing the uncertainty of degree confluence project for validating global land-cover maps using reference data-based classification schemes. Remote Sens. 2020, 12, 2589. [Google Scholar] [CrossRef]
- NASA. LP DAAC ASTER Level 1 Precision Terrain Corrected Registered At-Sensor Radiance V003. Available online: https://doi.org/10.5067/ASTER/AST_L1T.003 (accessed on 30 June 2021).
- U.S. Geological Survey (USGS); National Aeronautics and Space Administration (NASA). USGS EROS Archive—Landsat Legacy—Global Land Survey (GLS). Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-legacy-global-land-survey-gls (accessed on 30 June 2021).
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product. Available online: https://bit.ly/2TDjLmZ (accessed on 2 June 2021).
- Dora, L.; Agrawal, S.; Panda, R.; Abraham, A. Nested cross-validation based adaptive sparse representation algorithm and its application to pathological brain classification. Expert Syst. Appl. 2018, 114, 313–321. [Google Scholar] [CrossRef]
- Marcot, B.G.; Hanea, A.M. What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? Comput. Stat. 2020, 1–23. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006. Available online: https://doi.org/10.5067/MODIS/MCD12Q1.006 (accessed on 30 June 2021).
- The Global Land Cover by National Mapping Organizations. Available online: https://globalmaps.github.io/glcnmo.html (accessed on 29 June 2021).
- MEDIAS-France/POSTEL. ESA and the ESA Globcover Project. Available online: http://due.esrin.esa.int/page_globcover.php (accessed on 29 June 2021).
- Hiroshi, S.; Ryutaro, T. Global Land Use, Land Cover and Vegetation Classification Systems: A Review. GSI J. 2001, 96, 69–99. [Google Scholar]
- Hua, T.; Zhao, W.; Liu, Y.; Wang, S.; Yang, S. Spatial consistency assessments for global land-cover datasets: A comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens. 2018, 10, 1846. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; Bartholome, E.; Belward, A.; Hartley, A.J.; Stibig, H.J.; Eva, H.; Mayaux, P.; Bartalev, S.; Latifovic, R.; Kolmert, S.; et al. The Global Land Cover for the Year 2000. Available online: https://bit.ly/3x1IT4o (accessed on 2 June 2021).
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Achard, F.; Herold, M.; et al. GLOBCOVER Description and Validation Report. Available online: https://bit.ly/2USSaPd (accessed on 2 June 2021).
ASTER [13] | GLS2005 [14] (Combination of Landsat 5 and 7) | PALSAR [15] |
---|---|---|
B01 (band 1) | 10 (band 1) | HH |
B02 (band 2) | 20 (band 1) | HV |
B03 (band 3) | 30 (band 3) | |
40 (band 4) | ||
50 (band 5) | ||
70 (band 7) | ||
NDVI | ||
NDBI |
Validation | UA | |||
---|---|---|---|---|
Uniformity | Non-Uniformity | |||
Classified | Uniformity | |||
Non-uniformity | ||||
PA |
Class | InnerCV | OuterCV | Final Model | |||
---|---|---|---|---|---|---|
Training | Validation | Training | Test | Training | ||
Uniformity | Forest | 64 | 16 | 80 | 20 | 100 |
Grass/Shrub | 64 | 16 | 80 | 20 | 100 | |
Cropland | 64 | 16 | 80 | 20 | 100 | |
Urban | 64 | 16 | 80 | 20 | 100 | |
Barren | 64 | 16 | 80 | 20 | 100 | |
Water | 64 | 16 | 80 | 20 | 100 | |
Non-uniformity | 64 | 16 | 80 | 20 | 100 |
MCD12 [19] | GLCNMO [20] | GLC2000 [4] | GlobCover [21] | |
---|---|---|---|---|
Used data year | 2005 | 2008 | 2003 | 2005–2006 |
Resolution | 500 m | 500 m | 1 km | 300 m |
Classification system | IGBP (17 classes) | FAO LCCS (20 classes) | FAO LCCS (22 classes) | FAO LCCS (22 classes) |
Class No. | Common Class | MCD12 [16] | GLCNMO [20] |
1 | Forest | Evergreen Needleleaf Forests Evergreen Broadleaf Forests Deciduous Needleleaf Forests Deciduous Broadleaf Forests Mixed Forests | Broadleaf Evergreen Forest Broadleaf Deciduous Forest Needleleaf Evergreen Forest Needleleaf Deciduous Forest Mixed Forest Tree Open |
2 | Grass/Shrub | Closed Shrublands Open Shrublands Woody Savannas Savannas Grasslands | Shrub Herbaceous Herbaceous with Sparse Tree/Shrub Mangrove |
3 | Cropland | Croplands | Cropland Paddy field |
4 | Urban | Urban and Built-up Lands | Urban |
5 | Barren | Barren | Bare area, consolidated (gravel, rock) Bare area, unconsolidated (sand) Sparse vegetation |
6 | Water | Permanent Snow and Ice Water Bodies | Snow/Ice Water bodies |
7 | Other | Permanent Wetlands Cropland/Natural Vegetation Mosaics | Cropland/Other Vegetation Mosaic |
Class No. | Common Class | GLC2000 [24] | GlobCover [25] |
1 | Forest | Tree Cover, broadleaved, evergreen Tree Cover, broadleaved, deciduous, closed Tree Cover, broadleaved, deciduous, open Tree Cover, needle-leaved, evergreen Tree Cover, needle-leaved, deciduous Tree Cover, mixed leaf type Tree Cover, regularly flooded, fresh water Tree Cover, regularly flooded, saline water | Closed (>40%) needleleaved evergreen forest (>5 m) Open (15–40%) needleleaved deciduous or evergreen forest (>5 m) Closed to open (>15%) broadleaved evergreen or semideciduous forest (>5 m) Closed (>40%) broadleaved deciduous forest (>5 m) Open (15–40%) broadleaved deciduous forest/woodland (>5 m) Closed to open (>15%) mixed broadleaved and needleleaved forest (>5 m) Closed to open (>15%) broadleaved forest regularly flooded (semipermanently or temporarily—Fresh or brackish water |
2 | Grass/Shrub | Shrub Cover, closed–open, evergreenShrub Cover, closed–open, deciduousHerbaceous Cover, closed–openRegularly flooded shrub and/or herbaceous cover | Mosaic forest or shrubland (50–70%)/grassland (20–50%) Mosaic grassland (50–70%)/forest or shrubland (20–50%) Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5 m) Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses) Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil—fresh, brackish or saline water |
3 | Cropland | Cultivated and managed areas | Postflooding or irrigated croplands (or aquatic) Rainfed croplands |
4 | Urban | Artificial surfaces and associated areas | Artificial surfaces and associated areas (Urban areas > 50%) |
5 | Barren | Sparse herbaceous or sparse shrub coverBare Areas | Sparse (<15%) vegetation Bare areas |
6 | Water | Water Bodies Snow and Ice | Water bodies Permanent snow and ice |
7 | Other | Mosaic: Tree Cover/Other natural vegetation Mosaic: Cropland/Tree Cover/Other natural vegetation Mosaic: Cropland/Shrub and/or grass cover | Mosaic vegetation (grassland/shrubland/forest; 50–70%)/cropland (20–50%) Closed (>40%) broadleaved forest or shrubland permanently flooded—saline or brackish water |
Class | RBF Kernel SVM Parameter | InnerCV | OuterCV | ||||
---|---|---|---|---|---|---|---|
C1 | C2 | Gamma | Mean of Uniform UA | Mean of OA | Mean of Uniform UA | Mean of OA | |
Forest | 32 | 128 | 0.03125 | 0.934 | 0.796 | 0.942 | 0.790 |
Grass/Shrub | 128 | 512 | 0.03125 | 0.891 | 0.785 | 0.894 | 0.790 |
Cropland | 0.5 | 2 | 8 | 0.805 | 0.630 | 0.853 | 0.630 |
Urban | 0.125 | 128 | 2 | 1.000 | 0.689 | 0.985 | 0.731 |
Barren | 0.125 | 0.5 | 8 | 0.980 | 0.828 | 0.980 | 0.840 |
Water | 0.125 | 2 | 2 | 1.000 | 0.938 | 1.000 | 0.950 |
Final model | 0.954 | 0.746 |
Class | Uniformity | Non-Uniformity | Total |
---|---|---|---|
Forest | 327 | 272 | 599 |
Grass/Shrub | 567 | 423 | 990 |
Cropland | 220 | 369 | 589 |
Urban | 10 | 35 | 45 |
Barren | 245 | 51 | 296 |
Water | 225 | 19 | 244 |
Total | 1594 | 1169 | 2763 |
Class | Uniformity | Non-Uniformity | Total |
---|---|---|---|
Forest | 251 | 307 | 558 |
Grass/Shrub | 486 | 455 | 941 |
Cropland | 134 | 420 | 554 |
Urban | 4 | 38 | 42 |
Barren | 223 | 59 | 282 |
Water | 196 | 34 | 230 |
Total | 1294 | 1313 | 2607 |
Uniform Validation/All Validation | UA | |||||||
---|---|---|---|---|---|---|---|---|
Class No. | 1 | 2 | 3 | 4 | 5 | 6 | ||
Map | 1 | 286/442 | 14/72 | 3/30 | 4/13 | 1/1 | 2/4 | 0.923/0.786 |
2 | 26/75 | 249/419 | 46/94 | 1/11 | 6/10 | 2/4 | 0.755/0.684 | |
3 | 4/39 | 39/115 | 112/327 | 3/15 | 1/2 | 0/3 | 0.704/0.653 | |
4 | 1/1 | 0/1 | 0/1 | 2/6 | 0/0 | 0/0 | 0.667/0.667 | |
5 | 5/13 | 220/283 | 14/38 | 0/0 | 231/273 | 0/1 | 0.491/0.449 | |
6 | 0/1 | 1/4 | 0/2 | 0/0 | 6/10 | 220/290 | 0.969/0.931 | |
7 | 5/28 | 44/96 | 45/97 | 0/0 | 0/0 | 1/2 | - | |
PA | 0.875/0.738 | 0.439/0.423 | 0.509/0.555 | 0.200/0.133 | 0.943/0.922 | 0.978/0.943 | Total = 1594/2763 |
Uniform Validation/All Validation | UA | |||||||
---|---|---|---|---|---|---|---|---|
Class No. | 1 | 2 | 3 | 4 | 5 | 6 | ||
Map | 1 | 223/414 | 14/65 | 4/30 | 3/12 | 0/1 | 2/4 | 0.907/0.695 |
2 | 18/71 | 218/403 | 25/89 | 0/11 | 3/10 | 1/3 | 0.823/0676 | |
3 | 4/34 | 26/108 | 65/305 | 0/13 | 1/2 | 0/3 | 0.677/0.624 | |
4 | 0/1 | 0/1 | 0/1 | 1/6 | 0/0 | 0/0 | 1.000/0.500 | |
5 | 4/12 | 195/271 | 11/35 | 0/0 | 216/265 | 0/1 | 0.507/0.446 | |
6 | 0/1 | 1/3 | 0/2 | 0/0 | 3/4 | 193/217 | 0.980/0.934 | |
7 | 2/25 | 32/90 | 29/91 | 0/0 | 0/0 | 0/2 | - | |
PA | 0.835/0.742 | 0.449/0.428 | 0.485/0.551 | 0.250/0.143 | 0.969/0.940 | 0.985/0.943 | Total = 1294/2607 |
Uniform Validation/All Validation | UA | |||||||
---|---|---|---|---|---|---|---|---|
Class No. | 1 | 2 | 3 | 4 | 5 | 6 | ||
Map | 1 | 113/185 | 7/20 | 8/28 | 0/3 | 0/1 | 13/19 | 0.801/0.723 |
2 | 99/269 | 387/737 | 58/198 | 2/16 | 18/28 | 18/27 | 0.665/0.578 | |
3 | 20/57 | 11/55 | 63/275 | 0/11 | 0/4 | 6/10 | 0.630/0.667 | |
4 | 3/9 | 3/6 | 0/13 | 1/7 | 0/0 | 6/6 | 0.077/0.171 | |
5 | 2/2 | 69/94 | 1/5 | 0/0 | 203/246 | 3/5 | 0.780/0.699 | |
6 | 11/26 | 8/24 | 4/16 | 1/2 | 2/3 | 147/158 | 0.850/0.690 | |
7 | 3/10 | 1/5 | 0/19 | 0/3 | 0/0 | 3/5 | - | |
PA | 0.450/0.332 | 0.796/0.783 | 0.470/0.496 | 0.250/0.167 | 0.910/0.872 | 0.750/0.687 | Total = 1294/2607 |
Uniform Validation/All Validation | UA | |||||||
---|---|---|---|---|---|---|---|---|
Class No. | 1 | 2 | 3 | 4 | 5 | 6 | ||
Map | 1 | 237/450 | 28/121 | 12/67 | 1/6 | 0/1 | 1/8 | 0.849/0.689 |
2 | 10/48 | 262/459 | 28/96 | 0/4 | 6/11 | 0/3 | 0.856/0.739 | |
3 | 1/31 | 24/66 | 70/288 | 0/15 | 0/3 | 0/4 | 0.737/0.708 | |
4 | 0/2 | 0/1 | 0/1 | 2/16 | 0/1 | 0/1 | 1.000/0.727 | |
5 | 1/1 | 161/230 | 8/20 | 0/0 | 213/262 | 0/3 | 0.556/0.508 | |
6 | 2/3 | 0/0 | 0/0 | 0/0 | 3/3 | 195/210 | 0.975/0.972 | |
7 | 0/23 | 11/64 | 16/82 | 1/1 | 1/1 | 0/1 | - | |
PA | 0.944/0.806 | 0.539/0.488 | 0.522/0.520 | 0.500/0.381 | 0.955/0.929 | 0.995/0.913 | Total = 1294/2607 |
Uniform Validation/All Validation | UA | |||||||
---|---|---|---|---|---|---|---|---|
Class No. | 1 | 2 | 3 | 4 | 5 | 6 | ||
Map | 1 | 208/385 | 24/102 | 7/48 | 2/7 | 0/2 | 1/10 | 0.849/0.695 |
2 | 13/68 | 216/395 | 27/93 | 0/9 | 5/12 | 4/7 | 0.856/0676 | |
3 | 13/55 | 34/112 | 69/327 | 0/17 | 0/2 | 4/11 | 0.737/0.624 | |
4 | 0/3 | 0/3 | 1/2 | 2/8 | 0/0 | 0/0 | 1.000/0.500 | |
5 | 1/8 | 205/290 | 11/24 | 0/1 | 216/262 | 0/3 | 0.556/0.446 | |
6 | 3/6 | 0/4 | 0/2 | 0/0 | 1/2 | 187/199 | 0.975/0.934 | |
7 | 11/31 | 7/34 | 19/58 | 0/0 | 1/2 | 0/0 | - | |
PA | 0.835/0.692 | 0.444/0.420 | 0.515/0.590 | 0.500/0.190 | 0.969/0.929 | 0.994/0.865 | Total = 1292/2604 |
Map | GlobCover (300 m) | GlobCover (990 m) | MCD12 | GLCNMO | GLC2000 |
---|---|---|---|---|---|
0.574 | 0.698 | 0.913 | 0.830 | 0.696 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishii, Y.; Iwao, K.; Kinoshita, T. Global Land Cover Assessment Using Spatial Uniformity Validation Dataset. Remote Sens. 2021, 13, 2950. https://doi.org/10.3390/rs13152950
Ishii Y, Iwao K, Kinoshita T. Global Land Cover Assessment Using Spatial Uniformity Validation Dataset. Remote Sensing. 2021; 13(15):2950. https://doi.org/10.3390/rs13152950
Chicago/Turabian StyleIshii, Yoshie, Koki Iwao, and Tsuguki Kinoshita. 2021. "Global Land Cover Assessment Using Spatial Uniformity Validation Dataset" Remote Sensing 13, no. 15: 2950. https://doi.org/10.3390/rs13152950
APA StyleIshii, Y., Iwao, K., & Kinoshita, T. (2021). Global Land Cover Assessment Using Spatial Uniformity Validation Dataset. Remote Sensing, 13(15), 2950. https://doi.org/10.3390/rs13152950