Characteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. Data Preprocessing
2.3. Cross-Validation
2.4. EOF Analysis
3. Results and Discussion
3.1. Mean State
3.2. EOF Results
3.2.1. Entire Study Area
3.2.2. Kuroshio Region
3.2.3. Taiwan Strait
4. Summary
- The Kuroshio surface currents have remarkable seasonal variation. In summer, it is stronger with a mean current velocity as high as 0.62 m/s and a larger variation of 0.19 m/s. In winter, the mean current velocity decreases to 0.54 m/s and a variation of 0.14 m/s. It has to be noted that these values of sea surface current velocities are only the Kuroshio itself and do not include the effects of eddies or others.
- It is a frequently occurring phenomenon that the dipole eddy pairs impinge on the Kuroshio. In most cases, the cyclonic/anticyclonic eddy occurs on the north/south side in summer, and the polarity reverses in winter. These characteristics result in the Kuroshio downstream transport decreasing in summer and increasing in winter.
- The single eddy impinging on the Kuroshio occurs at different periods, including daily, intraseasonal (55 and 83 days), interseasonal (101 and 152 days), and annual periods.
- The tidal currents are dominant components of the surface circulation in the Taiwan Strait. The maximum tidal current velocity reaches as high as 1.75 m/s around the northern tip of Taiwan Island and 1.50 m/s around the Penghu Archipelago.
- The monsoon winds are an important driven forcing for sea surface currents in the Taiwan Strait, which are characterized by strong currents as high as 1.22 m/s in the northern strait due to the narrowing and shoaling topography.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lien, R.C.; Ma, B.; Cheng, Y.H.; Ho, C.R.; Qiu, B.; Lee, C.M.; Chang, M.H. Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J. Geophys. Res. Oceans 2014, 119, 2129–2142. [Google Scholar] [CrossRef]
- Tsai, C.J.; Andres, M.; Jan, S.; Mensah, V.; Sanford, T.B.; Lien, R.C.; Lee, C.M. Eddy-Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon. Geophys. Res. Lett. 2015, 42, 8098–8105. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.H.; Ho, C.R.; Zheng, Q.; Qiu, B.; Hu, J.; Kuo, N.-J. Statistical features of eddies approaching the Kuroshio east of Taiwan Island and Luzon Island. J. Oceanogr. 2017, 73, 427–438. [Google Scholar] [CrossRef]
- Chang, M.H.; Jan, S.; Mensah, V.; Andres, M.; Rainville, L.; Yang, Y.J.; Cheng, Y.H. Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep-Sea Res. PT I 2018, 131, 1–15. [Google Scholar] [CrossRef]
- Zheng, Q.; Ho, C.R.; Xie, L.; Li, M. A case study of a Kuroshio main path cut-off event and impacts on the South China Sea in fall-winter 2013-2014. Acta Oceanol. Sin. 2019, 38, 12–19. [Google Scholar] [CrossRef]
- Jan, S.; Wang, Y.H.; Chao, S.Y.; Wang, D.P. Development of a nowcast system for the Taiwan Strait (TSNOW): Numerical simulation of barotropic tides. Ocean. Polar Res. 2001, 23, 195–203. [Google Scholar]
- Chuang, W.S. A note on the driving mechanisms of current in the Taiwan Strait. J. Oceanogr. 1986, 42, 355–361. [Google Scholar] [CrossRef]
- Lai, Y.; Zhou, H.; Wen, B. Surface current characteristics in the Taiwan Strait observed by high-frequency radars. IEEE J. Ocean. Eng. 2016, 42, 449–457. [Google Scholar] [CrossRef]
- Lipa, B.; Barrick, D.; Isaacson, J. Evaluating hf coastal radar site performance for tsunami warning. Remote Sens. 2019, 11, 2773. [Google Scholar] [CrossRef] [Green Version]
- Roarty, H.; Cook, T.; Hazard, L.; George, D.; Harlan, J.; Cosoli, S.; Wyatt, L.; Alvarez, F.E.; Terrill, E.; Otero, M.; et al. The global high frequency radar network. Front. Mar. Sci. 2019, 6, 164. [Google Scholar] [CrossRef]
- Fujii, S.; Heron, M.L.; Kim, K.; Lai, J.W.; Lee, S.H.; Wu, X.; Wu, X.; Wyatt, L.R.; Yang, W.C. An overview of developments and applications of oceanographic radar networks in Asia and Oceania countries. Ocean. Sci. J. 2013, 48, 69–97. [Google Scholar] [CrossRef]
- Crombie, D.D. Doppler spectrum of sea echo at 13.56 Mc./s. Nature 1955, 175, 681–682. [Google Scholar] [CrossRef]
- Barrick, D.E.; Evans, M.W.; Weber, B.L. Ocean surface currents mapped by radar. Science 1977, 198, 138–144. [Google Scholar] [CrossRef]
- Paduan, J.D.; Washburn, L. High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci. 2013, 5, 115–136. [Google Scholar] [CrossRef] [Green Version]
- Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Kuo, N.J. Satellite observation of the cold water around the Hainan Island. In Satellite Remote Sensing of South China Sea; Liu, A.K., Ho, C.R., Liu, C.T., Eds.; Tingmao Publish Company: Taiwan, 2008; pp. 159–170. [Google Scholar]
- Thomson, R.E.; Emery, W.J. Data Analysis Methods in Physical Oceanography, 3rd ed.; Elsevier: Boston, MA, USA, 2014; ISBN 978-0-12-387782-6. [Google Scholar]
- Alvera-Azcárate, A.; Barth, A.; Sirjacobs, D.; Lenartz, F.; Beckers, J.M. Data Interpolating Empirical Orthogonal Functions (DINEOF): A tool for geophysical data analyses. Mediterr. Mar. Sci. 2011, 12, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Nazari, M.E.; Huang, W.; Zhao, C. Radio frequency interference suppression for HF surface wave radar using CEMD and temporal windowing methods. IEEE Geosci. Remote Sens. Lett. 2019, 17, 212–216. [Google Scholar] [CrossRef]
- Huynh, H.N.T.; Alvera-Azcárate, A.; Barth, A.; Beckers, J.M. Reconstruction and analysis of long-term satellite-derived sea surface temperature for the South China Sea. J. Oceanogr. 2016, 72, 707–726. [Google Scholar] [CrossRef]
- Ping, B.; Su, F.; Meng, Y. An improved DINEOF algorithm for filling missing values in spatio-temporal sea surface temperature data. PLoS ONE 2016, 11, e0155928. [Google Scholar] [CrossRef] [Green Version]
- Kuo, N.J.; Ho, C.R. ENSO effect on the sea surface wind and sea surface temperature in the Taiwan Strait. Geophys. Res. Lett. 2004, 31, L13309. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Jan, S.; Yang, Y.J.; Wang, J.; Mensah, V.; Kuo, T.H.; Chiou, M.D.; Chern, C.S.; Chang, M.H.; Chien, H. Large variability of the Kuroshio at 23.75 N east of Taiwan. J. Geophys. Res. Oceans 2015, 120, 1825–1840. [Google Scholar] [CrossRef]
- Ho, C.R.; Kuo, N.J.; Zheng, Q.; Soong, Y.S. Dynamically active areas in the South China Sea detected from TOPEX/POSEIDON satellite altimeter data. Remote Sens. Environ. 2000, 71, 320–328. [Google Scholar] [CrossRef]
- Hsin, Y.C.; Qiu, B.; Chiang, T.L.; Wu, C.R. Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. J. Geophys. Res. Oceans 2013, 118, 4305–4316. [Google Scholar] [CrossRef]
- Lee, T.N.; Johns, W.E.; Liu, C.T.; Zhang, D.; Zantopp, R.; Yang, Y. Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current. J. Geophys. Res. Oceans 2001, 106, 22143–22158. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.C.; Chern, C.S. Numerical study on the interactions between a mesoscale eddy and a western boundary current. J. Oceanogr. 2011, 67, 263–272. [Google Scholar] [CrossRef]
- Hsin, Y.C.; Wu, C.R.; Shaw, P.T. Spatial and temporal variations of the Kuroshio east of Taiwan, 1982–2005: A numerical study. J. Geophys. Res. Oceans 2008, 113, C04002. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.C.; Lin, C.C.; Huang, S.J.; Ho, C.R. Effects of cold eddy on Kuroshio meander and its surface properties, east of Taiwan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5055–5063. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr. 2010, 40, 213–225. [Google Scholar] [CrossRef]
Year | Summer (×10−3) | Winter (×10−3) | Ratio (Summer/Winter) |
---|---|---|---|
2015 | 4.20 | 2.29 | 1.83 |
2016 | 4.89 | 3.08 | 1.59 |
2017 | 4.76 | 3.54 | 1.34 |
2018 | 4.99 | 2.95 | 1.69 |
2019 | 4.05 | 2.46 | 1.65 |
Average Velocity | Maximum Velocity | Velocity Variation | |||||||
---|---|---|---|---|---|---|---|---|---|
Year | Summer | Winter | Ratio (Summer/Winter) | Summer | Winter | Ratio (Summer/Winter) | Summer | Winter | Ratio (Summer/Winter) |
2015 | 0.64 | 0.55 | 1.16 | 1.44 | 1.20 | 1.20 | 0.20 | 0.14 | 1.43 |
2016 | 0.62 | 0.55 | 1.13 | 1.75 | 1.43 | 1.22 | 0.20 | 0.16 | 1.25 |
2017 | 0.62 | 0.54 | 1.15 | 1.75 | 1.11 | 1.58 | 0.20 | 0.14 | 1.43 |
2018 | 0.60 | 0.47 | 1.28 | 1.46 | 0.95 | 1.54 | 0.18 | 0.10 | 1.80 |
2019 | 0.61 | 0.58 | 1.05 | 1.63 | 1.19 | 1.37 | 0.19 | 0.15 | 1.27 |
mean | 0.62 | 0.54 | 1.15 | 1.61 | 1.18 | 1.38 | 0.19 | 0.14 | 1.43 |
Northern Tip | Penghu Archipelago | |||||||
---|---|---|---|---|---|---|---|---|
Ebb Current (Northward) | Flood Current (Southward) | Flood Current (Northward) | Ebb Current (Southward) | |||||
Year | Speed (m/s) | Date 1 | Speed (m/s) | Date | Speed (m/s) | Date | Speed (m/s) | Date |
2015 | 1.70 | 29 August (16 June) | 1.55 | 20 February (2 January) | 1.02 | 20 February (2 January) | 1.12 | 29 August (16 June) |
2016 | 1.54 | 18 September (18 August) | 1.58 | 25 February (18 January) | 1.14 | 25 February (18 January) | 1.11 | 18 September (18 August) |
2017 | 1.71 | 25 June (2 June) | 1.75 | 28 February (3 February) | 1.19 | 28 February (3 February) | 1.16 | 25 June (2 June) |
2018 | 1.22 | 17 May (3 April) | 1.31 | 16 June (3 May) | 1.20 | 16 June (3 May) | 1.13 | 17 May (3 April) |
2019 | 1.14 | 25 November (29 October) | 1.15 | 16 November (20 October) | 1.50 | 16 November (20 October) | 1.49 | 25 November (29 October) |
Mean 2 | 1.46 (1.54) | 1.47 (1.55) | 1.21 (1.14) | 1.20 (1.13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, Y.-H.; Lu, C.-Y.; Zheng, Q.; Ho, C.-R. Characteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observations. Remote Sens. 2021, 13, 3025. https://doi.org/10.3390/rs13153025
Tseng Y-H, Lu C-Y, Zheng Q, Ho C-R. Characteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observations. Remote Sensing. 2021; 13(15):3025. https://doi.org/10.3390/rs13153025
Chicago/Turabian StyleTseng, Yu-Hao, Ching-Yuan Lu, Quanan Zheng, and Chung-Ru Ho. 2021. "Characteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observations" Remote Sensing 13, no. 15: 3025. https://doi.org/10.3390/rs13153025
APA StyleTseng, Y. -H., Lu, C. -Y., Zheng, Q., & Ho, C. -R. (2021). Characteristic Analysis of Sea Surface Currents around Taiwan Island from CODAR Observations. Remote Sensing, 13(15), 3025. https://doi.org/10.3390/rs13153025