A Waveform-Encoded SAR Implementation Using a Limited Number of Cyclically Shifted Chirps
Abstract
:1. Introduction
2. Cyclically Shifted Chirps for Waveform-Encoded SAR
3. Waveform Sequence Design Based on Eulerian Circuit
4. Simulation Results and Performance Analysis
4.1. Simulation Using Point Targets
- Choose a proper N for the system and desired configuration;
- Scale the normalized values provided in Table 3 to the pulse width of the system;
- Generate N distinct waveforms using (1) and the scaled values;
- Generate the waveform sequence using (5);
- For the th transmit pulse and select the waveform
- Repeat the waveform sequence for the whole acquisition.
4.2. Simulation Using Real SAR Data and a Realistic Nadir Echo Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech Housel: Boston, MA, USA, 2005. [Google Scholar]
- Balkoski, J.; Bordoni, F. Nadir echo properties, a study based on TerraSAR-X data. In Proceedings of the 2012 20th Telecommunications Forum (TELFOR), Belgrade, Servia, 20–22 November 2012. [Google Scholar]
- Mittermayer, J.; Younis, M.; Metzig, R.; Wollstadt, S.; Martinez, J.M.; Meta, A. TerraSAR-X system performance characterization and verification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 660–676. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; John Wiley & Sons: New York, NY, USA, 1991; ISBN 978-0-471-85770-9. [Google Scholar]
- Villano, M.; Krieger, G.; Moreira, A. Verfahren und vorrichtung zur rechnergestuetzten Verarbeitung von SAR Rohdaten. German Patent DE 102017205 649, 5 December 2017. [Google Scholar]
- Villano, M.; Krieger, G.; Moreira, A. Nadir echo removal in synthetic aperture radar via waveform diversity and dual-focus postprocessing. IEEE Geosci. Remote Sens. Lett. 2018, 15, 719–723. [Google Scholar] [CrossRef]
- Villano, M.; Krieger, G.; Moreira, A. Waveform-encoded SAR: A novel concept for nadir echo and range ambiguity suppression. In Proceedings of the EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018. [Google Scholar]
- Dell’Amore, L.; Villano, M.; Krieger, G. Assessment of image quality of waveform-encoded synthetic aperture radar using real satellite data. In Proceedings of the 2019 20th International Radar Symposium (IRS), Ulm, Germany, 26–28 June 2019; pp. 1–10. [Google Scholar]
- Stein, U.; Younis, M. Suppression of range ambiguities in synthetic aperture radar systems. In Proceedings of the IEEE Region 8 EUROCON 2003, Computer as a Tool, Ljubljana, Slovenia, 22–24 September 2003; pp. 417–421. [Google Scholar]
- Ustalli, U.; Villano, M. Impact of ambiguity statistics on information retrieval for conventional and novel SAR modes. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020. [Google Scholar]
- Mittermayer, J.; Martinez, J.M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets. In Proceedings of the IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat, No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 6, pp. 4077–4079. [Google Scholar]
- Jeon, S.-Y.; Kraus, T.; Steinbrecher, U.; Villano, M.; Krieger, G. A TerraSAR-X experiment for validation of nadir echo suppression through waveform encoding and dual-focus postprocessing. In Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR) 2021, Leipzig, Germany, 29 March–1 April 2021. [Google Scholar]
- Jeon, S.-Y.; Kraus, T.; Steinbrecher, U.; Krieger, G.; Villano, M. Experimental demonstration of nadir echo removal in SAR using waveform diversity and dual-focus postprocessing. IEEE Geosci. Remote Sens. Lett. 2021. in review. [Google Scholar]
- Steinbrecher, U.; Martinez, J.M.; Mittermayer, J.; Metzig, R.; Buchreuss, S.; Gottwald, M. New data take commanding concept for TerraSAR-X instrument. In Proceedings of the EUSAR 2004, Ulm, Germany, 25–27 May 2004. [Google Scholar]
- Krieger, G.; Gebert, N.; Moreira, A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Moreira, A.; Misra, T. On the use of the ideal filter concept for improving SAR image quality. J. Electromagn. Waves Appl. 1995, 9, 407–420. [Google Scholar] [CrossRef]
- Glatz, F. Assessment of nadir echo suppression in waveform-encoded synthetic aperture radar (SAR) using real TerraSAR-X data. Master’s Thesis, Ulm University, Ulm, Germany, 2020. [Google Scholar]
- Pitz, W. The TerraSAR-X satellite. In Proceedings of the EUSAR 2006, Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Miller, D.; Stangl, M.; Metzig, R. On-ground testing of TerraSAR-X instrument. In Proceedings of the EUSAR 2006, Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Gabele, M.; Bräutigam, B.; Schulze, D.; Steinbrecher, U.; Tous-Ramom, N.; Younis, M. Fore and aft channel reconstruction in the TerraSAR-X dual receive antenna mode. IEEE Trans. Geosci. Remote Sens. 2010, 48, 795–806. [Google Scholar] [CrossRef]
- Euler, L. Solutio problematis ad geometriam situs pertinentis. Comment. Academiae Sci. I Petropolitanae 1736, 8, 128–140. [Google Scholar]
- Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan: London, UK, 1976. [Google Scholar]
- Peixoto, M.; Villano, M.; Krieger, G. Nadir echo suppression in staggered SAR. In Proceedings of the Advanced Remote Sensing Instruments (ARSI) 2019, Noordwijk, The Netherlands, 11–13 November 2019. [Google Scholar]
Parameter | Value |
---|---|
Center frequency | 9.65 GHz |
Antenna length | 4.8 m |
Bandwidth | 100 MHz |
Pulse width | 50 μs |
PRF | 3113 Hz |
Orbit height | 520 km |
Processed Doppler bandwidth | 2765 Hz |
Processing window in range | Generalized Hamming, = 0.6 |
Processing window in azimuth | Generalized Hamming, = 0.6 |
5050 (K = 1) | 5050 (K = 5) | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 37 | 41 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak suppression (dB) | 36.8 | 39.4 | 24.6 | 26.2 | 31.0 | 31.9 | 33.4 | 32.8 | 34.4 | 34.7 | 35.4 | 35.4 |
N | ti Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 | −0.294 | −0.184 | 0.027 | 0.186 | 0.449 | - | - | - | |||
7 | −0.422 | −0.29 | −0.286 | −0.096 | 0.113 | 0.288 | 0.38 | - | |||
11 | −0.373 | −0.368 | −0.312 | −0.208 | −0.167 | −0.151 | 0.109 | 0.113 | |||
−0.186 | 0.268 | 0.388 | - | - | - | - | - | ||||
13 | 0.468 | −0.284 | −0.27 | −0.225 | −0.224 | −0.138 | −0.065 | 0.05 | |||
0.069 | 0.12 | 0.16 | 0.218 | 0.268 | - | - | - | ||||
17 | −0.49 | −0.487 | −0.482 | −0.413 | −0.396 | −0.347 | −0.31 | −0.269 | |||
−0.172 | −0.135 | −0.048 | 0.044 | 0.087 | 0.123 | 0.133 | 0.397 | 0.447 |
N | 5050 (K = 1) | 5050 (K = 5) | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 37 | 41 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak suppression (dB) | 17.7 | 20.7 | 13.2 | 15.7 | 16.9 | 18.8 | 19.6 | 19.5 | 20.2 | 19.8 | 21.5 | 20.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.-Y.; Glatz, F.; Villano, M. A Waveform-Encoded SAR Implementation Using a Limited Number of Cyclically Shifted Chirps. Remote Sens. 2021, 13, 3038. https://doi.org/10.3390/rs13153038
Jeon S-Y, Glatz F, Villano M. A Waveform-Encoded SAR Implementation Using a Limited Number of Cyclically Shifted Chirps. Remote Sensing. 2021; 13(15):3038. https://doi.org/10.3390/rs13153038
Chicago/Turabian StyleJeon, Se-Yeon, Fabian Glatz, and Michelangelo Villano. 2021. "A Waveform-Encoded SAR Implementation Using a Limited Number of Cyclically Shifted Chirps" Remote Sensing 13, no. 15: 3038. https://doi.org/10.3390/rs13153038
APA StyleJeon, S.-Y., Glatz, F., & Villano, M. (2021). A Waveform-Encoded SAR Implementation Using a Limited Number of Cyclically Shifted Chirps. Remote Sensing, 13(15), 3038. https://doi.org/10.3390/rs13153038