Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework
Abstract
:1. Introduction
2. Study Area, Datasets and Methodologies
2.1. Study Area
2.2. Datasets
2.3. Overview of Methodologies
2.3.1. Image and Land-Use Classification Algorithms
2.3.2. Support Vector Machine (SVM) Algorithm and Post-Classification
2.3.3. Accuracy Assessment of LUCC Classification
3. Results
3.1. Accuracy Assessment of Land Cover Classification Maps from 1979–2020
3.2. Spatial and Temporal Trends of Land Cover from 1979–2020
3.3. Reasons for Spatial Transitions of LUCC in Hyderabad
4. Discussions
4.1. Urban Growth and Spatial Dynamics of Hyderabad and Neighboring Cities in Recent Decades
4.2. Comparison with Previous Studies and Connection with Local Environmental Changes
4.3. Recommendations of Future Urban Planning in Hyderabad
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Güneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Lea, R. Smart Cities: An Overview of the Technology Trends Driving Smart Cities. IEEE. 2017. Available online: www.ieee.org/content/dam/ieee-org/ieee/web/org/about/corporate/ieee-industry-advisory-board/ieee-smart-cities-trend-paper-2017.pdf (accessed on 12 May 2021).
- Goi, C.L. The impact of technological innovation on building a sustainable city. Int. J. Qual. Innov. 2017, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Bagan, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 064015. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Tong, X. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecol. Indic. 2018, 87, 22–32. [Google Scholar] [CrossRef]
- Li, J.; Zheng, X.; Zhang, C.; Chen, Y. Impact of Land-Use and Land-Cover Change on Meteorology in the Beijing–Tianjin–Hebei Region from 1990 to 2010. Sustainability 2018, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of urbanization on land use /cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Wakode, H.B.; Baier, K.; Jha, R.; Azzam, R. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. Int. Soil Water Conserv. Res. 2018, 6, 51–62. [Google Scholar] [CrossRef]
- Sato, Y.; Yamamoto, K. Population concentration, urbanization, and demographic transition. J. Urban Econ. 2005, 58, 45–61. [Google Scholar] [CrossRef]
- Fang, C.; Ma, H.; Wang, J. A Regional Categorization for “New-Type Urbanization” in China. PLoS ONE 2015, 10, e0134253. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Chen, C.; Hu, B. Governing urbanization and the New Urbanization Plan in China. Environ. Urban 2016, 28, 515–534. [Google Scholar] [CrossRef]
- Medeiros, E.; van der Zwet, A. Sustainable and Integrated Urban Planning and Governance in Metropolitan and Medium-Sized Cities. Sustainability 2020, 12, 5976. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, J.; Deng, X. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. Ambio 2005, 34, 450–455. [Google Scholar] [CrossRef]
- Quintero-Gallego, M.E.; Quintero-Angel, M.; Vila-Ortega, J.J. Exploring land use/land cover change and drivers in Andean mountains in Colombia: A case in rural Quindio. Sci. Total Environ. 2018, 634, 1288–1299. [Google Scholar] [CrossRef]
- Brenkert, A.L.; Malone, E.L. Modeling Vulnerability and Resilience to Climate Change: A Case Study of India and Indian States. Clim. Chang. 2005, 72, 57–102. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyk, S.; Bulk, D.; Jones, B.; Montgomery, M.R.; Engin, H. The heterogeneity and change in the urban structure of metropolitan areas in the United States, 1990–2010. Sci. Data 2019, 6, 321. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, I. Impacts of Land Change on Ecosystem Services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Zhao, B.; Kreuter, U.P.; Li, B.; Ma, Z.; Chen, J.; Nakagoshi, N. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Habibia, S.; Asadib, N. 2011 International Conference on Green Buildings and Sustainable Cities: Causes, results and methods of controlling urban sprawl. Procedia Eng. 2011, 21, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Li, X. A review of the international researches on land use/land cover change. Acta Geogr. Sin. 1996, 6, 553–558. [Google Scholar]
- Güneralp, B.; Lwasa, S.; Masundire, H.; Parnell, S.; Seto, K.C. Urbanization in Africa: Challenges and opportunities for conservation. Environ. Res. Lett. 2017, 13, 015002. [Google Scholar] [CrossRef]
- World Asia. Pakistan Surpasses Brazil to Become World’s 5th Most Populous Country. Available online: https://gulfnews.com/world/asia/pakistan/pakistan-surpasses-brazil-to-become-worlds-5th-most-populous-country-1.72557051 (accessed on 12 May 2021).
- Vani, M.; Kamraju, M. A Study on Growth and Distribution of Population in Hyderabad city. In Sustainable Development: A Dynamic Perspective, 1st ed.; Anjan Publisher: Kolkata, India, 2018. [Google Scholar]
- Gumma, M.K.; Mohammad, I.; Nedumaran, S.; Whitbread, A.; Lagerkvist, C.J. Urban Sprawl and Adverse Impacts on Agricultural Land: A Case Study on Hyderabad, India. Remote Sens. 2017, 9, 1136. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kharol, S.; Badarinath, K.V.S. Influence of vehicular traffic on urban air quality—A case study of Hyderabad, India. Transp. Res. Part. D Transport. Environ. 2010, 15, 154–159. [Google Scholar] [CrossRef]
- Freire, M. Urban Planning: Challenges in Developing Countries. I International Congress on Human Development. Madrid 2006. Available online: www.reduniversitaria.es/ficheros/Mila%20Freire(i).pdf (accessed on 12 May 2021).
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems for Land Resources Assessment, 3rd ed.; Clarendon Press: Oxford, UK, 2015. [Google Scholar]
- Lu, D.; Wang, Q. Urban Classification Using Full Spectral Information of Landsat ETM+ Imagery in Marion County, Indiana. Photogramm. Eng. Remote Sens. 2005, 71, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2015, 115, 1145–1161. [Google Scholar] [CrossRef]
- Rochon, G.L.; Johannsen, C.J.; Landgrebe, D.A.; Engel, B.A.; Harbor, J.M.; Majumder, S.; Biehi, L.L. Remote Sensing as a Tool for Achieving and Monitoring Progress Toward Sustainability. In Technological Choices for Sustainability; Sikdar, S.K., Glavic, P., Jain, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 415–428. [Google Scholar]
- Schneider, A.; Friedl, M.A.; Woodcock, C.E. Mapping urban areas by fusing multiple sources of coarse resolution remotely sensed data. Photogramm. Eng. Remote Sens. 2003, 69, 2623–2625. [Google Scholar] [CrossRef]
- Alphan, H. Land Use Change and Urbanization in Adana, Turkey. Land Degrad. Dev. 2003, 14, 575–586. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- USGS. Landsat Missions: Landsat Data Access. Available online: www.usgs.gov/core-science-systems/nli/landsat/landsat-data-access?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 12 May 2021).
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Hay, G.J.; Niemann, K.O. Visualizing 3-D Texture: A Three Dimensional Structural Approach to Model Forest Texture. Can. J. Remote Sens. 1994, 20, 90–101. [Google Scholar]
- Hay, G.J.; Niemann, K.O.; McLean, G. An Object-Specific Image-Texture Analysis of H-Resolution Forest Imagery. Remote Sens. Environ. 1996, 55, 108–122. [Google Scholar] [CrossRef]
- Marceau, D.J.; Howarth, P.J.; Dubois, J.M.M.; Gratton, D.J. Evaluation of the Grey-Level Co-Occurrence Matrix Method for Land-Cover Classification Using SPOT Imagery. IEEE Trans. Geosci. Remote Sens. 1990, 28, 513–519. [Google Scholar] [CrossRef]
- Li, X.; Yeh, G.O. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens. 1998, 19, 1501–1518. [Google Scholar] [CrossRef]
- Rimal, B.; Rijal, S.; Kunwar, R. Comparing Support Vector Machines and Maximum Likelihood Classifiers for Mapping of Urbanization. J. Indian Soc. Remote Sens. 2020, 48, 71–79. [Google Scholar] [CrossRef]
- Ha, T.V.; Tuohy, M.; Irwin, M.; Tuan, P.V. Monitoring and mapping rural urbanization and land use changes using Landsat data in the northeast subtropical region of Vietnam. Egypt. J. Remote Sens. Space Sci. 2020, 23, 11–19. [Google Scholar] [CrossRef]
- Geiß, C.; Leichtle, T.; Wurm, M.; Pelizari, P.A.; Standfuß, I.; Zhu, X.X.; So, E.; Siedentop, S.; Esch, T.; Taubenböck, H. Large-Area Characterization of Urban Morphology—Mapping of Built-Up Height and Density Using TanDEM-X and Sentinel-2 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 99, 1–16. [Google Scholar]
- Mesev, T.V.; Longley, P.A.; Batty, M.; Xie, Y. Morphology from Imagery: Detecting and Measuring the Density of Urban Land Use. Environ. Plan. A Environ. Plan. 1995, 27, 759–780. [Google Scholar] [CrossRef]
- Chadchan, J.; Shankar, R. An analysis of urban growth trends in the post-economic reforms period in India. Int. J. Sustain. Built Environ. 2012, 1, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.K.; Rai, A.; Rai, S.C. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt. J. Remote Sens. Space Sci. 2020, 23, 133–143. [Google Scholar] [CrossRef]
- Zafar, S.M. Spatio-temporal analysis of land cover/land use changes using geoinformatics (A Case Study of Margallah Hills National Park). Indian J. Sci. Technol. 2014, 7, 1832–1841. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. Springerplus 2016, 5, 812. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Mubeen, M.; Akram, W.; Ahmad, A.; Habib-Ur-Rahman, M.; Ghaffar, A.; Amin, A.; Awais, M.; Farid, H.U.; Farooq, A.; et al. Study of land cover/land use changes using RS and GIS: A case study of Multan district, Pakistan. Environ. Monit. Assess. 2019, 192, 2. [Google Scholar] [CrossRef] [PubMed]
- Talpur, M.A.M. The Vanishing Glory of Hyderabad (Sindh, Pakistan). UNIOR Web Journals. 2008. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.628.7661&rep=rep1&type=pdf (accessed on 14 May 2021).
- Telangana Today. For Hyderabad, This April Was Coolest in 5 Years. Available online: https://telanganatoday.com/for-hyderabad-this-april-was-coolest-in-5-years (accessed on 14 May 2021).
- Son, N.T.; Chen, C.F.; Chen, C.R. Urban expansion and its impacts on local temperature in San Salvador, El Salvador. Urban Clim. 2020, 32, 100617. [Google Scholar] [CrossRef]
- Xu, X.; Cai, H.; Qiao, Z.; Wang, L.; Jin, C.; Ge, Y.; Wang, L.; Xu, F. Impacts of park landscape structure on thermal environment using QuickBird and Landsat images. Chin. Geogr. Sci. 2017, 27, 818–826. [Google Scholar] [CrossRef]
- Zhao, M.; Cai, H.; Qiao, Z.; Xu, X. Influence of urban expansion on the urban heat island effect in Shanghai. Int. J. Geogr. Inf. Syst. 2016, 30, 2421–2441. [Google Scholar] [CrossRef]
- Wikipedia. Hyderabad, Sindh. Available online: https://en.wikipedia.org/wiki/Hyderabad,_Sindh (accessed on 14 May 2021).
- Mills, M.A. South Asian Folklore: An Encyclopedia, 1st ed.; Taylor & Francis: Abingdon, UK, 2003. [Google Scholar]
- United States Geological Survey (USGS). Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 14 May 2021).
- United States Geological Survey (USGS). USGS EROS Archive–Landsat Archives–Landsat 1–5 Multispectral Scanner (MSS) Level-1 Data Products. Available online: www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-1-5-multispectral-scanner-mss-level?qt-science_center_objects=0#qt-science_center_objects (accessed on 14 May 2021).
- NASA—Landsat Science. Operational Land Imager. Available online: https://landsat.gsfc.nasa.gov/landsat-8/operational-land-imager (accessed on 14 May 2021).
- United States Geological Survey (USGS). Landsat Missions—Landsat 8. Available online: www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 14 May 2021).
- United States Geological Survey (USGS). USGS EROS Archive–Landsat Archives–Landsat 4–5 Thematic Mapper (TM) Level-1 Data Products. Available online: www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-4-5-thematic-mapper-tm-level-1-data?qt-science_center_objects=0#qt-science_center_objects (accessed on 14 May 2021).
- L3HARRISTM. Geospatial. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH). Available online: www.l3harrisgeospatial.com/docs/flaash.html (accessed on 14 May 2021).
- ENVI. Atmospheric Correction Module: QUAC and FLAASH User’s Guide. Available online: www.l3harrisgeospatial.com/portals/0/pdfs/envi/Flaash_Module.pdf (accessed on 14 May 2021).
- Almazroui, M.; Mashat, A.; Assiri, M.E.; Butt, M.J. Application of Landsat Data for Urban Growth Monitoring in Jeddah. Earth Syst. Environ. 2017, 1, 25. [Google Scholar] [CrossRef] [Green Version]
- Mundia, C.N.; Aniya, M. Analysis of land use/cover changes and urban expansion of Nairobi city using remote sensing and GIS. Int. J. Remote Sens. 2005, 26, 2831–2849. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Q.; Ding, H.; Liang, H. Detection of urban expansion and land surface temperature change using multi-temporal landsat images. Resour. Conserv. Recycl. 2018, 128, 526–534. [Google Scholar] [CrossRef]
- L3HARRIS. Geospatial Other Radiometric Correction Tools. Available online: www.l3harrisgeospatial.com/docs/otherradiometriccorrectiontools.html (accessed on 26 July 2021).
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar] [CrossRef]
- Anderson, J.F.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A land use and land cover classification system for use with remote sensor data. U.S. Geol. Surv. Prof. Paper. 1976, 964, 28. [Google Scholar]
- Mallinis, G.; Emmanoloudis, D.; Giannakopoulos, V.; Maris, F.; Koutsias, N. Mapping and interpreting historical land cover/land use changes in a Natura 2000 site using earth observational data: The case of Nestos delta, Greece. Appl. Geogr. 2011, 31, 312–320. [Google Scholar] [CrossRef]
- Zomeni, M.; Tzanopoulous, J.; Pantis, J.D. Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landsc. Urban. Plan. 2008, 86, 38–46. [Google Scholar] [CrossRef]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Hadeel, A.; Jabbar, M.; Chen, X. Application of remote sensing and GIS to the study of land use/cover change and urbanization expansion in Basrah province, southern Iraq. Geo-Spat. Inf. Sci. 2009, 12, 135–141. [Google Scholar] [CrossRef]
- Mukesh, S.B.; Choudhary, K.; Kupriyanov, A. 2019 Land Cover Map of Southeast Asia at 30 m Spatial Resolution with Changes Since 2010. Opt. Mem. Neural Netw. 2020, 29, 257–262. [Google Scholar] [CrossRef]
- Stibig, H.J.; Belward, A.S.; Roy, P.S.; Wasrin, U.R.; Agrawal, S.; Joshi, P.K.; Hildanus Beuchle, R.; Fritz, R.S.; Mubareka, S.; Giri, C. A Land-Cover Map for South and Southeast Asia Derived from SPOT-VEGETATION Data. J. Biogeogr. 2007, 34, 625–637. [Google Scholar] [CrossRef]
- Dhodhi, M.K.; Saghri, J.A.; Ahmad, I.; Ul-Mustafa, R. D-ISODATA: A Distributed Algorithm for Unsupervised Classification of Remotely Sensed Data on Network of Workstations. J. Parallel Distr. Com. 1999, 59, 280–301. [Google Scholar] [CrossRef]
- Bakr, N.; Weindorf, D.C.; Bahnassy, M.H.; Marei, S.M.; El-Badawi, M.M. Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Appl. Geogr. 2010, 30, 592–605. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, X.; Nie, Q.; Sun, F.; Tang, L. The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China. Sustainability 2020, 12, 475. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Yan, Y.; Kuang, W.; Zhang, C.; Chen, C. Impacts of impervious surface expansion on soil organic carbon—A spatially explicit study. Sci. Rep. 2015, 5, 17905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2017, 11, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yang, K.; Chen, S.; Yang, C.; Zhang, S.; He, L. Enhanced normalized difference index for impervious surface area estimation at the plateau basin scale. J. Appl. Remote Sens. 2019, 13, 016502. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Huang, C.; David, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Mathur, A.; Foody, G.M. Crop classification by support vector machine with intelligently selected training data for an operational application. Int. J. Remote Sens. 2008, 29, 2227–2240. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int. J. Appl. Earth Obs. Geo-Inf. 2010, 12, 9–16. [Google Scholar] [CrossRef]
- Watanachaturaporn, P.; Arora, M.; Varshney, P.K. Multisource Classification Using Support Vector Machines. Photogramm. Eng. Remote Sens. 2008, 74, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT’92), Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Foody, G.M.; Boyd, D.S.; Sanchez-Hernandez, C. Mapping a specific class with an ensemble of classifiers. Int. J. Remote Sens. 2007, 28, 1733–1746. [Google Scholar] [CrossRef]
- Burges, C.J. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- ENVI. ENVI’s User Guide. Version 4.1 September 2004 Edition. Available online: http://aviris.gl.fcen.uba.ar/Curso_SR/biblio_sr/ENVI_userguid.pdf (accessed on 14 May 2021).
- Shin, M.; Park, C. A Radial Basis Function Approach to Pattern Recognition and Its Applications. ETRI J. 2000, 22, 1–10. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, C.K. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 2003, 19, 1132–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Cruz, F.; Artés-Rodríguez, A. Puncturing Multi-class Support Vector Machines. In Artificial Neural Networks—ICANN 2002. Lecture Notes in Computer Science; Dorronsoro, J.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2415. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Bishop, Y.; Fienberg, S.; Holland, P. Discrete Multivariate Analysis—Theory and Practice; MIT Press: Cambridge, UK, 1975. [Google Scholar]
- Purchell, G.P.; Rennels, G.D. Development and Evaluation of a Context-Based Document Representation for Searching the Medical Literature. Int. J. Digit. Libr. 1997, 1, 288–296. [Google Scholar] [CrossRef]
- Kamraju, M. Impact of Urbanisation on Lakes: A Case Study of Hyderabad. 05. 2016. Available online: www.researchgate.net/publication/342916988_IMPACT_OF_URBANISATION_ON_LAKES_A_Case_Study_of_Hyderabad (accessed on 4 June 2021).
- Rajpar, H.; Zhang, A.; Razzaq, A.; Mehmood, K.; Pirzado, M.B.; Hu, W. Agricultural Land Abandonment and Farmers’ Perceptions of Land Use Change in the Indus Plains of Pakistan: A Case Study of Sindh Province. Sustainability 2019, 11, 4663. [Google Scholar] [CrossRef] [Green Version]
- Franco, S.; Mandla, V.R.; Rao, K.R.M. Trajectory of Urban Growth and Its Socioeconomic Impact on a Rapidly Emerging Megacity. J. Urban. Plan. Dev. 2017, 143. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land Use and Land Cover Change in Greater Dhaka, Bangladesh: Using Remote Sensing to Promote Sustainable Urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Raut, S.; Chaudhary, P.; Thapa, L. Land Use/Land Cover Change Detection in Pokhara Metropolitan, Nepal Using Remote Sensing. J. Geosci. Environ. Prot. 2020, 8, 25–35. [Google Scholar] [CrossRef]
- Dytham, C.; Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions. J. Ecol. 1996, 84, 787. [Google Scholar] [CrossRef]
- Mahboob, M.; Atif, I.; Iqbal, J. Remote Sensing and GIS Applications for Assessment of Urban Sprawl in Karachi, Pakistan. Inf. Technol. Dev. 2015, 34, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.S.; Naz, L.; Jaffery, N.B. City Dynamics in Pakistan 2015 (Thematic Research Report Series); Applied Economics Research Centre, University of Karachi: Karachi, Pakistan, 2016. [Google Scholar]
- Akhter, S.T.; Noon, M.H. Modeling spillover effects of leapfrog development and urban sprawl upon institutional delinquencies: A case for Pakistan. Procedia Soc. Behav. Sci. 2016, 216, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Das, D. Hyderabad: Visioning, restructuring and making of a high-tech city. Cities 2015, 43, 48–58. [Google Scholar] [CrossRef]
- Bhatta, B. Analysis of Urban. Growth and Sprawl from Remote Sensing Data, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Harvey, R.O.; Clark, W.A.V. The Nature and Economics of Urban Sprawl. Land Econ. 1965, 41, 1–9. [Google Scholar] [CrossRef]
- Squires, G.D. Urban Sprawl Causes, Consequences and Policy Responses, 1st ed.; Urban Institute Press: Washington, DC, USA, 2002. [Google Scholar]
- Government of Pakistan. Pakistan Bureau of Statistics (PBS). Available online: www.pbs.gov.pk/ (accessed on 6 June 2021).
- Memon, N. Tackling Unemployment in Rural Sindh. Political Economy. 2017. Available online: www.thenews.com.pk/tns/detail/563621-tackling-unemployment-rural-sindh (accessed on 6 June 2021).
- Parmar, V.; Jalbani, A.A. Investment Trends in Hyderabad, Pakistan. J. Indep. Stud. Res. 2005, 3, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Masser, I. Urban growth pattern modeling: A case study of Wuhan city, PR China. Landsc. Urban. Plan. 2003, 62, 199–217. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Modelling urban growth and landscape changes in the Atlanta metropolitan area. Int. J. Geogr. Inf. Sci. 2003, 17, 463–488. [Google Scholar] [CrossRef]
- Peerzado, M.B.; Magsi, H.; Sheikh, M.J. Land use conflicts and urban sprawl: Conversion of agriculture lands into urbanization in Hyderabad, Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 423–428. [Google Scholar] [CrossRef]
- Bhalli, M.N.; Ghaffar, A.; Shirazai, S.A.; Parveen, N.; Anwar, M.M. Change Detection Analysis of Land Use by using Geospatial Techniques: A case study of Faisalabad-Pakistan. Sci. Int. 2012, 24, 539–546. [Google Scholar]
- Akbar, T.A.; Hassan, Q.K.; Ishaq, S.; Batool, M.; Butt, H.J.; Jabbar, H. Investigative Spatial Distribution and Modelling of Existing and Future Urban Land Changes and Its Impact on Urbanization and Economy. Remote Sens. 2019, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P. Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface energy budget changes. J. Geophys. Res. D Atmos. 2009, 114, D05110. [Google Scholar]
- Grossman-Clarke, S.; Zehnder, J.A.; Loridan, T.; Grimmond, C.S.B. Contribution of Land Use Changes to Near-Surface Air Temperatures during Recent Summer Extreme Heat Events in the Phoenix Metropolitan Area. J. Appl. Meteorol. Climatol. 2010, 49, 1649–1664. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Niyogil, D.; Tewari, M.; Aliaga, D.; Chen, F.; Tian, F.; Ni, G. Contrasting impacts of urban forms on the future thermal environment: Example of Beijing metropolitan area. Environ. Res. Lett. 2016, 11, 034018. [Google Scholar] [CrossRef] [Green Version]
- Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sens. 2018, 10, 1789. [Google Scholar] [CrossRef] [Green Version]
- Mak, H.W.L.; Ng, D.C.Y. Spatial and Socio-Classification of Traffic Pollutant Emissions and Associated Mortality Rates in High-Density Hong Kong via Improved Data Analytic Approaches. Int. J. Environ. Res. Public Health 2021, 18, 6532. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liu, Z.; Zhang, Y.; Xu, W.; Lv, X.; Liu, Y.; Lyu, H.; Li, X.; Xiao, J.; Ma, F. Study on Land-use Changes and Their Impacts on Air Pollution in Chengdu. Atmosphere 2020, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Montejano, J.; Monkkonen, P.; Guerra, E.; Caudillo, C. The Costs and Benefits of Urban Expansion, Evidence from Mexico, 1990–2010. Lincoln Institute of Land Policy. Available online: www.lincolninst.edu/publications/working-papers/costs-benefits-urban-expansion (accessed on 6 June 2021).
- Zubair, O.A.; Ji, W.; Festus, O. Urban Expansion and the Loss of Prairie and Agricultural Lands: A Satellite Remote-Sensing Based Analysis at a Sub-Watershed Scale. Sustainability 2019, 11, 4673. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Marshall, J.S. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 2009, 1, 89–95. [Google Scholar] [CrossRef]
- Argüeso, D.; Evans, J.P.; Pitman, A.J.; Di Luca, A. Effects of City Expansion on Heat Stress under Climate Change Conditions. PLoS ONE 2015, 10, e0117066. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.L.; Mak, H.W.L. From Comparative and Statistical Assessments of Liveability and Health Conditions of Districts in Hong Kong towards Future City Development. Sustainability 2021, 13, 8781. [Google Scholar] [CrossRef]
- The Planning Department (PlanD). Appendix F: Zoning to Achieve Mixed Use Developments. Available online: www.pland.gov.hk/pland_en/p_study/comp_s/metroplan/metro_finalreport/appendix_f.htm (accessed on 6 June 2021).
- Wang, Y.; Fukuda, H. Sustainable Urban Regeneration for Shrinking Cities: A Case from Japan. Sustainability 2019, 11, 1505. [Google Scholar] [CrossRef] [Green Version]
- Cities of Migration. Heritage and Modernity in Singapore’s Urban Renewal: Urban Redevelopment Authority. Available online: https://citiesofmigration.ca/good_idea/heritage-and-modernity-in-singapores-urban-renewal/ (accessed on 6 June 2021).
- Momtaz, S.; Kabir, Z. Evaluating Environmental and Social Impact Assessment in Developing Countries, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Mak, H.W.L.; Lam, Y.F. Comparative assessments and insights of data openness of 50 smart cities in air quality aspects. Sustain. Cities Soc. 2021, 69, 102868. [Google Scholar] [CrossRef]
Landsat Dataset | Description | Acquisition Time | Spatial Resolution (m) | Temporal Resolution |
---|---|---|---|---|
Landsat 3 MSS | With 5 spectral bands, one failed shortly after launch (1 Visible Green, 1 Visible Red, and 2 Near-Infrared bands) [61] | 9 September 1979 | 60 | 14 orbits per day |
Landsat 5 TM | With 7 spectral bands, including a thermal band (3 Visible, 2 Near-Infrared, 1 Thermal, and 1 Mid-Infrared bands) [64] | 22 September 1990 | 30 (reflective); 120 (thermal) | 16-day repeat cycle |
17 September 2000 | ||||
28 August 2010 | ||||
Landsat 8 OLI | With 9 spectral bands, including a pan ban (3 Visible, 1 Red, 1 Near-Infrared, 2 SWIR, 1 Panchromatic (PAN), and 1 Cirrus bands) [63] | 8 September 2020 | 30 (except Panchromatic band); 15 (Panchromatic) | 16-day repeat cycle |
Land-Use Type | Image (1979) | Image (1990) | Image (2000) | Image (2010) | Image (2020) |
---|---|---|---|---|---|
Agricultural land (A) | 1150 | 1500 | 1980 | 2200 | 3564 |
Vegetation (V) | 950 | 1800 | 2100 | 2477 | 2798 |
Built-up area (BU) | 1500 | 4034 | 5060 | 7895 | 8787 |
Waterbody (W) | 780 | 2430 | 2675 | 2786 | 2850 |
Barren land (B) | 550 | 680 | 1130 | 1230 | 1233 |
Referenced Data (Land-Use Types) | |||||||
---|---|---|---|---|---|---|---|
A | V | BU | W | B | Row Total | ||
Classified Data (Land Use Types) | A | ||||||
V | |||||||
BU | |||||||
W | |||||||
B | |||||||
Column Total |
Year | Metrics | Agricultural Land | Vegetation | Built-Up Area | Waterbody | Barren Land |
---|---|---|---|---|---|---|
1979 | Producer Accuracy (PA) | 88.56 | 91.66 | 86.97 | 87.92 | 95.64 |
User Accuracy (UA) | 80.48 | 88.88 | 81.76 | 83.79 | 93.55 | |
Overall Accuracy (OA) | 87.45 | |||||
Kappa Coefficient (KC) | 0.81 | |||||
1990 | Producer Accuracy (PA) | 95.69 | 92.65 | 97.88 | 98.56 | 98.99 |
User Accuracy (UA) | 92.33 | 90.37 | 96.33 | 97.00 | 97.06 | |
Overall Accuracy (OA) | 98.08 | |||||
Kappa Coefficient (KC) | 0.97 | |||||
2000 | Producer Accuracy (PA) | 98.66 | 97.77 | 98.79 | 96.87 | 99.54 |
User Accuracy (UA) | 97.23 | 96.00 | 97.02 | 95.44 | 98.97 | |
Overall Accuracy (OA) | 98.88 | |||||
Kappa Coefficient (KC) | 0.98 | |||||
2010 | Producer Accuracy (PA) | 98.15 | 99.09 | 98.77 | 92.65 | 96.98 |
User Accuracy (UA) | 97.77 | 98.33 | 97.52 | 96.76 | 98.99 | |
Overall Accuracy (OA) | 97.77 | |||||
Kappa Coefficient (KC) | 0.97 | |||||
2020 | Producer Accuracy (PA) | 98.89 | 99.76 | 97.66 | 98.99 | 95.87 |
User Accuracy (UA) | 97.66 | 99.00 | 96.87 | 96.34 | 99.09 | |
Overall Accuracy (OA) | 98.33 | |||||
Kappa Coefficient (KC) | 0.97 |
Initial: 1979 | Agricultural Land (km2) | Vegetation (km2) | Built-Up Area (km2) | Waterbody (km2) | Barren Land (km2) | Total in 2020 (km2) | |
---|---|---|---|---|---|---|---|
Final: 2020 | |||||||
Agricultural land (km2) | 7.57 | 8.42 | 2.77 | 0.81 | 1.92 | 21.43 | |
Vegetation (km2) | 5.45 | 9.78 | 4.79 | 2.16 | 3.27 | 25.45 | |
Built-up area (km2) | 11.39 | 28.00 | 42.49 | 10.19 | 20.21 | 112.28 | |
Waterbody (km2) | 0.28 | 1.07 | 2.43 | 4.50 | 0.68 | 8.96 | |
Barren Land (km2) | 0.08 | 0.16 | 0.17 | 0.03 | 3.76 | 4.19 | |
Total in 1979 (km2) | 24.84 | 47.51 | 52.88 | 17.95 | 29.13 | 173.02 | |
(km2) from SVM | −3.41 | −22.06 | 59.40 | −8.99 | −24.94 | ||
from Landsat Images (km2) | −3.15 | −21.91 | 59.65 | −8.96 | −25.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ul Din, S.; Mak, H.W.L. Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sens. 2021, 13, 3337. https://doi.org/10.3390/rs13163337
Ul Din S, Mak HWL. Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sensing. 2021; 13(16):3337. https://doi.org/10.3390/rs13163337
Chicago/Turabian StyleUl Din, Shaker, and Hugo Wai Leung Mak. 2021. "Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework" Remote Sensing 13, no. 16: 3337. https://doi.org/10.3390/rs13163337
APA StyleUl Din, S., & Mak, H. W. L. (2021). Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sensing, 13(16), 3337. https://doi.org/10.3390/rs13163337