FTIR Measurements of Greenhouse Gases over Thessaloniki, Greece in the Framework of COCCON and Comparison with S5P/TROPOMI Observations
Abstract
:1. Introduction
2. Instrumentation and Data
2.1. The Thessaloniki EM27/SUN Spectrometer
2.2. S5P/TROPOMI Methane and Carbon Monoxide Observations
2.3. Roadmap of the Methodology
3. Results
3.1. Column-Averaged Dry-Air Mole Fractions of Carbon Dioxide, XCO2
3.2. Column-Averaged Dry-Air Mole Fractions of Carbon Monoxide, XCO
3.3. Column-Averaged Dry-Air Mole Fractions of Methane, XCH4
4. Comparison with Sentinel-5P TROPOMI
4.1. Methane
4.2. Carbon Monoxide
5. Study of the Co-Variability of XCO2, XCO and XCH4
5.1. Carbon Monoxide and Carbon Dioxide Co-Variability
5.2. Carbon Monoxide and Methane Co-Variability
6. Conclusions
- The XCO2 timeseries shows a discernible seasonal cycle with a winter and spring maximum driven by anthropogenic emissions and a summer minimum due to biospheric activity for a typical mid-latitude Northern Hemisphere location. The XCO timeseries also reveals high winter and lower summer levels reflecting the common sources with CO2, albeit with a large daily variability due to local influences. Concerning XCH4 an increase begins in the summer, when maximum temperatures occur, to reach its maximum levels in the wintertime, when most anthropogenic emissions occur.
- The percentage variability of daily mean values in the course of the year is found to be ~2.9% in the case of XCO2, while for XCH4 it is found to be similar, at 3.7%, while for XCO it is much higher around 40.0%. These results are comparable to those obtained from previous studies of greenhouse gases [8], revealing the biospheric cycle for CO2, relatively stable sources for CH4 and intense variability due to anthropogenic emissions for XCO.
- The comparisons to the S5P/TROPOMI observations showed an excellent correlation between ground-based and space-borne measurements. The collocated XCH4 TROPOMI observations over Thessaloniki have a mean value of 1.871 ± 0.017 ppm while FTIR mean values are also 1.872 ± 0.014 ppm. Similarly, for XCO, TROPOMI results in a mean value of 0.094 ± 0.010 ppm, very close to that of the FTIR (0.091 ± 0.008 ppm).
- The study of the seasonal co-variability of the ΔXCO and ΔXCO2 residuals showed that they have a strong correlation in winter (R2 = 0.898), with a significant correlation found also in spring. They are not correlated in summer and autumn, reflecting the higher CO2 seasonal cycle variability than that of XCO. As for the ΔXCO and ΔXCH4 co-variability, this was found to be excellent for all seasons. Winter shows the best correlation (R2 = 0.804, slope = 1.209), while in summer we also found a good agreement (R2 = 0.683, slope = 1.196) with this strong interconnectivity underlies the CH4-OH-CO chemistry as well as possible common sources.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Dlugokencky, E.J.; Nisbet, E.G.; Fisher, R.; Lowry, D. Global atmospheric methane: Budget, changes and dangers. Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 2058–2072. [Google Scholar] [CrossRef] [Green Version]
- Zimnoch, M.; Necki, J.; Chmura, L.; Jasek, A.; Jelen, D.; Galkowski, M.; Kuc, T.; Gorczyca, Z.; Bartyzel, J.; Rozanski, K. Quantification of carbon dioxide and methane emissions in urban areas: Source apportionment based on atmospheric observations. Mitig. Adapt. Strat. Glob. Chang. 2018, 24, 1051–1071. [Google Scholar] [CrossRef] [Green Version]
- Vogel, F.R.; Frey, M.; Staufer, J.; Hase, F.; Broquet, G.; Xueref-Remy, I.; Chevallier, F.; Ciais, P.; Sha, M.K.; Chelin, P.; et al. XCO2 in an emission hot-spot region: The COCCON Paris campaign 2015. Atmos. Chem. Phys. 2019, 19, 3271–3285. [Google Scholar] [CrossRef] [Green Version]
- Hase, F.; Frey, M.; Blumenstock, T.; Gros, J.M.; Kiel, M.; Kohlhepp, R.; Tsidu, G.M.; Schafer, K.V.R.; Sha, M.K.; Orphal, J. Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin. Atmos. Meas. Tech. 2015, 8, 3059–3068. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Toon, G.C.; Sherlock, V.; Deutscher, N.M.; Liu, C.; Feist, D.G.; Wennberg, P.O. The Total Carbon Column Observing Network’s GGG2014 Data Version. 2015. Available online: https://doi.org/10.14291/tccon.ggg2014.documentation.R0/1221662 (accessed on 10 April 2021).
- Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The total carbon column observing network. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.; Sha, M.K.; Hase, F.; Kiel, M.; Blumenstock, T.; Harig, R.; Surawicz, G.; Deutscher, N.M.; Shiomi, K.; Franklin, J.E.; et al. Building the COllaborative carbon column observing network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech. 2019, 12, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.; Hase, F.; Blumenstock, T.; Gros, J.M.; Kiel, M.; Tsidu, G.M.; Schäfer, K.; Sha, M.K.; Orphal, J. Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions. Atmos. Meas. Tech. 2015, 8, 3047–3057. [Google Scholar] [CrossRef] [Green Version]
- Gisi, M.; Hase, F.; Dohe, S.; Blumenstock, T.; Simon, A.M.; Keens, A. XCO2-measurements with a tabletop FTS using solar absorption spectroscopy. Atmos. Meas. Tech. 2012, 5, 2969–2980. [Google Scholar] [CrossRef] [Green Version]
- Hedelius, J.K.; Viatte, C.; Wunch, D.; Roehl, C.M.; Toon, G.C.; Chen, J.; Jones, T.; Wofsy, S.C.; Franklin, J.E.; Parker, H.; et al. Assessment of errors and biases in retrievals of XCO2, XCH4, XCO, and XN2O from a 0.5 cm–1 resolution solar-viewing spectrometer. Atmos. Meas. Tech. 2016, 9, 3527–3546. [Google Scholar] [CrossRef] [Green Version]
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov, V.V.; Chance, K.; Goede, A.P.H. SCIAMACHY: Mission Objectives and Measurement Modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Deeter, M.; Emmons, L.K.; Francis, G.L.; Edwards, D.P.; Gille, J.C.; Warner, J.; Khattatov, B.V.; Ziskin, D.; Lamarque, J.; Ho, S.; et al. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J. Geophys. Res. Space Phys. 2003, 108, 4399. [Google Scholar] [CrossRef]
- Turquety, S.; Hadji-Lazaro, J.; Clerbaux, C.; Hauglustaine, D.; Clough, S.A.; Cassé, V.; Schlüssel, P.; Mégie, G. Operational trace gas retrieval algorithm for the Infrared Atmos. Sounding Interferometer. J. Geophys. Res. Space Phys. 2004, 109, 21301. [Google Scholar] [CrossRef]
- De Wachter, E.; Kumps, N.; Vandaele, A.C.; Langerock, B.; De Mazière, M. Retrieval and validation of MetOp/IASI methane. Atmos. Meas. Tech. 2017, 10, 4623–4638. [Google Scholar] [CrossRef] [Green Version]
- Hochstaffl, P.; Schreier, F.; Lichtenberg, G.; García, S.G. Validation of carbon monoxide total column retrievals from SCIAMACHY observations with NDACC/TCCON ground-based measurements. Remote Sens. 2018, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Hase, F.; Frey, M.; Kiel, M.; Blumenstock, T.; Harig, R.; Keens, A.; Orphal, J. Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements. Atmos. Meas. Tech. 2016, 9, 2303–2313. Available online: https://www.atmos-meas-tech.net/9/2303/2016/ (accessed on 21 May 2021). [CrossRef] [Green Version]
- Sha, M.K.; De Mazière, M.; Notholt, J.; Blumenstock, T.; Chen, H.; Dehn, A.; Griffith, D.W.T.; Hase, F.; Heikkinen, P.; Hermans, C.; et al. Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO. Atmos. Meas. Tech. 2020, 13, 4791–4839. [Google Scholar] [CrossRef]
- Keppel-Aleks, G.; Toon, G.C.; Wennberg, P.O.; Deutscher, N.M. Reducing the impact of source brightness fluctuations on spectra obtained by Fourier-transform spectrometry. Appl. Opt. 2007, 46, 4774–4779. [Google Scholar] [CrossRef] [Green Version]
- Hase, F.; Blumenstock, T.; Paton-Walsh, C. Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software. Appl. Opt. 1999, 38, 3417–3422. [Google Scholar] [CrossRef]
- Geibel, M.C.; Messerschmidt, J.; Gerbig, C.; Blumenstock, T.; Chen, H.; Hase, F.; Kolle, O.; Lavric, J.V.; Notholt, J.; Palm, M.; et al. Calibration of column-averaged CH4 over European TCCON FTS sites with airborne in-situ measurements. Atmos. Chem. Phys. Discuss. 2012, 12, 8763–8775. [Google Scholar] [CrossRef]
- Messerschmidt, J.; Macatangay, R.; Notholt, J.; Petri, C.; Warneke, T.; Weinzierl, C. Side by side measurements of CO2 by ground-based Fourier transform spectrometry (FTS). Tellus B Chem. Phys. Meteorol. 2010, 62, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Toon, G.C.; Wennberg, P.; Wofsy, S.C.; Stephens, B.; Fischer, M.L.; Uchino, O.; Abshire, J.B.; Bernath, P.; Biraud, S.; et al. Calibration of the total carbon column observing network using aircraft profile data. Atmos. Meas. Tech. 2010, 3, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- Veefkind, J.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.; de Haan, J.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Zehner, C. Sentinel-5 precursor mission status and first results. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1589–1590. [Google Scholar] [CrossRef]
- Hu, H.; Hasekamp, O.; Butz, A.; Galli, A.; Landgraf, J.; De Brugh, J.A.; Borsdorff, T.; Scheepmaker, R.; Aben, I. The operational methane retrieval algorithm for TROPOMI. Atmos. Meas. Tech. 2016, 9, 5423–5440. [Google Scholar] [CrossRef] [Green Version]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; De Brugh, J.A.; Schneider, A.; Wu, L.; Hase, F.; Kivi, R.; Wunch, D.; et al. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- Landgraf, J.; De Brugh, J.A.; Scheepmaker, R.; Borsdorff, T.; Hu, H.; Houweling, S.; Butz, A.; Aben, I.; Hasekamp, O. Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements. Atmos. Meas. Tech. 2016, 9, 4955–4975. [Google Scholar] [CrossRef] [Green Version]
- Borsdorff, T.; Hasekamp, O.P.; Wassmann, A.; Landgraf, J. Insights into Tikhonov regularization: Application to trace gas column retrieval and the efficient calculation of total column averaging kernels. Atmos. Meas. Tech. 2014, 7, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Borsdorff, T.; De Brugh, J.A.; Hu, H.; Hasekamp, O.; Sussmann, R.; Rettinger, M.; Hase, F.; Gross, J.; Schneider, M.; Garcia, O.; et al. Mapping carbon monoxide pollution from space down to city scales with daily global coverage. Atmos. Meas. Tech. 2018, 11, 5507–5518. [Google Scholar] [CrossRef] [Green Version]
- Borsdorff, T.; De Brugh, J.A.; Hu, H.; Aben, I.; Hasekamp, O.; Landgraf, J. Measuring carbon monoxide with TROPOMI: First results and a comparison with ECMWF-IFS analysis data. Geophys. Res. Lett. 2018, 45, 2826–2832. [Google Scholar] [CrossRef]
- Borsdorff, T.; De Brugh, J.A.; Pandey, S.; Hasekamp, O.; Aben, I.; Houweling, S.; Landgraf, J. Carbon monoxide air pollution on sub-city scales and along arterial roads detected by the Tropospheric Monitoring Instrument. Atmos. Chem. Phys. Discuss. 2019, 19, 3579–3588. [Google Scholar] [CrossRef] [Green Version]
- Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products #06: April 2018–February 2020. In ESA MPC S5P MPC. Routine Operations Consolidated Validation Report; S5P MPC Routine Operations Consolidated Validation Report Series; Issue #06, Version 06.0.1; Lambert, J.-C.; Compernolle, S.; Eichmann, K.-U.; de Graaf, M.; Hubert, D.; Keppens, A.; Kleipool, Q.; Langerock, B.; Sha, M.K.; Verhoelst, T.; et al. (Eds.) Tropomi: Utrecht, The Netherlands, 2020; p. 154. [Google Scholar]
- Knapp, M.; Kleinschek, R.; Hase, F.; Agustí-Panareda, A.; Inness, A.; Barré, J.; Landgraf, J.; Borsdorff, T.; Kinne, S.; Butz, A. Shipborne measurements of XCO2, XCH4, and XCO above the Pacific Ocean and comparison to CAMS atmospheric analyses and S5P/TROPOMI. Earth Syst. Sci. Data 2021, 13, 199–211. [Google Scholar] [CrossRef]
- Sha, M.K.; Langerock, B.; Blavier, J.-F.L.; Blumenstock, T.; Borsdorff, T.; Buschmann, M.; Dehn, A.; De Mazière, M.; Deutscher, N.M.; Feist, D.G.; et al. Validation of methane and carbon monoxide from sentinel-5 precursor using TCCON and NDACC-IRWG stations. Atmos. Meas. Tech. Discuss. 2021. [Google Scholar] [CrossRef]
- Suni, T.; Berninger, F.; Markkanen, T.; Keronen, P.; Rannik, Ü.; Vesala, T. Interannual variability and timing of growing-season CO2 exchange in a boreal forest. J. Geophys. Res. Space Phys. 2003, 108, 4265. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, M.; Langerock, B.; Sha, M.K.; Hermans, C.; Wang, T.; Ji, D.; Vigouroux, C.; Kumps, N.; Wang, G.; et al. New ground-based Fourier-transform nearinfrared solar absorption measurements of XCO2, XCH4 and XCO at Xianghe, China. Earth Syst. Sci. Data 2020, 12, 1679–1696. [Google Scholar] [CrossRef]
- Wennberg, P.O.; Wunch, D.; Roehl, C.; Blavier, J.-F.; Toon, G.C.; Allen, N. TCCON data from Caltech (US), Release GGG2014. R1. 2014. Available online: https://data.caltech.edu/records/277 (accessed on 10 April 2021).
- Hase, F.; Blumenstock, T.; Dohe, S.; Gross, J.; Kiel, M. TCCON data from Karlsruhe (DE), Release GGG2014. R0. 2014. Available online: https://data.caltech.edu/records/278 (accessed on 10 April 2021).
- Lelieveld, J.; Gromov, S.; Pozzer, A.; Taraborrelli, D. Global tropospheric hydroxyl distribution, budget and reactivity. Atmos. Chem. Phys. 2016, 16, 12477–12493. [Google Scholar] [CrossRef] [Green Version]
- Spivakovsky, C.M.; Logan, J.A.; Montzka, S.; Balkanski, Y.; Foreman-Fowler, M.; Jones, D.B.A.; Horowitz, L.; Fusco, A.C.; Brenninkmeijer, C.A.M.; Prather, M.J.; et al. Three-dimensional climatological distribution of tropospheric OH: Update and evaluation. J. Geophys. Res. Space Phys. 2000, 105, 8931–8980. [Google Scholar] [CrossRef]
- Müller, J.; Stavrakou, T.; Bauwens, M.; George, M.; Hurtmans, D.; Coheur, P.; Clerbaux, C.; Sweeney, C. Top-down CO emissions based on IASI observations and hemispheric constraints on OH levels. Geophys. Res. Lett. 2018, 45, 1621–1629. [Google Scholar] [CrossRef] [Green Version]
- Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 2016, 8, 697–751. [Google Scholar] [CrossRef] [Green Version]
- Javadinejad, S.; Eslamian, S.; Ostad-Ali-Askari, K. Investigation of monthly and seasonal changes of methane gas with respect to climate change using satellite data. Appl. Water Sci. 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- S5P MPC. Routine Operations Consolidated Validation Report, (ROCVR) Quarterly Validation Report of the Sentinel-5 Precursor Operational Data Products. Available online: https://mpc-vdaf.tropomi.eu/ProjectDir/reports//pdf/S5P-MPC-IASB-ROCVR-10.01.00-20210326-signed.pdf (accessed on 6 May 2021).
- Ammoura, L.; Xueref-Remy, I.; Gros, V.; Baudic, A.; Bonsang, B.; Petit, J.-E.; Perrussel, O.; Bonnaire, N.; Sciare, J.; Chevallier, F. Atmospheric measurements of ratios between CO2 and co-emitted species from traffic: A tunnel study in the Paris megacity. Atmos. Chem. Phys. 2014, 14, 12871–12882. [Google Scholar] [CrossRef] [Green Version]
- Hase, F. Verify, Observation-Based System for Monitoring and Verification of Greenhouse Gases; GA number 776810; RIA, Contributors: C. Jäschke (UHEI), C. Alberti (KIT), S. Hammer (UHEI), F. Hase (KIT), C. Rosendahl (UHEI); European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Bölük, G.; Mert, M. Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy 2014, 74, 439–446. [Google Scholar]
- Koplitz, S.N.; Jacob, D.J.; Sulprizio, M.P.; Myllyvirta, L.; Reid, C. Burden of disease from rising coal-fired power plant emissions in Southeast Asia. Environ. Sci. Technol. 2017, 51, 1467–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassler, B.; McDonald, B.C.; Frost, G.J.; Borbon, A.; Carslaw, D.C.; Civerolo, K.; Granier, C.; Monks, P.S.; Monks, S.; Parrish, D.D.; et al. Analysis of long-term observations of NOx and CO in megacities and application to constraining emissions inventories. Geophys. Res. Lett. 2016, 43, 9920–9930. [Google Scholar] [CrossRef] [Green Version]
- Karydas, C.; Toukiloglou, P.; Minakou, C.; Gitas, I.Z. Development of a rule-based algorithm for rice cultivation mapping using Landsat 8 time series. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 19 June 2015; Volume 9535, p. 95350K. [Google Scholar] [CrossRef]
- Ehhalt, D.H. Photooxidation of trace gases in the troposphere Plenary Lecture. Phys. Chem. Chem. Phys. 1999, 1, 5401–5408. [Google Scholar] [CrossRef]
- Petersen, A.K.; Warneke, T.; Lawrence, M.G.; Notholt, J.; Schrems, O. First ground-based FTIR Observations of the seasonal variation of carbon monoxide in the tropics. Geophys. Res. Lett. 2008, 35, L03813. [Google Scholar] [CrossRef] [Green Version]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Naik, V.; Voulgarakis, A.; Fiore, A.M.; Horowitz, L.W.; Lamarque, J.-F.; Lin, M.; Prather, M.J.; Young, P.J.; Bergmann, D.; Cameron-Smith, P.J.; et al. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmos. Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 5277–5298. [Google Scholar] [CrossRef] [Green Version]
- Voulgarakis, A.; Naik, V.; Lamarque, J.-F.; Shindell, D.T.; Young, P.J.; Prather, M.J.; Wild, O.; Field, R.D.; Bergmann, D.; Cameron-Smith, P.; et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. Discuss. 2013, 13, 2563–2587. [Google Scholar] [CrossRef] [Green Version]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Seinfeld, J.H. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Pandis, S.N., Hoboken, N.J., Eds.; John & Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wofsy, S. Interactions of CH4 and CO in the Earth’s atmosphere. Annu. Rev. Earth Planet. Sci. 1976, 4, 441–469. [Google Scholar] [CrossRef]
XCO2 | XCO | XCH4 | |
---|---|---|---|
Minimum daily mean (ppm) | 404.94 ± 0.61 | 0.076 ± 0.003 | 1.830 ± 0.001 |
Maximum daily mean (ppm) | 417.03 ± 0.72 | 0.114 ± 0.003 | 1.901 ± 0.001 |
Peak-to-peak variability of daily mean values (%) | 2.9 | 40.1 | 3.7 |
Annual mean difference (ppm) | +2.738 | +0.002 | +0.015 |
Growth rate (%) | 0.67 | 2.85 | 0.78 |
[Lat, Lon] | Elevation (m) | Population | Land Use (km2) | |
---|---|---|---|---|
Thessaloniki | [40.6°N, 22.9°E] | 250 | 1,030,338 | 111.703 |
Karlsruhe | [49.1°N, 8.44°E] | 115 | 308,436 | 173.46 |
Lamont | [36.60°N, 97.49°W] | 123 | 15,120 | 11.888 |
Pasadena | [34.1°N, 118.13°W] | 263 | 141,258 | 59.47 |
Xianghe | [39.75°N, 116.96°E] | 12 | 310,000 | 458 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mermigkas, M.; Topaloglou, C.; Balis, D.; Koukouli, M.E.; Hase, F.; Dubravica, D.; Borsdorff, T.; Lorente, A. FTIR Measurements of Greenhouse Gases over Thessaloniki, Greece in the Framework of COCCON and Comparison with S5P/TROPOMI Observations. Remote Sens. 2021, 13, 3395. https://doi.org/10.3390/rs13173395
Mermigkas M, Topaloglou C, Balis D, Koukouli ME, Hase F, Dubravica D, Borsdorff T, Lorente A. FTIR Measurements of Greenhouse Gases over Thessaloniki, Greece in the Framework of COCCON and Comparison with S5P/TROPOMI Observations. Remote Sensing. 2021; 13(17):3395. https://doi.org/10.3390/rs13173395
Chicago/Turabian StyleMermigkas, Marios, Chrysanthi Topaloglou, Dimitrios Balis, Maria Elissavet Koukouli, Frank Hase, Darko Dubravica, Tobias Borsdorff, and Alba Lorente. 2021. "FTIR Measurements of Greenhouse Gases over Thessaloniki, Greece in the Framework of COCCON and Comparison with S5P/TROPOMI Observations" Remote Sensing 13, no. 17: 3395. https://doi.org/10.3390/rs13173395
APA StyleMermigkas, M., Topaloglou, C., Balis, D., Koukouli, M. E., Hase, F., Dubravica, D., Borsdorff, T., & Lorente, A. (2021). FTIR Measurements of Greenhouse Gases over Thessaloniki, Greece in the Framework of COCCON and Comparison with S5P/TROPOMI Observations. Remote Sensing, 13(17), 3395. https://doi.org/10.3390/rs13173395