Delineating Functional Urban Areas Using a Multi-Step Analysis of Artificial Light-at-Night Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Phases
2.2. Data Sources
- (1)
- The ALAN raster maps of France and Spain (see Figure 3), used in the study for model training and validation, and ALAN raster for Austria, used for additional validation of the models’ performance, were clipped from 2015 radiance-calibrated ALAN image downloaded from the VIIRS/SNPP website [48]. The ALAN data used in the study are free of background noise, solar and lunar contamination, and also free from data degraded by cloud cover, and features unrelated to electric lighting (e.g., fires, flares, volcanoes) [49]. In addition, the data underwent an outlier removal procedure, applied to abnormally high radiance pixels that occur infrequently over a year [49]. The image in question is the closest temporal match for other data sources used in the analysis, specifically for the FUA delineations, available for 2011 only (Figure 4). Although ALAN images are available today from the VIIRS-SNPP website on a monthly basis, and, since 2018, as daily composites [50], we opted to use an annual composite image, so as to minimize disturbances resulting from ALAN seasonal fluctuations and weather conditions, such as, e.g., cloud cover, which are often present in monthly and daily composites [50]. The subject image is of a ~500 × 500 m spatial resolution and reports the summarized intensity of nighttime light in nW/cm2/sr for different wavelengths in the 500–900 ηm diapason [46]. In the image, ALAN levels vary from 0 to 4187 nW/cm2/sr for France, and from 0 to 550 nW/cm2/sr for Spain (see Figure 3 and Table 1).
- (2)
- (3)
- The latitudes of the FUA cores’ centroids and distances to the closest major city, used to explain the variance of the optimal ALAN thresholds, were calculated using the above FUA cores’ shapefiles by applying ArcGIS−10.x software tools.
- (4)
- Population density of the FUA cores, and population densities of their 5–15–25 km buffers, also used as explanatory variables for the estimation of the optimal ALAN thresholds, were calculated using 1 × 1 km population grids obtained from the LandScan database for 2011 [52].
2.3. Initial Determination of the ALAN Thresholds
2.4. Correction for Compactness
2.5. Regression Modelling
2.6. Adjustment for Contiguity
2.7. Initial Validation
2.8. Second-Step Validation
3. Results
3.1. Optimal ALAN Thresholds
3.2. Explaining the Variance of the Observed ALAN Thresholds
3.3. Model Cross-Validation
3.4. Model-Estimated vs. Commuting-Based FUAs’ Delineations
3.5. Second-Step Validation
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Upper Subfigures | |||||
---|---|---|---|---|---|
ID Number | FUA Code | FUA Name | ID Number | FUA Code | FUA Name |
France | Spain | ||||
1 | FR067 | Quimper | 1 | ES053 | Ciudad Real |
2 | FR061 | Niort | 2 | ES538 | Avila |
3 | FR021 | Poitiers | 3 | ES546 | Merida |
4 | FR053 | La Rochelle | 4 | ES016 | Toledo |
5 | FR051 | Troyes | 5 | ES057 | Ponferrada |
6 | FR086 | Evreux | 6 | ES527 | Jaen |
7 | FR066 | Saint-Brieuc | 7 | ES050 | Manresa |
8 | FR077 | Roanne | 8 | ES011 | Santiago de Compostela |
9 | FR035 | Tours | 9 | ES040 | Talavera de la Reina |
10 | FR059 | Chalon-sur-Saone | 10 | ES540 | Chiclana de la Frontera |
11 | FR093 | Brive-la-Gaillarde | 11 | ES545 | Lorca |
12 | FR104 | Chalons-en-Champagne | 12 | ES528 | Lleida |
13 | FR076 | Belfort | 13 | ES529 | Ourense |
14 | FR025 | Besancon | 14 | ES059 | Zamora |
15 | FR073 | Tarbes | 15 | ES523 | Leon |
16 | FR505 | Charleville-Mezieres | 16 | ES031 | Lugo |
17 | FR038 | Le Mans | 17 | ES043 | Ferrol |
18 | FR037 | Brest | 18 | ES034 | Caceres |
19 | FR068 | Vannes | 19 | ES515 | Burgos |
20 | FR096 | Albi | 20 | ES519 | Albacete |
21 | FR050 | Montbeliard | 21 | ES014 | Pamplona |
22 | FR074 | Compiegne | 22 | ES041 | Palencia |
23 | FR022 | Clermont-Ferrand | 23 | ES542 | Basin |
24 | FR023 | Caen | 24 | ES017 | Badajoz |
25 | FR506 | Colmar | 25 | ES544 | Linares |
26 | FR036 | Angers | 26 | ES510 | Donostia-San Sebastian |
27 | FR019 | Orleans | 27 | ES062 | Sanlucar de Barrameda |
28 | FR049 | Lorient | 28 | ES033 | Girona |
29 | FR058 | Chambery | 29 | ES013 | Oviedo |
30 | FR069 | Cherbourg | 30 | ES009 | Valladolid |
31 | FR018 | Reims | 31 | ES022 | Vigo |
32 | FR090 | Chateauroux | 32 | ES054 | Benidorm |
33 | FR056 | Angouleme | 33 | ES501 | Granada |
34 | FR063 | Beziers | 34 | ES044 | Pontevedra |
35 | FR020 | Dijon | 35 | ES537 | Alcoy |
36 | FR064 | Arras | 36 | ES514 | Almeria |
37 | FR057 | Boulogne-sur-Mer | 37 | ES552 | Igualada |
38 | FR016 | Nancy | 38 | ES547 | Sagunto |
39 | FR014 | Amiens | 39 | ES026 | Coruna (A) |
40 | FR048 | Annecy | 40 | ES007 | Murcia |
41 | FR079 | Saint-Quentin | 41 | ES037 | Puerto de Santa Maria, El |
42 | FR045 | Pau | 42 | ES516 | Salamanca |
43 | FR006 | Strasbourg | 43 | ES021 | Alicante |
44 | FR215 | Rouen | 44 | ES073 | Elda |
45 | FR082 | Beauvais | 45 | ES048 | Guadalajara |
46 | FR304 | Melun | 46 | ES046 | Gandia |
47 | FR011 | Saint-Etienne | 47 | ES020 | Cordoba |
48 | FR084 | Creil | 48 | ES023 | Gijon |
49 | FR214 | Valence | 49 | ES533 | Marbella |
50 | FR046 | Bayonne | 50 | ES532 | Algeciras |
51 | FR026 | Grenoble | 51 | ES004 | Seville |
52 | FR065 | Bourges | 52 | ES035 | Torrevieja |
53 | FR060 | Chartres | 53 | ES018 | Logrono |
54 | FR099 | Frejus | 54 | ES028 | Reus |
55 | FR039 | Avignon | 55 | ES522 | Cadiz |
56 | FR024 | Limoges | 56 | ES005 | Saragossa |
57 | FR205 | Nice | 57 | ES006 | Malaga |
58 | FR034 | Valenciennes | 58 | ES508 | Jerez de la Frontera |
59 | FR008 | Nantes | 59 | ES065 | Linea de la Concepcion, La |
60 | FR010 | Montpellier | 60 | ES012 | Vitoria |
61 | FR040 | Mulhouse | 61 | ES505 | Elche/Elx |
62 | FR047 | Annemasse | 62 | ES521 | Huelva |
63 | FR007 | Bordeaux | 63 | ES001 | Madrid |
64 | FR004 | Toulouse | 64 | ES070 | Irun |
65 | FR043 | Perpignan | 65 | ES520 | Castellon de la Plana/Castello de la Plana |
66 | FR044 | Nimes | 66 | ES015 | Santander |
67 | FR052 | Saint-Nazaire | 67 | ES525 | Tarragona |
68 | FR017 | Metz | 68 | ES002 | Barcelona |
69 | FR009 | Lille | 69 | ES003 | Valencia |
70 | FR003 | Lyon | 70 | ES019 | Bilbao |
71 | FR012 | Le Havre | 71 | ES506 | Cartagena |
72 | FR519 | Cannes | 72 | ES039 | Aviles |
73 | FR207 | Lens - Lievin | |||
74 | FR209 | Douai | |||
75 | FR032 | Toulon | |||
76 | FR062 | Calais | |||
77 | FR001 | Paris | |||
78 | FR203 | Marseille | |||
79 | FR042 | Dunkerque | |||
80 | FR324 | Martigues | |||
81 | FR208 | Henin - Carvin | |||
82 | FR013 | Rennes | |||
Bottom Subfigures | |||||
ID Number | FUA Code | FUA Name | ID Number | FUA Code | FUA Name |
France | Spain | ||||
1 | FR324 | Martigues | 1 | ES013 | Oviedo |
2 | FR047 | Annemasse | 2 | ES034 | Caceres |
3 | FR039 | Avignon | 3 | ES012 | Vitoria |
4 | FR040 | Mulhouse | 4 | ES014 | Pamplona |
5 | FR048 | Annecy | 5 | ES021 | Alicante |
6 | FR065 | Bourges | 6 | ES023 | Gijon |
7 | FR082 | Beauvais | 7 | ES065 | Linea de la Concepcion, La |
8 | FR208 | Henin - Carvin | 8 | ES041 | Palencia |
9 | FR304 | Melun | 9 | ES547 | Sagunto |
10 | FR505 | Charleville-Mezieres | 10 | ES059 | Zamora |
11 | FR049 | Lorient | 11 | ES050 | Manresa |
12 | FR067 | Quimper | 12 | ES035 | Torrevieja |
13 | FR066 | Saint-Brieuc | 13 | ES037 | Puerto de Santa Maria, El |
14 | FR214 | Valence | 14 | ES062 | Sanlucar de Barrameda |
15 | FR209 | Douai | 15 | ES540 | Chiclana de la Frontera |
16 | FR068 | Vannes | 16 | ES070 | Irun |
17 | FR207 | Lens - Lievin | 17 | ES514 | Almeria |
18 | FR053 | La Rochelle | 18 | ES046 | Gandia |
19 | FR506 | Colmar | 19 | ES053 | Ciudad Real |
20 | FR064 | Arras | 20 | ES057 | Ponferrada |
21 | FR084 | Creil | 21 | ES528 | Lleida |
22 | FR050 | Montbeliard | 22 | ES532 | Algeciras |
23 | FR077 | Roanne | 23 | ES028 | Reus |
24 | FR056 | Angouleme | 24 | ES039 | Aviles |
25 | FR079 | Saint-Quentin | 25 | ES054 | Benidorm |
26 | FR069 | Cherbourg | 26 | ES521 | Huelva |
27 | FR012 | Le Havre | 27 | ES519 | Albacete |
28 | FR086 | Evreux | 28 | ES537 | Alcoy |
29 | FR519 | Cannes | 29 | ES527 | Jaen |
30 | FR063 | Beziers | 30 | ES033 | Girona |
31 | FR058 | Chambery | 31 | ES525 | Tarragona |
32 | FR090 | Chateauroux | 32 | ES011 | Santiago de Compostela |
33 | FR096 | Albi | 33 | ES040 | Talavera de la Reina |
34 | FR052 | Saint-Nazaire | 34 | ES031 | Lugo |
35 | FR057 | Boulogne-sur-Mer | 35 | ES505 | Elche/Elx |
36 | FR059 | Chalon-sur-Saone | 36 | ES026 | Coruna (A) |
37 | FR060 | Chartres | 37 | ES522 | Cadiz |
38 | FR061 | Niort | 38 | ES016 | Toledo |
39 | FR022 | Clermont-Ferrand | 39 | ES544 | Linares |
40 | FR010 | Montpellier | 40 | ES018 | Logrono |
41 | FR020 | Dijon | 41 | ES533 | Marbella |
42 | FR019 | Orleans | 42 | ES510 | Donostia-San Sebastian |
43 | FR026 | Grenoble | 43 | ES552 | Igualada |
44 | FR025 | Besancon | 44 | ES073 | Elda |
45 | FR076 | Belfort | 45 | ES019 | Bilbao |
46 | FR023 | Caen | 46 | ES015 | Santander |
47 | FR038 | Le Mans | 47 | ES003 | Valencia |
48 | FR045 | Pau | 48 | ES529 | Ourense |
49 | FR007 | Bordeaux | 49 | ES520 | Castellon de la Plana/Castello de la Plana |
50 | FR021 | Poitiers | 50 | ES004 | Seville |
51 | FR034 | Valenciennes | 51 | ES516 | Salamanca |
52 | FR044 | Nimes | 52 | ES001 | Madrid |
53 | FR035 | Tours | 53 | ES002 | Barcelona |
54 | FR008 | Nantes | 54 | ES005 | Saragossa |
55 | FR006 | Strasbourg | 55 | ES006 | Malaga |
56 | FR004 | Toulouse | 56 | ES007 | Murcia |
57 | FR042 | Dunkerque | 57 | ES009 | Valladolid |
58 | FR017 | Metz | 58 | ES044 | Pontevedra |
59 | FR003 | Lyon | 59 | ES017 | Badajoz |
60 | FR104 | Chalons-en-Champagne | 60 | ES020 | Cordoba |
61 | FR036 | Angers | 61 | ES022 | Vigo |
62 | FR016 | Nancy | 62 | ES043 | Ferrol |
63 | FR073 | Tarbes | 63 | ES048 | Guadalajara |
64 | FR046 | Bayonne | 64 | ES506 | Cartagena |
65 | FR093 | Brive-la-Gaillarde | 65 | ES501 | Granada |
66 | FR099 | Frejus | 66 | ES508 | Jerez de la Frontera |
67 | FR203 | Marseille | 67 | ES523 | Leon |
68 | FR205 | Nice | 68 | ES542 | Basin |
69 | FR001 | Paris | 69 | ES538 | Avila |
70 | FR051 | Troyes | 70 | ES546 | Merida |
71 | FR009 | Lille | 71 | ES545 | Lorca |
72 | FR011 | Saint-Etienne | 72 | ES515 | Burgos |
73 | FR013 | Rennes | |||
74 | FR014 | Amiens | |||
75 | FR018 | Reims | |||
76 | FR024 | Limoges | |||
77 | FR032 | Toulon | |||
78 | FR037 | Brest | |||
79 | FR062 | Calais | |||
80 | FR043 | Perpignan | |||
81 | FR215 | Rouen | |||
82 | FR074 | Compiegne |
ID Number | Subfigure (a) | Subfigure (b) | Subfigure (c) | Subfigure (d) | ||||
---|---|---|---|---|---|---|---|---|
FUA Code | FUA Name | FUA Code | FUA Name | FUA Code | FUA Name | FUA Code | FUA Name | |
1 | FR006 | Strasbourg | ES065 | Linea de la Concepcion, La | FR006 | Strasbourg | ES065 | Linea de la Concepcion, La |
2 | FR037 | Brest | ES015 | Santander | FR049 | Lorient | ES501 | Granada |
3 | FR047 | Annemasse | ES001 | Madrid | FR047 | Annemasse | ES001 | Madrid |
4 | FR024 | Limoges | ES540 | Chiclana de la Frontera | FR039 | Avignon | ES540 | Chiclana de la Frontera |
5 | FR069 | Cherbourg | ES002 | Barcelona | FR003 | Lyon | ES515 | Burgos |
6 | FR039 | Avignon | ES501 | Granada | FR203 | Marseille | ES057 | Ponferrada |
7 | FR042 | Dunkerque | ES520 | Castellon de la Plana | FR066 | Saint-Brieuc | ES004 | Seville |
8 | FR043 | Perpignan | ES506 | Cartagena | FR043 | Perpignan | ES041 | Palencia |
9 | FR001 | Paris | ES525 | Tarragona | FR007 | Bordeaux | ES538 | Avila |
10 | FR023 | Caen | ES514 | Almeria | FR025 | Besancon | ES009 | Valladolid |
11 | FR062 | Calais | ES018 | Logrono | FR062 | Calais | ES506 | Cartagena |
12 | FR052 | Saint-Nazaire | ES041 | Palencia | FR001 | Paris | ES516 | Salamanca |
13 | FR067 | Quimper | ES516 | Salamanca | FR068 | Vannes | ES533 | Marbella |
14 | FR022 | Clermont-Ferrand | ES522 | Cadiz | FR063 | Beziers | ES523 | Leon |
15 | FR505 | Charleville-Mezieres | ES009 | Valladolid | FR008 | Nantes | ES053 | Ciudad Real |
16 | FR205 | Nice | ES054 | Benidorm | FR042 | Dunkerque | ES532 | Algeciras |
17 | FR009 | Lille | ES022 | Vigo | FR052 | Saint-Nazaire | ES022 | Vigo |
18 | FR034 | Valenciennes | ES019 | Bilbao | FR046 | Bayonne | ES529 | Ourense |
19 | FR073 | Tarbes | ES533 | Marbella | FR093 | Brive-la-Gaillarde | ES013 | Oviedo |
20 | FR046 | Bayonne | ES004 | Seville | FR061 | Niort | ES522 | Cadiz |
21 | FR066 | Saint-Brieuc | ES521 | Huelva | FR012 | Le Havre | ES014 | Pamplona |
22 | FR049 | Lorient | ES529 | Ourense | FR053 | La Rochelle | ES521 | Huelva |
23 | FR050 | Montbeliard | ES013 | Oviedo | FR010 | Montpellier | ES039 | Aviles |
24 | FR057 | Boulogne-sur-Mer | ES026 | Coruna (A) | FR214 | Valence | ES034 | Caceres |
25 | FR003 | Lyon | ES039 | Aviles | FR045 | Pau | ES037 | Puerto de Santa Maria, El |
26 | FR008 | Nantes | ES003 | Valencia | FR205 | Nice | ES015 | Santander |
27 | FR032 | Toulon | ES021 | Alicante | FR009 | Lille | ES546 | Merida |
28 | FR506 | Colmar | ES037 | Puerto de Santa Maria, El | FR096 | Albi | ES520 | Castellon de la Plana |
29 | FR040 | Mulhouse | ES053 | Ciudad Real | FR505 | Charleville-Mezieres | ES002 | Barcelona |
30 | FR012 | Le Havre | ES014 | Pamplona | FR024 | Limoges | ES542 | Basin |
31 | FR519 | Cannes | ES532 | Algeciras | FR506 | Colmar | ES003 | Valencia |
32 | FR004 | Toulouse | ES062 | Sanlucar de Barrameda | FR017 | Metz | ES062 | Sanlucar de Barrameda |
33 | FR084 | Creil | ES528 | Lleida | FR048 | Annecy | ES019 | Bilbao |
34 | FR065 | Bourges | ES057 | Ponferrada | FR022 | Clermont-Ferrand | ES026 | Coruna (A) |
35 | FR203 | Marseille | ES033 | Girona | FR057 | Boulogne-sur-Mer | ES043 | Ferrol |
36 | FR208 | Henin - Carvin | ES043 | Ferrol | FR215 | Rouen | ES059 | Zamora |
37 | FR036 | Angers | ES046 | Gandia | FR004 | Toulouse | ES046 | Gandia |
38 | FR068 | Vannes | ES035 | Torrevieja | FR036 | Angers | ES021 | Alicante |
39 | FR010 | Montpellier | ES044 | Pontevedra | FR032 | Toulon | ES544 | Linares |
40 | FR053 | La Rochelle | ES011 | Santiago de Compostela | FR065 | Bourges | ES545 | Lorca |
41 | FR074 | Compiegne | ES059 | Zamora | FR040 | Mulhouse | ES044 | Pontevedra |
42 | FR044 | Nimes | ES510 | Donostia-San Sebastian | FR519 | Cannes | ES017 | Badajoz |
43 | FR017 | Metz | ES508 | Jerez de la Frontera | FR016 | Nancy | ES005 | Saragossa |
44 | FR082 | Beauvais | ES515 | Burgos | FR073 | Tarbes | ES020 | Cordoba |
45 | FR007 | Bordeaux | ES006 | Malaga | FR019 | Orleans | ES035 | Torrevieja |
46 | FR063 | Beziers | ES546 | Merida | FR034 | Valenciennes | ES510 | Donostia-San Sebastian |
47 | FR076 | Belfort | ES050 | Manresa | FR023 | Caen | ES537 | Alcoy |
48 | FR038 | Le Mans | ES523 | Leon | FR026 | Grenoble | ES006 | Malaga |
49 | FR093 | Brive-la-Gaillarde | ES005 | Saragossa | FR013 | Rennes | ES054 | Benidorm |
50 | FR214 | Valence | ES527 | Jaen | FR044 | Nimes | ES050 | Manresa |
51 | FR016 | Nancy | ES023 | Gijon | FR059 | Chalon-sur-Saone | ES525 | Tarragona |
52 | FR096 | Albi | ES020 | Cordoba | FR021 | Poitiers | ES011 | Santiago de Compostela |
53 | FR324 | Martigues | ES070 | Irun | FR076 | Belfort | ES527 | Jaen |
54 | FR021 | Poitiers | ES544 | Linares | FR084 | Creil | ES007 | Murcia |
55 | FR207 | Lens - Lievin | ES007 | Murcia | FR077 | Roanne | ES040 | Talavera de la Reina |
56 | FR077 | Roanne | ES031 | Lugo | FR035 | Tours | ES519 | Albacete |
57 | FR209 | Douai | ES552 | Igualada | FR099 | Frejus | ES508 | Jerez de la Frontera |
58 | FR045 | Pau | ES048 | Guadalajara | FR082 | Beauvais | ES023 | Gijon |
59 | FR025 | Besancon | ES016 | Toledo | FR067 | Quimper | ES514 | Almeria |
60 | FR056 | Angouleme | ES017 | Badajoz | FR209 | Douai | ES528 | Lleida |
61 | FR013 | Rennes | ES073 | Elda | FR324 | Martigues | ES031 | Lugo |
62 | FR026 | Grenoble | ES028 | Reus | FR037 | Brest | ES028 | Reus |
63 | FR048 | Annecy | ES040 | Talavera de la Reina | FR014 | Amiens | ES016 | Toledo |
64 | FR019 | Orleans | ES537 | Alcoy | FR011 | Saint-Etienne | ES070 | Irun |
65 | FR018 | Reims | ES519 | Albacete | FR074 | Compiegne | ES073 | Elda |
66 | FR099 | Frejus | ES547 | Sagunto | FR018 | Reims | ES552 | Igualada |
67 | FR304 | Melun | ES034 | Caceres | FR104 | Chalons-en-Champagne | ES033 | Girona |
68 | FR064 | Arras | ES538 | Avila | FR050 | Montbeliard | ES547 | Sagunto |
69 | FR011 | Saint-Etienne | ES542 | Basin | FR064 | Arras | ES018 | Logrono |
70 | FR060 | Chartres | ES505 | Elche/Elx | FR069 | Cherbourg | ES048 | Guadalajara |
71 | FR059 | Chalon-sur-Saone | ES545 | Lorca | FR038 | Le Mans | ES505 | Elche/Elx |
72 | FR035 | Tours | ES012 | Vitoria | FR079 | Saint-Quentin | ES012 | Vitoria |
73 | FR086 | Evreux | – | – | FR207 | Lens - Lievin | – | – |
74 | FR079 | Saint-Quentin | – | – | FR058 | Chambery | – | – |
75 | FR014 | Amiens | – | – | FR090 | Chateauroux | – | – |
76 | FR215 | Rouen | – | – | FR020 | Dijon | – | – |
77 | FR058 | Chambery | – | – | FR051 | Troyes | – | – |
78 | FR051 | Troyes | – | – | FR056 | Angouleme | – | – |
79 | FR061 | Niort | – | – | FR060 | Chartres | – | – |
80 | FR020 | Dijon | – | – | FR304 | Melun | – | – |
81 | FR104 | Chalons-en-Champagne | – | – | FR086 | Evreux | – | – |
82 | FR090 | Chateauroux | – | – | FR208 | Henin - Carvin | – | – |
References
- 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN|UN DESA|United Nations Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 8 March 2021).
- Urban Development Overview. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 8 March 2021).
- Dos Santos, S.; Adams, E.A.; Neville, G.; Wada, Y.; de Sherbinin, A.; Mullin Bernhardt, E.; Adamo, S.B. Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Sci. Total Environ. 2017, 607–608, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, J.; Wu, J. What drives urban growth in China? A multi-scale comparative analysis. Appl. Geogr. 2018, 98, 43–51. [Google Scholar] [CrossRef]
- Wolff, M.; Wiechmann, T. Urban growth and decline: Europe’s shrinking cities in a comparative perspective 1990–2010. Eur. Urban Reg. Stud. 2018, 25, 122–139. [Google Scholar] [CrossRef]
- Martellozzo, F.; Amato, F.; Murgante, B.; Clarke, K.C. Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Appl. Geogr. 2018, 91, 156–167. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Zullo, F.; Fazio, G.; Romano, B.; Marucci, A.; Fiorini, L. Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): A study in the Po Valley (Italy). Sci. Total Environ. 2019, 650, 1740–1751. [Google Scholar] [CrossRef]
- Van de Voorde, T.; Jacquet, W.; Canters, F. Mapping form and function in urban areas: An approach based on urban metrics and continuous impervious surface data. Landsc. Urban Plan. 2011, 102, 143–155. [Google Scholar] [CrossRef]
- Yoshida, H.; Omae, M. An approach for analysis of urban morphology: Methods to derive morphological properties of city blocks by using an urban landscape model and their interpretations. Comput. Environ. Urban Syst. 2005, 29, 223–247. [Google Scholar] [CrossRef]
- Ng, E. Policies and technical guidelines for urban planning of high-density cities - air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef]
- Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J.C.H. Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Ng, E.; Norford, L.K. Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build. Environ. 2014, 71, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Vanderhaegen, S.; Canters, F. Mapping urban form and function at city block level using spatial metrics. Landsc. Urban Plan. 2017, 167, 399–409. [Google Scholar] [CrossRef]
- Glossary: Functional Urban Area—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Functional_urban_area (accessed on 9 March 2021).
- Portnov, B.A.; Schwartz, M. URBAN CLUSTERS AS GROWTH FOCI*. J. Reg. Sci. 2009, 49, 287–310. [Google Scholar] [CrossRef]
- Dijkstra, L.; Poelman, H.; Veneri, P. The EU-OECD definition of a functional urban area. OECD Reg. Dev. Work. Pap. 2019, 11. [Google Scholar] [CrossRef]
- Bosker, M.; Park, J.; Roberts, M. Definition Matters: Metropolitan Areas and Agglomeration Economies in a Large Developing Country. J. Urban Econ. 2020, 7, 103275. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Kloog, I.; Haim, A.; Stevens, R.G.; Portnov, B.A. Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol. Int. 2009, 26, 108–125. [Google Scholar] [CrossRef]
- Kloog, I.; Stevens, R.G.; Haim, A.; Portnov, B.A. Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control 2010, 21, 2059–2068. [Google Scholar] [CrossRef]
- Haim, A.; Portnov, B.A. Light Pollution as a New Risk Factor for Human Breast and Prostate Cancers; Springer: Dordrecht, The Netherlands, 2013; ISBN 9789400762206. [Google Scholar]
- Rybnikova, N.A.; Portnov, B.A. GDP per capita and obesity prevalence worldwide: An ambiguity of effects modification. Int. J. Obes. 2017, 41, 352. [Google Scholar] [CrossRef]
- Garcia-Saenz, A.; Sánchez de Miguel, A.; Espinosa, A.; Valentin, A.; Aragonés, N.; Llorca, J.; Amiano, P.; Martín Sánchez, V.; Guevara, M.; Capelo, R.; et al. Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study). Environ. Health Perspect. 2018, 126, 047011. [Google Scholar] [CrossRef]
- Garcia-Saenz, A.; De Miguel, A.S.; Espinosa, A.; Costas, L.; Aragonés, N.; Tonne, C.; Moreno, V.; Pérez-Gómez, B.; Valentin, A.; Pollán, M.; et al. Association between outdoor light-at-night exposure and colorectal cancer in Spain. Epidemiology 2020, 31, 718–727. [Google Scholar] [CrossRef]
- Doll, C.H.; Muller, J.-P.; Elvidge, C.D. Night-time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. AMBIO J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Ebener, S.; Murray, C.; Tandon, A.; Elvidge, C.C. From wealth to health: Modelling the distribution of income per capita at the sub-national level using night-time light imagery. Int. J. Health Geogr. 2005, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, T.; L Powell, R.; D Elvidge, C.; E Baugh, K.; C Sutton, P.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar]
- Wu, R.; Yang, D.; Dong, J.; Zhang, L.; Xia, F. Regional Inequality in China Based on NPP-VIIRS Night-Time Light Imagery. Remote Sens. 2018, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Amaral, S.; Monteiro, A.M.; Camara, G.; Quintanilha, J.A. DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon. Int. J. Remote Sens. 2006, 27, 855–870. [Google Scholar] [CrossRef]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Anderson, S.J.; Tuttle, B.T.; Powell, R.L.; Sutton, P.C. Characterizing relationships between population density and nighttime imagery for Denver, Colorado: Issues of scale and representation. Int. J. Remote Sens. 2010, 31, 5733–5746. [Google Scholar] [CrossRef]
- Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-time light data: A good proxy measure for economic activity? PLoS ONE 2015, 10, e0139779. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M. Artificial light at night as a driver of evolution across urban-rural landscapes. Front. Ecol. Environ. 2018, 16, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Narisada, K.; Schreuder, D. Light Pollution Handbook; Astrophysics and Space Science Library; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Bennie, J.; Duffy, J.; Davies, T.; Correa-Cano, M.; Gaston, K. Global Trends in Exposure to Light Pollution in Natural Terrestrial Ecosystems. Remote Sens. 2015, 7, 2715–2730. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Furgoni, R.; Gallaway, T.A.A.; Rybnikova, N.A.A.; Portnov, B.A.A.; Baugh, K.; Cinzano, P.; Elvidge, C.D.D. Light pollution in USA and Europe: The good, the bad and the ugly. J. Environ. Manag. 2019, 248, 109227. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Li, J.; Chen, J.; Pan, Y.; Li, J.; Zhuo, L.; Toshiaki, I. Restoring urbanization process in China in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data. Chin. Sci. Bull. 2006, 51, 1614–1620. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Yu, B.; Shu, S.; Liu, H.; Song, W.; Wu, J.; Wang, L.; Chen, Z. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of China. Int. J. Geogr. Inf. Sci. 2014, 28, 2328–2355. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Liu, Z.; He, C.; Yue, H. Urban Land Extraction Using VIIRS Nighttime Light Data: An Evaluation of Three Popular Methods. Remote Sens. 2017, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Earth Observation Goup. Available online: https://eogdata.mines.edu/products/vnl/ (accessed on 8 August 2021).
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Functional Urban Areas by Country—OECD. Available online: https://www.oecd.org/cfe/regional-policy/functionalurbanareasbycountry.htm (accessed on 3 June 2020).
- LandScan Datasets|LandScan™. Available online: https://landscan.ornl.gov/landscan-datasets (accessed on 17 March 2020).
- Measuring Compactness. Available online: https://fisherzachary.github.io/public/r-output.html (accessed on 24 January 2021).
- Li, W.; Goodchild, M.F.; Church, R.L. An Efficient Measure of Compactness for 2D Shapes and its Application in Regionalization Problems. Int. J. Geogr. Inf. Sci. 2013, 27, 1227–1250. [Google Scholar] [CrossRef] [Green Version]
- Brody, S. The characteristics, causes, and consequences of sprawling development patterns in the United States. Nat. Educ. Knowl. 2013, 4, 2. [Google Scholar]
- SPSS Library: MANOVA and GLM. Available online: https://stats.idre.ucla.edu/spss/library/spss-librarymanova-and-glm-2/ (accessed on 4 April 2021).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Create Bag of Decision Trees—MATLAB. Available online: https://www.mathworks.com/help/stats/treebagger.html (accessed on 5 January 2021).
- Bernard, S.; Adam, S.; Heutte, L. Dynamic Random Forests. Pattern Recognit. Lett. 2012, 33, 1580–1586. [Google Scholar] [CrossRef] [Green Version]
- Chung, N.C.; Miasojedow, B.; Startek, M.; Gambin, A. Jaccard/Tanimoto similarity test and estimation methods. BMC Bioinform. 2019, 20, 644. [Google Scholar] [CrossRef]
- Global Human Settlement—GHS POPULATION GRID—European Commission. Available online: https://ghsl.jrc.ec.europa.eu/ghs_pop.php (accessed on 20 June 2021).
Variable | Minimum | Maximum | Mean | SD |
---|---|---|---|---|
France (82 FUAs) | ||||
Latitude of the FUA core’s centroid (dd) | 42.757 | 51.001 | 47.137 | 2.366 |
Population density of the FUA core (persons per km2) | 89.529 | 2586.130 | 470.764 | 382.596 |
Population density decline gradient a | 1.110 | 15.409 | 3.986 | 2.224 |
Distance to the nearest major city (dd) a | 0.000 | 5.900 | 1.781 | 1.359 |
Average ALAN level (nW/cm2/sr) | 0.649 | 20.411 | 3.640 | 3.614 |
Spain (72 FUAs) | ||||
Latitude of the FUA core centroid (dd) | 36.110 | 43.561 | 40.093 | 2.381 |
Population density of the FUA core (persons per km2) | 20.554 | 3485.360 | 831.839 | 794.144 |
Population density decline gradient b | 0.926 | 16.232 | 4.863 | 3.724 |
Distance to the nearest major city (dd) | 0.000 | 5.120 | 2.202 | 1.542 |
ALAN averaged level (nW/cm2/sr) | 0.745 | 23.129 | 6.442 | 4.583 |
Country/Variable | Minimum | Maximum | Mean | SD |
---|---|---|---|---|
France (Number of FUAs = 82) | ||||
• ALAN percentile (0–100) | 13.610 | 45.290 | 25.623 | 6.533 |
• ALAN threshold (nW/cm2/sr) | 0.150 | 9.910 | 0.664 | 1.218 |
Spain (Number of FUAs = 72) | ||||
• ALAN percentile (0–100) | 12.660 | 46.460 | 29.355 | 7.279 |
• ALAN threshold (nW/cm2/sr) | 0.130 | 8.230 | 1.026 | 1.518 |
Predictor | Model 1 (France) | Model 2 (Spain) | ||||
---|---|---|---|---|---|---|
B a | Beta b | t c | B a | Beta b | t c | |
(Constant) | −11.192 | - | −8.466 * | −11.846 | - | −8.090 * |
Latitude (dd) | 0.106 | 0.246 | 4.209 * | 0.140 | 0.278 | 3.909 * |
Population density of the FUA core, persons per km2 (ln) | 1.151 | 0.751 | 11.143 * | 1.158 | 1.114 | 13.124 * |
Population density gradient (ln) | −1.369 | −0.685 | −10.349 * | −1.209 | −0.724 | −7.977 * |
Distance to the nearest major city (dd) | −0.137 | −0.183 | −3.035 * | −0.147 | −0.190 | −2.945 * |
N of obs. | 82 | 72 | ||||
R2 | 0.739 | 0.740 | ||||
r | 0.866 | 0.812 | ||||
SEE | 0.533 | 0.629 | ||||
WMSE | 4.521 | 2.718 | ||||
F | 54.43 * | 46.304 * |
FUA Type | N. of Obs. | Delineations Derived from Compactness-Based ALAN Thresholds | Delineations Derived from Model-Based ALAN Thresholds | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
All FUAs under analysis | 154 | 0.342 | 0.158 | 0.351 | 0.150 |
FUAs in: | |||||
• France | 82 | 0.304 | 0.116 | 0.326 | 0.124 |
• Spain | 72 | 0.385 | 0.186 | 0.378 | 0.171 |
FUAs by class: | |||||
• 1&2 (Smallest) | 93 | 0.327 | 0.154 | 0.335 | 0.152 |
• 3 (Medium) | 55 | 0.351 | 0.154 | 0.361 | 0.138 |
• 4 (Largest) | 6 | 0.499 | 0.187 | 0.507 | 0.134 |
Population density in the FUA core, people per km2 (ln) | |||||
• ≤5 | 18 | 0.235 | 0.097 | 0.349 | 0.139 |
• >5 | 136 | 0.356 | 0.159 | 0.351 | 0.151 |
• >6.5 | 48 | 0.440 | 0.177 | 0.424 | 0.174 |
• >7.5 | 12 | 0.551 | 0.190 | 0.487 | 0.204 |
Population density in the core’s buffer zone, people per km2 (ln) | |||||
• ≤5 | 101 | 0.313 | 0.137 | 0.340 | 0.135 |
• >5 | 53 | 0.398 | 0.180 | 0.372 | 0.174 |
• >6 | 11 | 0.525 | 0.220 | 0.469 | 0.235 |
• >6.3 | 4 | 0.638 | 0.277 | 0.557 | 0.299 |
Ratio between population density in the core and the core’s buffer zone | |||||
• ≤2 | 25 | 0.303 | 0.151 | 0.319 | 0.157 |
• >2 | 129 | 0.350 | 0.159 | 0.357 | 0.148 |
• >5 | 43 | 0.363 | 0.153 | 0.357 | 0.155 |
• >10 | 11 | 0.467 | 0.184 | 0.458 | 0.197 |
FUA | ALAN Threshold, nW/cm2/sr | ||
---|---|---|---|
Individually Fitted | Estimated Using the “French” Model | Estimated Using the “Spanish” Model | |
Vienna | 0.34 | 0.65 | 1.56 |
Graz | 0.23 | 0.48 | 1.05 |
Linz | 0.24 | 0.49 | 1.04 |
Salzburg | 0.27 | 0.49 | 1.08 |
Innsbruck | 0.26 | 0.30 | 0.78 |
Klagenfurt | 0.17 | 0.30 | 0.72 |
Performance indicators (in relation to individually fitted ALAN threshold) | |||
r | - | 0.783 | 0.771 |
SEE | - | 0.216 | 0.819 |
WMSE | - | 0.711 | 10.102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybnikova, N.; Portnov, B.A.; Charney, I.; Rybnikov, S. Delineating Functional Urban Areas Using a Multi-Step Analysis of Artificial Light-at-Night Data. Remote Sens. 2021, 13, 3714. https://doi.org/10.3390/rs13183714
Rybnikova N, Portnov BA, Charney I, Rybnikov S. Delineating Functional Urban Areas Using a Multi-Step Analysis of Artificial Light-at-Night Data. Remote Sensing. 2021; 13(18):3714. https://doi.org/10.3390/rs13183714
Chicago/Turabian StyleRybnikova, Nataliya, Boris A. Portnov, Igal Charney, and Sviatoslav Rybnikov. 2021. "Delineating Functional Urban Areas Using a Multi-Step Analysis of Artificial Light-at-Night Data" Remote Sensing 13, no. 18: 3714. https://doi.org/10.3390/rs13183714
APA StyleRybnikova, N., Portnov, B. A., Charney, I., & Rybnikov, S. (2021). Delineating Functional Urban Areas Using a Multi-Step Analysis of Artificial Light-at-Night Data. Remote Sensing, 13(18), 3714. https://doi.org/10.3390/rs13183714