Applicability of Data Acquisition Characteristics to the Identification of Local Artefacts in Global Digital Elevation Models: Comparison of the Copernicus and TanDEM-X DEMs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Airborne LiDAR
2.2. TanDEM-X, Copernicus, SRTM and NASA DEMs
2.3. Accuracy Assessment and Error Modeling
3. Results
3.1. Absolute Vertical Accuracy of TDX90, COP90, COP30, SRTM90, and NASA30
3.2. Association of the Accuracy of TDX90, COP90, SRTM90, COP30, and NASA30 with Terrain Characteristics
3.3. Visual Inspection of the Most Problematic Sites
3.4. Association of the Accuracy of TDX90 with Auxiliary Characteristics (COM, COV)
3.5. Utility of Auxiliary Data and Terrain Characteristics for the Identification of Problematic Sites
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gottwald, M.; Kenkmann, T.; Reimold, W.U.; Fritz, T.; Breit, H. The TanDEM-X Digital Elevation Model and Terrestrial Impact Structures. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4128–4138. [Google Scholar] [CrossRef]
- Kosicki, J. Should topographic metrics be considered when predicting species density of birds on a large geographical scale? A case of Random Forest approach. Ecol. Model. 2017, 349, 76–85. [Google Scholar] [CrossRef]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Nat. Hazards 2019, 97, 477–492. [Google Scholar] [CrossRef]
- Podgórski, J.; Kinnard, C.; Pętlicki, M.; Urrutia, R. Performance Assessment of TanDEM-X DEM for Mountain Glacier Elevation Change Detection. Remote Sens. 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Wadge, G.; Kilbride, B.M.; Edmonds, M.; Johnson, R. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea. J. Volcanol. Geotherm. Res. 2018, 356, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Gdulová, K.; Marešová, J.; Barták, V.; Szostak, M.; Červenka, J.; Moudrý, V. Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused by Bark Beetle in Central European Mountains. Remote Sens. 2021, 13, 3042. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Hawker, L.; Neal, J.; Bates, P. Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites. Remote Sens. Environ. 2019, 232, 111319. [Google Scholar] [CrossRef]
- Gdulová, K.; Marešová, J.; Moudrý, V. Accuracy assessment of the global TanDEM-X digital elevation model in a mountain environment. Remote Sens. Environ. 2020, 241, 111724. [Google Scholar] [CrossRef]
- Zink, M.; Moreira, A.; Hajnsek, I.; Rizzoli, P.; Bachmann, M.; Kahle, R.; Fritz, T.; Huber, M.; Krieger, G.; Lachaise, M.; et al. TanDEM-X: 10 Years of Formation Flying Bistatic SAR Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3546–3565. [Google Scholar] [CrossRef]
- Krieger, G.; Zink, M.; Bachmann, M.; Bräutigam, B.; Schulze, D.; Martone, M.; Rizzoli, P.; Steinbrecher, U.; Antony, J.W.; De Zan, F.; et al. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronaut. 2013, 89, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, M.; Kraus, T.; Bojarski, A.; Schandri, M.; Boer, J.; Busche, T.; Bello, J.-L.B.; Grigorov, C.; Steinbrecher, U.; Buckreuss, S.; et al. The TanDEM-X Mission Phases—Ten Years of Bistatic Acquisition and Formation Planning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3504–3518. [Google Scholar] [CrossRef]
- Gruber, A.; Wessel, B.; Martone, M.; Roth, A. The TanDEM-X DEM Mosaicking: Fusion of Multiple Acquisitions Using InSAR Quality Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1047–1057. [Google Scholar] [CrossRef]
- del Rosario Gonzalez–Moradas, M.; Viveen, W. Evaluation of ASTER GDEM2, SRTMv3. 0, ALOS AW3D30 and TanDEM–X DEMs for the Peruvian Andes against Highly Accurate GNSS Ground Control Points and Geomorphological–Hydrological Metrics. Remote Sens. Environ. 2020, 237, 111509. [Google Scholar]
- Han, H.; Zeng, Q.; Jiao, J. Quality Assessment of TanDEM-X DEMs, SRTM and ASTER GDEM on Selected Chinese Sites. Remote Sens. 2021, 13, 1304. [Google Scholar] [CrossRef]
- Grohmann, C.H. Evaluation of TanDEM–X DEMs on Selected Brazilian Sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D. Remote Sens. Environ. 2018, 212, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Vassilaki, D.I.; Stamos, A.A. TanDEM-X DEM: Comparative performance review employing LIDAR data and DSMs. ISPRS J. Photogramm. Remote Sens. 2020, 160, 33–50. [Google Scholar] [CrossRef]
- Tachikawa, T.; Hato, M.; Kaku, M.; Iwasaki, A. Characteristics of ASTER GDEM Version 2. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 3657–3660. [Google Scholar]
- Simard, M.; Neumann, M.; Buckley, S. Validation of the new SRTM digital elevation model (NASADEM) with ICESAT/GLAS over the United States. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3227–3229. [Google Scholar]
- Wessel, B.; Huber, M.; Wohlfart, C.; Bertram, A.; Osterkamp, N.; Marschalk, U.; Gruber, A.; Reuß, F.; Abdullahi, S.; Georg, I.; et al. TanDEM–X PolarDEM 90 m of Antarctica: Generation and Error Characterization. Cryosphere Discuss. 2021, 1–30. [Google Scholar] [CrossRef]
- Polidori, L.; El Hage, M. Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sens. 2020, 12, 3522. [Google Scholar] [CrossRef]
- Berthier, E.; Arnaud, Y.; Vincent, C.; Remy, F. Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophys. Res. Lett. 2006, 33, 33. [Google Scholar] [CrossRef]
- Carabajal, C.C.; Harding, D.J. SRTM C-Band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief. Photogramm. Eng. Remote Sens. 2006, 72, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Collins, J.; Riegler, G.; Schrader, H.; Tinz, M. Applying terrain and hydrological editing to TanDEM-X Data to create a consumer-ready WorldDEM product. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 1149–1154. [Google Scholar] [CrossRef] [Green Version]
- WorldDEM. Airbus Defense & Space, WorldDEMTM Technical Product Specification, Version 2.4. 2018. Available online: https://api.oneatlas.airbus.com/documents/2018–07_WorldDEM_TechnicalSpecs_Version2.4_I1.0.pdf (accessed on 18 June 2021).
- Becek, K.; Koppe, W.; Kutoğlu, Ş.H. Evaluation of Vertical Accuracy of the WorldDEMTM Using the Runway Method. Remote. Sens. 2016, 8, 934. [Google Scholar] [CrossRef] [Green Version]
- Bayburt, S.; Kurtak, A.B.; Büyüksalih, G.; Jacobsen, K. GEOMETRIC ACCURACY ANALYSIS OF WORLDDEM IN RELATION TO AW3D30, SRTM AND ASTER GDEM2. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 42 2017, XLII-1/W1, 211–217. [Google Scholar] [CrossRef] [Green Version]
- González, C.; Bachmann, M.; Bueso-Bello, J.-L.; Rizzoli, P.; Zink, M. A Fully Automatic Algorithm for Editing the TanDEM-X Global DEM. Remote Sens. 2020, 12, 3961. [Google Scholar] [CrossRef]
- Huber, M.; Osterkamp, N.; Marschalk, U.; Tubbesing, R.; Wendleder, A.; Wessel, B.; Roth, A. Shaping the Global High-Resolution TanDEM-X Digital Elevation Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7198–7212. [Google Scholar] [CrossRef]
- Copernicus DEM. 2021. Available online: https://spacedata.copernicus.eu/documents/20126/0/GEO1988–CopernicusDEMSPE–002_ProductHandbook_I1.00.pdf (accessed on 18 June 2021).
- Wessel, B. TanDEM–X Ground Segment DEM Products Specification Document. Report TD–GS–PS–Issue 3. Deutsches Zentrum fur Luft—und Raumfahrt, Oberpfaffenhofen, Germany. Available online: https://tandemx-science.dlr.de/pdfs/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf (accessed on 18 February 2021).
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Tridon, D.B.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Hirt, C. Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs. Remote Sens. Environ. 2018, 207, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Shortridge, A.; Messina, J. Spatial structure and landscape associations of SRTM error. Remote Sens. Environ. 2011, 115, 1576–1587. [Google Scholar] [CrossRef]
- Moudrý, V.; Lecours, V.; Gdulová, K.; Gábor, L.; Moudrá, L.; Kropáček, J.; Wild, J. On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs. Ecol. Model. 2018, 383, 3–9. [Google Scholar] [CrossRef]
- Kovanič, Ľ.; Blistan, P.; Urban, R.; Štroner, M.; Blišťanová, M.; Bartoš, K.; Pukanská, K. Analysis of the Suitability of High-Resolution DEM Obtained Using ALS and UAS (SfM) for the Identification of Changes and Monitoring the Development of Selected Geohazards in the Alpine Environment—A Case Study in High Tatras, Slovakia. Remote Sens. 2020, 12, 3901. [Google Scholar] [CrossRef]
- Tridon, D.B.; Bachmann, M.; Schulze, D.; Ortega–Míguez, C.; Polimeni, M.D.; Martone, M.; Böer, J.; Zink, M. TanDEM–X: DEM acquisition in the third year era. Int. J. Space Sci. Eng. 5 2013, 1, 367–381. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; Nguyen, Q.; et al. NASADEM Global Elevation Model: Methods and Progress; Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2016. [Google Scholar]
- Hofton, M.; Dubayah, R.; Blair, J.B.; Rabine, D. Validation of SRTM Elevations Over Vegetated and Non-vegetated Terrain Using Medium Footprint Lidar. Photogramm. Eng. Remote Sens. 2006, 72, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Nelson, A.; Reuter, H.; Gessler, P. Chapter 3 DEM Production Methods and Sources. Dev. Soil Sci. 2009, 33, 65–85. [Google Scholar] [CrossRef]
- Thomas, J.; Prasannakumar, V.; Vineetha, P. Suitability of spaceborne digital elevation models of different scales in topographic analysis: An example from Kerala, India. Environ. Earth Sci. 2015, 73, 1245–1263. [Google Scholar] [CrossRef]
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera–Cruz, V.; Riazanoff, S.; et al. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Grohmann, C. Effects of spatial resolution on slope and aspect derivation for regional-scale analysis. Comput. Geosci. 2015, 77, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Moudrý, V.; Lecours, V.; Malavasi, M.; Misiuk, B.; Gábor, L.; Gdulová, K.; Šímová, P.; Wild, J. Potential pitfalls in rescaling digital terrain model-derived attributes for ecological studies. Ecol. Inform. 2019, 54, 100987. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Greenwell, B.; Boehmke, B.; Cunningham, J.; GBM Developers; Maintainer Brandon Greenwell. Package ‘gbm’. R Package Version 2019, 2, 1–39. [Google Scholar]
- Guth, P.L.; Geoffroy, T.M. LiDAR point cloud and ICESat-2 evaluation of 1 second global digital elevation models: Copernicus wins. Trans. GIS 2021. [Google Scholar] [CrossRef]
- Lachaise, M.; Bachmann, M.; Fritz, T.; Huber, M.; Schweißhelm, B.; Wessel, B. The TanDEM–X Change DEM: The New Temporal DEM of the TanDEM–X Mission. In Proceedings of the EUSAR 2021-13th European Conference on Synthetic Aperture Radar, Online Event, 29 March–1 April 2021. [Google Scholar]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Kramm, T.; Hoffmeister, D. Comprehensive Vertical Accuracy Analysis of Freely Available DEMs for Different Landscape Types of the Rur Catchment, Germany. Geocarto. Int. 2021, 1–22. [Google Scholar] [CrossRef]
- Rexer, M.; Hirt, C. Evaluation of intermediate TanDEM-X digital elevation data products over Tasmania using other digital elevation models and accurate heights from the Australian National Gravity Database. Aust. J. Earth Sci. 2016, 63, 599–609. [Google Scholar] [CrossRef]
Study Area | DEM | Number of Cells | ME (m) | RMSE (m) | MAE (m) | LE90 (m) |
---|---|---|---|---|---|---|
Alps | TDX90 | 400,931 | −4.60 | 44.54 | 2.82 | 17.98 |
COP90 | −1.05 | 12.26 | 2.76 | 12.69 | ||
SRTM90 | −0.52 | 11.68 | 3.75 | 13.20 | ||
COP30 | 3,608,844 | −1.11 | 13.93 | 1.99 | 12.87 | |
NASA30 | 0.06 | 13.26 | 4.08 | 14.72 | ||
Pyrenees | TDX90 | 973,284 | −1.25 | 16.13 | 2.15 | 6.81 |
COP90 | −1.32 | 5.94 | 2.12 | 6.77 | ||
SRTM90 | −0.74 | 11.15 | 3.17 | 9.70 | ||
COP30 | 8,751,332 | 1.25 | 7.21 | 2.71 | 8.44 | |
NASA30 | −1.31 | 9.05 | 4.00 | 11.76 | ||
Tatra Mountains | TDX90 | 117,622 | −1.45 | 23.79 | 2.87 | 11.98 |
COP90 | −1.13 | 9.23 | 2.85 | 11.51 | ||
SRTM90 | −0.69 | 10.00 | 5.26 | 13.72 | ||
COP30 | 1,054,253 | 1.23 | 9.70 | 2.21 | 11.96 | |
NASA30 | 1.88 | 10.40 | 4.83 | 15.36 |
Slope (°) | Number of Cells (90 m) | Alps | Number of Cells (90 m) | Pyrenees | Number of Cells (90 m) | Tatra Mountains | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ME | MAE | LE90 | ME | MAE | LE90 | ME | MAE | LE90 | |||||
(m) | (m) | (m) | (m) | (m) | (m) | (m) | (m) | (m) | |||||
<10 | TDX90 | 17,655 | −1.09 | 0.91 | 4.98 | 86,181 | −0.88 | 1.03 | 3.06 | 12,389 | 0.40 | 1.23 | 4.56 |
COP90 | −1.06 | 0.89 | 4.39 | −1.01 | 1.01 | 3.05 | 0.42 | 1.23 | 4.58 | ||||
SRTM90 | −0.20 | 1.64 | 5.57 | 0.07 | 1.51 | 4.59 | 0.69 | 3.60 | 10.75 | ||||
COP30 | −1.15 | 0.81 | 4.27 | −1.08 | 1.05 | 3.04 | 0.60 | 1.11 | 5.65 | ||||
NASA30 | 0.27 | 2.06 | 6.47 | −0.82 | 2.05 | 5.88 | 3.10 | 3.51 | 13.19 | ||||
(10, 20) | TDX90 | 60,452 | −0.90 | 1.56 | 5.43 | 241,834 | −1.29 | 1.70 | 4.55 | 33,709 | 1.65 | 2.05 | 9.05 |
COP90 | −0.31 | 1.54 | 5.13 | −1.29 | 1.66 | 4.49 | 1.72 | 2.04 | 9.00 | ||||
SRTM90 | 0.24 | 2.38 | 6.93 | −1.04 | 2.41 | 6.57 | 0.44 | 4.92 | 12.43 | ||||
COP30 | −0.60 | 1.06 | 4.54 | −1.28 | 1.89 | 4.66 | 1.80 | 1.75 | 10.15 | ||||
NASA30 | 0.52 | 2.70 | 7.72 | −1.60 | 3.12 | 7.96 | 2.93 | 4.58 | 14.84 | ||||
(20, 30) | TDX90 | 111,694 | −1.10 | 2.22 | 7.14 | 337,508 | −1.35 | 2.27 | 6.09 | 31,399 | 1.68 | 3.15 | 10.63 |
COP90 | 0.00 | 2.18 | 6.65 | −1.39 | 2.23 | 6.03 | 1.93 | 3.14 | 10.47 | ||||
SRTM90 | 0.03 | 3.02 | 8.33 | −1.28 | 3.36 | 8.80 | −0.70 | 5.36 | 13.10 | ||||
COP30 | −0.25 | 1.49 | 5.82 | −1.37 | 2.94 | 6.97 | 2.04 | 2.30 | 11.11 | ||||
NASA30 | 0.41 | 3.28 | 9.07 | −1.70 | 4.14 | 10.33 | 2.02 | 4.79 | 14.96 | ||||
(30, 40) | TDX90 | 120,365 | −1.50 | 3.13 | 12.38 | 234,838 | −0.76 | 2.74 | 8.04 | 29,453 | 0.48 | 3.85 | 11.36 |
COP90 | −0.07 | 3.09 | 10.29 | −1.04 | 2.74 | 8.04 | 1.20 | 3.79 | 10.93 | ||||
SRTM90 | −0.15 | 4.14 | 11.50 | −0.45 | 4.26 | 11.45 | −1.90 | 5.56 | 13.72 | ||||
COP30 | −0.07 | 2.24 | 9.76 | −1.06 | 4.32 | 10.13 | 1.35 | 2.63 | 10.18 | ||||
NASA30 | 0.44 | 4.38 | 12.70 | −0.95 | 5.50 | 14.02 | 0.99 | 4.81 | 14.01 | ||||
>40 | TDX90 | 90,765 | −16.18 | 8.06 | 90.11 | 72,923 | −2.70 | 5.65 | 34.62 | 10,672 | −27.92 | 8.17 | 102.80 |
COP90 | −4.12 | 7.41 | 30.58 | −2.41 | 5.63 | 23.06 | −2.51 | 7.62 | 36.42 | ||||
SRTM90 | −2.28 | 8.16 | 26.20 | 0.86 | 7.70 | 26.03 | −2.47 | 8.52 | 29.68 | ||||
COP30 | −3.70 | 6.32 | 33.57 | −1.49 | 7.81 | 24.33 | −2.00 | 5.98 | 36.56 | ||||
NASA30 | −1.15 | 8.73 | 29.59 | −0.72 | 9.24 | 28.17 | −0.67 | 8.31 | 28.53 |
Coverage Map (COM) | Number of Cells | RMSE (m) | MAE (m) | LE90 (m) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TDX90 | COP90 | SRTM | TDX90 | COP90 | SRTM | TDX90 | COP90 | SRTM | ||
Alps | ||||||||||
COM1 | 290 | 179.60 | 34.81 | 29.79 | 98.45 | 11.75 | 10.08 | 292.22 | 53.49 | 41.67 |
COM4 | 2 860 | 269.86 | 55.08 | 52.81 | 148.61 | 18.32 | 15.51 | 460.27 | 78.09 | 73.91 |
COM8 | 73,636 | 15.90 | 5.92 | 6.50 | 1.70 | 1.70 | 2.68 | 5.70 | 5.68 | 7.92 |
COM9 | 193,055 | 52.59 | 14.40 | 13.00 | 3.55 | 3.35 | 4.21 | 41.87 | 17.72 | 15.43 |
COM10 | 131,090 | 13.94 | 8.10 | 9.05 | 2.81 | 2.82 | 3.83 | 9.76 | 9.68 | 12.37 |
Pyrenees | ||||||||||
COM1 | 52 | 351.48 | 30.17 | 20.38 | 220.75 | 12.99 | 8.74 | 558.60 | 54.31 | 35.57 |
COM4 | 594 | 254.64 | 33.49 | 39.16 | 88.10 | 13.64 | 17.44 | 468.15 | 56.19 | 63.52 |
COM8 | 187,487 | 6.14 | 3.23 | 5.04 | 1.68 | 1.62 | 2.38 | 4.86 | 4.79 | 7.10 |
COM9 | 235,082 | 27.71 | 8.88 | 15.31 | 2.46 | 2.44 | 3.34 | 10.30 | 9.16 | 11.51 |
COM10 | 550,069 | 6.13 | 4.88 | 10.46 | 2.21 | 2.19 | 3.43 | 6.64 | 7.00 | 9.88 |
Tatra Mountains | ||||||||||
COM1 | 24 | 112.34 | 43.26 | 34.93 | 48.11 | 29.41 | 21.61 | 225.41 | 69.34 | 62.46 |
COM8 | 5984 | 2.40 | 2.41 | 6.99 | 1.43 | 1.43 | 4.86 | 3.56 | 3.56 | 11.50 |
COM9 | 68,521 | 30.65 | 11.06 | 11.27 | 3.42 | 3.35 | 5.35 | 14.83 | 13.69 | 14.75 |
COM10 | 43,093 | 6.61 | 6.01 | 7.96 | 2.49 | 2.50 | 5.18 | 9.41 | 9.46 | 12.75 |
COM/COV | Alps (Valle d’Aosta) | Pyrenees | Tatra Mountains | ||||
---|---|---|---|---|---|---|---|
TDX90LE90 (m) | COP90LE90 (m) | TDX90 LE90 (m) | COP90LE90 (m) | TDX90 LE90 (m) | COP90LE90 (m) | ||
8/2 | All heights are consistent | 8.45 | 7.81 | 70.10 | 19.37 | – | – |
8/3 | 6.46 | 6.41 | 6.52 | 6.43 | 4.94 | 5.10 | |
8/4 | 5.49 | 5.52 | 5.80 | 5.84 | 5.06 | 6.05 | |
8/5 | 5.21 | 5.24 | 5.06 | 5.00 | 3.71 | 3.71 | |
8/6 | 4.16 | 4.16 | 4.82 | 4.74 | 4.56 | 4.56 | |
8/7 | 3.77 | 3.77 | 4.55 | 4.47 | 4.34 | 4.33 | |
8/8 | – | – | 4.35 | 4.31 | 3.03 | 3.03 | |
8/≥ 9 | – | – | 3.89 | 3.83 | 2.53 | 2.53 | |
9/2 | Larger inconsistency but at least one consistent height pair | 162.97 | 41.32 | 120.14 | 31.59 | – | – |
9/3 | 113.73 | 28.74 | 128.56 | 34.24 | 147.94 | 40.33 | |
9/4 | 81.94 | 21.10 | 88.16 | 27.53 | 124.44 | 36.28 | |
9/5 | 21.15 | 13.05 | 44.07 | 21.15 | 16.31 | 14.89 | |
9/6 | 22.61 | 15.74 | 11.74 | 9.84 | 10.92 | 10.23 | |
9/7 | 11.29 | 10.74 | 10.04 | 9.42 | 12.08 | 12.05 | |
9/8 | 16.08 | 10.11 | 8.09 | 7.76 | 10.43 | 10.22 | |
9/≥ 9 | – | – | 5.34 | 5.36 | 13.51 | 13.49 | |
10/2 | Smaller inconsistency but at least one consistent height pair | 16.32 | 13.74 | 13.94 | 15.97 | – | – |
10/3 | 10.26 | 10.09 | 7.95 | 8.67 | 14.44 | 14.80 | |
10/4 | 10.32 | 10.16 | 8.58 | 9.10 | 14.19 | 14.54 | |
10/5 | 9.89 | 9.74 | 7.16 | 7.25 | 8.73 | 8.86 | |
10/6 | 8.09 | 8.30 | 6.73 | 6.74 | 9.55 | 9.51 | |
10/7 | 8.37 | 8.50 | 6.27 | 6.26 | 8.40 | 8.49 | |
10/8 | 11.73 | 13.19 | 6.10 | 6.09 | 9.17 | 9.19 | |
10/≥ 9 | – | – | 6.12 | 6.13 | 9.84 | 9.90 |
Relative Importance of Predictors (%) | Model Parameters and Validation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Auxiliary Data | Terrain Characteristics | Number of Trees | Total Deviance | Cross-Validated Residual Deviance | Deviance Explained (%) | |||||
HEM | COM | COV | Slope | Aspect | Altitude | |||||
Alps | 67 | 16 | 2 | 10 | 0 | 5 | 1500 | 1823 | 1158 | 36.5 |
Pyrenees | 68 | 25 | 3 | 3 | 0 | 1 | 1200 | 243 | 174 | 28.4 |
Tatras | 77 | 0 | 0 | 6 | 0 | 17 | 250 | 516 | 260 | 49.6 |
Alps | Pyrenees | Tatra Mountains | |||||
---|---|---|---|---|---|---|---|
FLM | Number of Cells | % | Number of Cells | % | Number of Cells | % | |
1 | Edited (except filled pixels) | 2054 | 0.5 | 4232 | 0.4 | 460 | 0.4 |
2 | Not edited/not filled | 296,346 | 73.9 | 909,304 | 93.4 | 104,444 | 88.8 |
3 | ASTER | 30,074 | 7.5 | 14,665 | 1.5 | 4211 | 3.6 |
4 | SRTM90 | 372 | 0.1 | – | – | 81 | 0.1 |
5 | SRTM30 | 58,411 | 14.6 | 45,550 | 4.7 | 8363 | 7.1 |
7 | SRTM30PLUS | 13,606 | 3.4 | – | – | 63 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marešová, J.; Gdulová, K.; Pracná, P.; Moravec, D.; Gábor, L.; Prošek, J.; Barták, V.; Moudrý, V. Applicability of Data Acquisition Characteristics to the Identification of Local Artefacts in Global Digital Elevation Models: Comparison of the Copernicus and TanDEM-X DEMs. Remote Sens. 2021, 13, 3931. https://doi.org/10.3390/rs13193931
Marešová J, Gdulová K, Pracná P, Moravec D, Gábor L, Prošek J, Barták V, Moudrý V. Applicability of Data Acquisition Characteristics to the Identification of Local Artefacts in Global Digital Elevation Models: Comparison of the Copernicus and TanDEM-X DEMs. Remote Sensing. 2021; 13(19):3931. https://doi.org/10.3390/rs13193931
Chicago/Turabian StyleMarešová, Jana, Kateřina Gdulová, Petra Pracná, David Moravec, Lukáš Gábor, Jiří Prošek, Vojtěch Barták, and Vítězslav Moudrý. 2021. "Applicability of Data Acquisition Characteristics to the Identification of Local Artefacts in Global Digital Elevation Models: Comparison of the Copernicus and TanDEM-X DEMs" Remote Sensing 13, no. 19: 3931. https://doi.org/10.3390/rs13193931
APA StyleMarešová, J., Gdulová, K., Pracná, P., Moravec, D., Gábor, L., Prošek, J., Barták, V., & Moudrý, V. (2021). Applicability of Data Acquisition Characteristics to the Identification of Local Artefacts in Global Digital Elevation Models: Comparison of the Copernicus and TanDEM-X DEMs. Remote Sensing, 13(19), 3931. https://doi.org/10.3390/rs13193931