Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paddy Rice Production in Thailand
2.2. Dataset
2.2.1. Time-Series Sentinel-1A Images
2.2.2. Construction of Training Dataset
2.3. Methodology
2.3.1. Preprocessing of Multitemporal SAR
2.3.2. Extraction of Temporal Statistic Features
- The temporal variance
- The temporal minimum
- The temporal maximum
2.3.3. The Modified U-Net Model for Paddy Rice Mapping
- The basic structure of U-Net
- The Batch Normalization (BN) layer
- The fully connected CRF module
2.3.4. Accuracy Assessment and Validation Data
3. Results
3.1. Training Details of the Proposed Paddy Rice Mapping Method
3.2. Paddy Rice Mapping Results and Accuracy Assessment
3.3. Comparisons to the Official Statistics
3.4. Comparisons to Other Classification Methods
3.4.1. Experimental Area
3.4.2. Other Classification Methods for Comparison
- Support Vector Machine (SVM)
- The U-Net model based on feature selection (FS-U-Net)
3.4.3. Qualitative and Quantitative Analysis of Different Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O.; Gifford, L.; Kavvada, A.; Jarvis, I. No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework. Remote Sens. Environ. 2019, 235, 14. [Google Scholar] [CrossRef]
- World Food and Agriculture—Statistical Yearbook 2020; FAO: Rome, Italy, 2020. [CrossRef]
- Mohammadi, A.; Costelloe, J.F.; Ryu, D. Application of time series of remotely sensed normalized difference water, vegetation and moisture indices in characterizing flood dynamics of large-scale arid zone floodplains. Remote Sens. Environ. 2017, 190, 70–82. [Google Scholar] [CrossRef]
- Cao, X.C.; Wu, M.Y.; Shu, R.; Zhuo, L.; Chen, D.; Shao, G.C.; Guo, X.P.; Wang, W.G.; Tang, S.H. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Sci. Total Environ. 2018, 610, 84–93. [Google Scholar]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Mano, M.; Yamamoto, A.; Ono, K.; Osawa, T.; Hayashida, S.; Patra, P.K.; Terao, Y.; et al. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Environ. 2018, 252, 148–158. [Google Scholar] [CrossRef]
- Yan, F.Q.; Yu, L.X.; Yang, C.B.; Zhang, S.W. Paddy field expansion and aggregation since the mid-1950s in a Cold Region and its possible causes. Remote Sens. 2018, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.B.; Wang, L.M.; Huang, J.F.; Mansaray, L.R.; Mijiti, R. Monitoring policy-driven crop area adjustments in northeast China using Landsat-8 imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 18. [Google Scholar] [CrossRef]
- Wang, H.F.; Ghosh, A.; Linquist, B.A.; Hijmans, R.J. Satellite-based observations reveal effects of weather variation on rice phenology. Remote Sens. 2020, 12, 1522. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tian, Z.; Fan, D.L.; Hou, M.; Niu, Y.; Xu, H.; Hu, B.; Shi, R.; Chen, M. Simulation of methane emissions from double-rice cropping system in Southern China during the past 50 years by DNDC model. In Remote Sensing and Modeling of Ecosystems for Sustainability Xv; Gao, W., Chang, N.B., Wang, J., Eds.; SPIE—International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar]
- Minh, H.V.T.; Avtar, R.; Mohan, G.; Misra, P.; Kurasaki, M. Monitoring and mapping of rice cropping pattern in flooding area in the Vietnamese Mekong Delta using sentinel-1A Data: A case of an Giang Province. ISPRS Int. J. Geo Inf. 2019, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.J.; Huang, R.; Mansaray, L.R.; Huang, J.F. Mapping high temperature damaged area of paddy rice along the Yangtze River using Moderate Resolution Imaging Spectroradiometer data. Int. J. Remote Sens. 2020, 41, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Jeong, H.; Cho, J. Performances of vegetation indices on paddy rice at elevated air temperature, heat stress, and herbicide damage. Remote Sens. 2020, 12, 2654. [Google Scholar] [CrossRef]
- FAOSTAT Data. 2018. Available online: http://www.fao.org/faostat (accessed on 1 September 2020).
- Gheewala, S.H.; Silalertruksa, T.; Nilsalab, P.; Mungkung, R.; Perret, S.R.; Chaiyawannakarn, N. water footprint and impact of water consumption for food, feed, fuel crops production in Thailand. Water 2014, 6, 1698–1718. [Google Scholar] [CrossRef] [Green Version]
- Maraseni, T.N.; Deo, R.C.; Qu, J.S.; Gentle, P.; Neupane, P.R. An international comparison of rice consumption behaviours and greenhouse gas emissions from rice production. J. Clean. Prod. 2018, 172, 2288–2300. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Arino, O.; Ramos, J.; Kalogirou, V.; Defourny, P.; Achard, F. GlobCover 2009. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010. [Google Scholar]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 1 September 2020).
- Yu, L.; Wang, J.; Clinton, N.; Xin, Q.C.; Zhong, L.H.; Chen, Y.L.; Gong, P. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digit. Earth 2013, 6, 521–533. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 2004, 18, 1–27. [Google Scholar] [CrossRef]
- Monfreda, C.; Ramankutty, N.; Foley, J.A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 2008, 22, GB1022. [Google Scholar] [CrossRef]
- Frolking, S.; Qiu, J.; Boles, S.; Xiao, X.; Liu, J.; Zhuang, Y.; Li, C.; Qin, X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 2002, 16, 1091. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N. Mapping rice areas of South Asia using MODIS multitemporal data. J. Appl. Remote Sens. 2011, 5, 053547. [Google Scholar] [CrossRef] [Green Version]
- Bridhikitti, A.; Overcamp, T.J. Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery. Agric. Ecosyst. Environ. 2012, 146, 113–120. [Google Scholar] [CrossRef]
- Tennakoon, S.B.; Murty, V.V.N.; Eiumnoh, A. Estimation of cropped area and grain yield of rice using remote sensing data. Int. J. Remote Sens. 1992, 13, 427–439. [Google Scholar] [CrossRef]
- Panigrahy, S.; Parihar, J.S. Role of middle infrared bands of Landsat thematic mapper in determining the classification accuracy of rice. Int. J. Remote Sens. 1992, 13, 2943–2949. [Google Scholar] [CrossRef]
- Kamthonkiat, D.; Honda, K.; Turral, H.; Tripathi, N.K.; Wuwongse, V. Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data. Int. J. Remote Sens. 2005, 26, 2527–2547. [Google Scholar] [CrossRef]
- Pan, X.Z.; Uchida, S.; Liang, Y.; Hirano, A.; Sun, B. Discriminating different landuse types by using multitemporal NDXI in a rice planting area. Int. J. Remote Sens. 2010, 31, 585–596. [Google Scholar] [CrossRef]
- Nuarsa, I.W.; Nishio, F.; Hongo, C.; Mahardika, I.G. Using variance analysis of multitemporal MODIS images for rice field mapping in Bali Province, Indonesia. Int. J. Remote Sens. 2012, 33, 5402–5417. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Duc, H.N.; Chang, L.Y. A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam. Remote Sens. 2014, 6, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Tornos, L.; Huesca, M.; Dominguez, J.A.; Moyano, M.C.; Cicuendez, V.; Recuero, L.; Palacios-Orueta, A. Assessment of MODIS spectral indices for determining rice paddy agricultural practices and hydroperiod. ISPRS J. Photogramm. Remote Sens. 2015, 101, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.S.; Lin, H.; Pei, Z.Y. Application of ENVISAT ASAR data in mapping rice crop growth in Southern China. IEEE Geosci. Remote Sens. Lett. 2007, 4, 431–435. [Google Scholar] [CrossRef]
- Wu, F.; Wang, C.; Zhang, H.; Zhang, B.; Tang, Y. Rice crop monitoring in South China with RADARSAT-2 quad-polarization SAR data. Geosci. Remote Sens. Lett. 2011, 8, 196–200. [Google Scholar] [CrossRef]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Minh, D.H.T.; Ndikumana, E.; Courault, D.; Belhouchette, H. mapping paddy rice using sentinel-1 SAR time series in Camargue, France. Remote Sens. 2019, 11, 887. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Chen, Y.-T.; Wang, J.-H.; Chang, Y.-L. Rice-field mapping with sentinel-1A SAR time-series data. Remote Sens. 2021, 13, 103. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Clauss, K.; Cao, S.; Naeimi, V.; Kuenzer, C.; Wagner, W. Mapping rice seasonality in the Mekong Delta with multi-year envisat ASAR WSM data. Remote Sens. 2015, 7, 15868–15893. [Google Scholar] [CrossRef] [Green Version]
- Asilo, S.; de Bie, K.; Skidmore, A.; Nelson, A.; Barbieri, M.; Maunahan, A. Complementarity of two rice mapping approaches: Characterizing strata mapped by hypertemporal MODIS And rice paddy identification using multitemporal SAR. Remote Sens. 2014, 6, 12789–12814. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Erten, E. Paddy-Rice Monitoring Using TanDEM-X. IEEE Trans. Geosci. Remote Sens. 2015, 53, 900–910. [Google Scholar] [CrossRef] [Green Version]
- Fikriyah, V.N.; Darvishzadeh, R.; Laborte, A.; Khan, N.I.; Nelson, A. Discriminating transplanted and direct seeded rice using Sentinel-1 intensity data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Waisurasingha, C.; Aniya, M.; Hirano, A.; Sommut, W. Use of RADARSAT-1 data and a digital elevation model to assess flood damage and improve rice production in the lower part of the Chi River Basin, Thailand. Int. J. Remote Sens. 2008, 29, 5837–5850. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Nagano, T.; Kotera, A.; Watanabe, K.; Fujihara, Y.; Kozan, O. Classification of crop fields in northeast Thailand based on hydrological characteristics detected by L-band SAR backscatter data. Remote Sens. Lett. 2014, 5, 323–331. [Google Scholar] [CrossRef]
- Nelson, A.; Setiyono, T.; Rala, A.B.; Quicho, E.D.; Raviz, J.; Abonete, P.J.; Maunahan, A.A.; Garcia, C.A.; Bhatti, H.Z.M.; Villano, L.S.; et al. Towards an operational SAR-based rice monitoring system in Asia: Examples from 13 demonstration sites across Asia in the RIICE Project. Remote Sens. 2014, 6, 10773–10812. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.H.; Hu, L.N.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Hirose, A. Complex-Valued Neural Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Cué La Rosa, L.E.; Queiroz Feitosa, R.; Nigri Happ, P.; Del’Arco Sanches, I.; Ostwald Pedro da Costa, G.A. Combining deep learning and prior knowledge for crop mapping in tropical regions from multitemporal SAR image sequences. Remote Sens. 2019, 11, 2029. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Wei, S.; Zhang, H.; Wang, C.; Wang, Y.; Xu, L. Multi-temporal SAR data large-scale crop mapping based on U-Net model. Remote Sens. 2019, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Krähenbühl, P.; Koltun, V. Efficient inference in fully connected CRFs with Gaussian edge potentials. In Proceedings of the Neural Information Processing Systems (NIPS 2011), Granada, Spain, 12–17 December 2011; pp. 109–117. [Google Scholar]
- Dong, J.W.; Xiao, X.M. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, H.; Wang, C.; Zhang, B.; Liu, M. Crop classification based on temporal information using sentinel-1 SAR time-series data. Remote Sens. 2019, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Grandi, G.F.D.; Leysen, M.; Lee, J.S.; Schuler, D. Radar reflectivity estimation using multiple SAR scenes of the same target: Technique and applications. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Singapore, 3–8 August 1997; pp. 1047–1050. [Google Scholar]
- Zhan, P.; Zhu, W.Q.; Li, N. An automated rice mapping method based on flooding signals in synthetic aperture radar time series. Remote Sens. Environ. 2021, 252, 112112. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong delta using sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Wagner, W. European rice cropland mapping with sentinel-1 data: The Mediterranean Region case study. Water 2017, 9, 392. [Google Scholar] [CrossRef]
- Yang, S.B.; Shen, S.H.; Zhao, X.Y.; Gao, W.; Jackson, T.J.; Wang, J.; Chang, N.B. Assessment of RADARSAT-2 quad-polarization SAR data in rice crop mapping and yield estimation. Remote Sens. Model. Ecosyst. Sustain. IX 2012, 8513, 851306. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Lafferty, J.D.; McCallum, A.; Pereira, F.C. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data; University of Pennsylvania: Philadelphia, PA, USA, 2001. [Google Scholar]
- OAE, Land Utilization in 2019. 2019. Available online: http://www.oae.go.th/assets/portals/1/files/socio/LandUtilization2562.pdf (accessed on 1 September 2020).
- OAE, Land Utilization in 2018. 2018. Available online: http://www.oae.go.th/assets/portals/1/files/socio/LandUtilization2561.pdf (accessed on 1 September 2020).
- OAE, Land Utilization in 2017. 2017. Available online: http://www.oae.go.th/assets/portals/1/files/Land%20Utilization2560.pdf (accessed on 1 September 2020).
- Li, L.; Dong, J.; Njeudeng Tenku, S.; Xiao, X. Mapping oil palm plantations in Cameroon using PALSAR 50-m orthorectified mosaic images. Remote Sens. 2015, 7, 1206–1224. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. 2011, 2, 27. [Google Scholar] [CrossRef]
- Skriver, H.; Mattia, F.; Satalino, G.; Balenzaro, A.; Pauwels, V.; Verhoest, N.E.C.; Davidson, M. Crop Classification Using Short-Revisit Multitemporal SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 423–431. [Google Scholar] [CrossRef]
Frame (Satellite) | Time* | No.* | Size* | Frame (Satellite) | Time* | No.* | Size* |
---|---|---|---|---|---|---|---|
62-1(S1B) | 2018/10/6~2019/10/1 | 29 | 19,488 × 25,150 | 164-1(S1B) | 2018/9/7~2019/9/26 | 32 | 19,492 × 25,149 |
62-2(S1B) | 2018/10/6~2019/10/1 | 29 | 16,790 × 25,147 | 164-2(S1B) | 2018/9/7~2019/9/26 | 32 | 16,792 × 25,146 |
62-3(S1B) | 2018/10/6~2019/10/1 | 29 | 16,790 × 25,145 | 164-3(S1B) | 2018/9/7~2019/9/26 | 32 | 16,791 × 25,144 |
62-4(S1B) | 2018/10/6~2019/10/1 | 29 | 16,790 × 25,143 | 164-4(S1B) | 2018/9/7~2019/9/26 | 32 | 16,792 × 25,142 |
62-5(S1B) | 2018/10/6~2019/10/1 | 29 | 9438 × 25,143 | 164-5(S1B) | 2018/9/7~2019/9/26 | 32 | 20,564 × 25,141 |
62-20(S1A) | 2018/12/11~2019/12/6 | 27 | 16,776 × 25,563 | 164-20(S1A) | 2018/12/6~2019/10/14 | 13 | 16,786 × 25,421 |
62-21(S1A) | 2018/12/11~2019/12/6 | 27 | 16,777 × 25,563 | 91-1(S1B) | 2018/9/2~2019/9/21 | 32 | 19,495 × 25,153 |
62-22(S1A) | 2018/12/11~2019/12/6 | 26 | 16,776 × 25,563 | 91-2(S1B) | 2018/9/2~2019/9/21 | 32 | 16,793 × 25,150 |
62-23(S1A) | 2018/12/11~2019/12/6 | 24 | 16,777 × 25,568 | 91-3(S1B) | 2018/9/2~2019/9/21 | 32 | 16,793 × 25,148 |
62-24(S1A) | 2018/12/11~2019/12/6 | 25 | 16,776 × 25,570 | 91-4(S1B) | 2018/9/2~2019/9/21 | 32 | 16,793 × 25,146 |
172-17(S1A) | 2018/12/7~2019/12/14 | 31 | 16,780 × 25,705 | 135-16(S1A) | 2018/9/11~2019/9/18 | 23 | 16,772 × 25,571 |
172-18(S1A) | 2018/12/7~2019/12/14 | 31 | 16,781 × 25,701 | 135-17(S1A) | 2018/9/11~2019/9/18 | 23 | 16,772 × 25,568 |
99-16(S1A) | 2018/1/12~2018/12/26 | 29 | 16,784 × 25,637 | 135-18(S1A) | 2018/9/11~2019/9/18 | 23 | 16,772 × 25,565 |
135-19(S1A) | 2018/9/11~2019/9/18 | 23 | 16,772 × 25,564 |
Class | Number of Plots | Number of Pixels |
---|---|---|
Rice | 925 | 1,572,940 |
Non-rice | 1096 | 1,321,614 |
Training Environment | |
---|---|
CPU | Core i7 |
GPU | GTX 1080Ti 16G |
Platform | TensorFlow |
Training Parameters | |
Input patch size | 224 × 224 × 3 |
Batch size | 5 |
Learning rate | 0.001 |
Total number of training samples | 15,660 (7931 rice, 7728 non-rice) |
Epoch | 10 |
Class | ||||
---|---|---|---|---|
Paddy rice | 91.31% | 87.76% | 95.89% | 0.8262 |
Method | Input features | Hyperparameters | Selected values |
---|---|---|---|
SVM | False-color image of , , and in VH polarization | penalty parameter | = 16 |
kernel parameter | = 4 | ||
FS-U-Net | acquired on 12 January, 24 January, 5 June, 17 June, 11 July, 23 July, and 4 August (optimal observations selected by the method in [52]) | Input patch size | 224 × 224 × 7 |
Batch size | Same as the proposed method | ||
Learning rate | |||
Epoch |
Method | Proposed Method | SVM | FS-U-Net |
---|---|---|---|
(%) | 97.3544 | 86.4317 | 96.81204 |
(%) | 92.7615 | 99.6269 | 41.5065 |
(%) | 95.9182 | 93.3026 | 74.9632 |
0.9156 | 0.8653 | 0.4406 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Zhang, H.; Wang, C.; Wei, S.; Zhang, B.; Wu, F.; Tang, Y. Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model. Remote Sens. 2021, 13, 3994. https://doi.org/10.3390/rs13193994
Xu L, Zhang H, Wang C, Wei S, Zhang B, Wu F, Tang Y. Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model. Remote Sensing. 2021; 13(19):3994. https://doi.org/10.3390/rs13193994
Chicago/Turabian StyleXu, Lu, Hong Zhang, Chao Wang, Sisi Wei, Bo Zhang, Fan Wu, and Yixian Tang. 2021. "Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model" Remote Sensing 13, no. 19: 3994. https://doi.org/10.3390/rs13193994
APA StyleXu, L., Zhang, H., Wang, C., Wei, S., Zhang, B., Wu, F., & Tang, Y. (2021). Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model. Remote Sensing, 13(19), 3994. https://doi.org/10.3390/rs13193994