Ecological and Environmental Effects of Estuarine Wetland Loss Using Keyhole and Landsat Data in Liao River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Process
2.3. Land Use Dynamic Change Analysis Method
2.4. Comprehensive Evaluation Method
2.4.1. Evaluation of the Ecosystem Service
2.4.2. Evaluation of Suitable Habitat for Birds
2.4.3. Pollution Risk Assessment
2.4.4. Driving Factors Analysis
3. Results
3.1. Spatial and Temporal Changes in Land Use
3.2. Ecosystem Services Changes
3.3. Birds Suitable Habitat Changes
3.4. Potential Soil Pollution Ecological Risk
3.5. Relationships among the Changes of Ecological Effects and Factors
4. Discussion
4.1. Influence Process of Wetland Loss on Ecological Effects
4.2. Policy Implications
4.3. Validity and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Junk, W.J.; An, S.; Finlayson, C.M.; Gopal, B.; Květ, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 2013, 75, 151–167. [Google Scholar] [CrossRef] [Green Version]
- García, J.; Solimeno, A.; Zhang, L.; Marois, D.; Mitsch, W.J. Constructed wetlands to solve agricultural drainage pollution in South Florida: Development of an advanced simulation tool for design optimization. J. Clean. Prod. 2020, 258, 120868. [Google Scholar] [CrossRef]
- Gardner, R.C.; Barchiesi, S.; Beltrame, C.; Finlayson, C.M.; Galewski, T.; Harrison, I.; Paganini, M.; Perennou, C.; Pritchard, D.E.; Rosenqvist, A.; et al. State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses. Ramsar Briefing Note No. 7; Ramsar Convention Secretariat: Gland, Switzerland, 2015. [Google Scholar]
- Debanshi, S.; Pal, S. Modelling water richness and habitat suitability of the wetlands and measuring their spatial linkages in mature Ganges delta of India. J. Environ. Manag. 2020, 271, 110956. [Google Scholar] [CrossRef] [PubMed]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, J.; Gong, Y. Valuing wetland ecosystem services based on benefit transfer: A meta-analysis of China wetland studies. J. Clean. Prod. 2020, 276, 122988. [Google Scholar] [CrossRef]
- Lu, Q.; Bai, J.; Zhang, G.; Wu, J. Effects of coastal reclamation history on heavy metal in different wetland type soils in the Pearl River Delta: Levels, sources and ecological risks. J. Clean. Prod. 2020, 272, 122668. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, W.J.; Zhang, W.; Yu, Y.Q.; Su, Y.H.; Song, C.C. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob. Chang. Biol. 2010, 16, 680–695. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marba, N.; et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Qiao, K.; Yu, H.; Bai, J.; Jin, X.; Liu, Q.; Zhao, J. Remediation of aquaculture water in the estuarine wetlands using coal cinder-zeolite balls/reed wetland combination strategy. J. Environ. Manag. 2016, 181, 261–268. [Google Scholar] [CrossRef]
- Mulder, J.P.M.; Hommes, S.; Horstman, E.M. Implementation of coastal erosion management in the Netherlands. Ocean Coast. Manag. 2011, 54, 888–897. [Google Scholar] [CrossRef]
- Gedan, K.B.; Silliman, B.R.; Bertness, M.D. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 2009, 1, 117–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velez, J.M.M.; Garcia, S.B.; Tenorio, A.E. Policies in coastal wetlands: Key challenges. Environ. Sci. Policy 2018, 88, 72–82. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Alam, M. Ecological and economic indicators for measuring erosion control services provided by ecosystems. Ecol. Ind. 2018, 95, 695–701. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sica, Y.V.; Quintana, R.D.; Radeloff, V.C.; Gavier-Pizarro, G.I. Wetland loss due to land use change in the Lower Parana River Delta, Argentina. Sci. Total Environ. 2016, 568, 967–978. [Google Scholar] [CrossRef]
- Chuai, X.W.; Huang, X.J.; Wu, C.Y.; Li, J.B.; Lu, Q.L.; Qi, X.X.; Zhang, M.; Zuo, T.H.; Lu, J.Y. Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Wang, S.L.; Xu, X.R.; Sun, Y.X.; Liu, J.L.; Li, H.B. Heavy metal pollution in coastal areas of South China: A review. Mar. Pollut. Bull. 2013, 76, 7–15. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef]
- Owethu Pantshwa, A.; Buschke, F.T. Ecosystem services and ecological degradation of communal wetlands in a South African biodiversity hotspot. R. Soc. Open Sci. 2019, 6, 181770. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Luo, M.; Zhang, X.; Christakos, G.; Agusti, S.; Duarte, C.M.; Wu, J. Losses of salt marsh in China: Trends, threats and management. Estuar. Coast. Shelf Sci. 2018, 214, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Westman, W.E. How much are nature’s services worth? Science 1977, 197, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in ecosystem service values in the San Antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Yi, H.C.; Guneralp, B.; Filippi, A.M.; Kreuter, U.P.; Guneralp, I. Impacts of land change on ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Bagstad, K.J.; Semmens, D.J.; Winthrop, R. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 2013, 5, E40–E50. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Ind. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Mulkeen, C.J.; Gibson-Brabazona, S.; Carlin, C.; Williams, C.D.; Healy, M.G.; Mackey, P.; Gormally, M.J. Habitat suitability assessment of constructed wetlands for the smooth newt (Lissotriton vulgaris Linnaeus, 1758): A comparison with natural wetlands. Ecol. Eng. 2017, 106, 532–540. [Google Scholar] [CrossRef]
- Xue, S.; Sun, T.; Zhang, H.; Shao, D. Suitable habitat mapping in the Yangtze River Estuary influenced by land reclamations. Ecol. Eng. 2016, 97, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.; Yuanman, H.; Dufa, G.; Kai, S.; Shuyu, Z.; Lidong, W. The Change of Habitat Suitable for the Red-crowned Crane in Yellow River Delta. Chin. J. Zool. 2004, 39, 33–41. [Google Scholar]
- Haris, H.; Aris, A.Z. The geoaccumulation index and enrichment factor of mercury in mangrove sediment of Port Klang, Selangor, Malaysia. Arab. J. Geosci. 2013, 6, 4119–4128. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.S.; Meadows, M.E.; Choi, Y.R.; Banerjee, A.; Zilong, X. Mapping trajectories of coastal land reclamation in Nine Deltaic Megacities using Google Earth Engine. Remote Sens. 2019, 11, 2621. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.T.; Xiao, X.M.; Qin, Y.W.; Dong, J.W.; Zhang, G.L.; Kou, W.L.; Jin, C.; Wang, J.; Li, X.P. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Shen, G.; Yang, X.; Jin, Y.; Xu, B.; Zhou, Q. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecol. Ind. 2019, 104, 48–58. [Google Scholar] [CrossRef]
- Singh, S.; Bhardwaj, A.; Verma, V.K. Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. J. Environ. Manag. 2020, 262, 110355. [Google Scholar] [CrossRef]
- Wang, X.X.; Xiao, X.M.; Zou, Z.H.; Hou, L.Y.; Qin, Y.W.; Dong, J.W.; Doughty, R.B.; Chen, B.Q.; Zhang, X.; Cheng, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef]
- Li, X.W.; Liang, C.; Shi, J.B. Developing wetland restoration scenarios and modeling its ecological consequences in the Liaohe River Delta wetlands, China. Clean-Soil Air Water 2012, 40, 1185–1196. [Google Scholar] [CrossRef]
- Du, J.; Song, K.S. Validation of global evapotranspiration product (MOD16) using flux tower data from Panjin coastal wetland, Northeast China. Chin. Geogr. Sci. 2018, 28, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, M.; Li, C. Soil heavy metal contamination assessment in the Hun-Taizi River watershed, China. Sci. Rep. 2020, 10, 8730. [Google Scholar] [CrossRef]
- Redo, D.J.; Aide, T.M.; Clark, M.L.; Andrade-Nunez, M.J. Impacts of internal and external policies on land change in Uruguay, 2001–2009. Environ. Conserv. 2012, 39, 122–131. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. Nat. Resour. 2008, 5, 911–919. [Google Scholar]
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Chao, S.; Yongxue, L.; Song, J.; Yongxing, W.; Xianglin, W. Using Time-Series HSI Mapping to Determine Ecological Processes and Driving Forces of Red-Crowned Crane (Grus japonensis) Habitat in the Yancheng Biosphere Reserve (China). J. Coast. Res. 2019, 35, 322–334. [Google Scholar] [CrossRef]
- Yuanman, H.; Ying, S.; Xiuzhen, L.; Ling, W.; Yuxiang, L.; Yucheng, Y. Change of red-crowned crane breeding habitat and the analysis of breeding capacity in Shuangtaihekou National Nature Reserve. Chin. J. Ecol. 2004, 23, 7–12. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine river. Geojournal 1979, 2, 108–118. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre. Chinese Soil Elements Background Values. 1990. Available online: http://ir.imde.ac.cn/handle/131551/6392 (accessed on 15 January 2020).
- Cui, B.S.; He, Q.; Gu, B.H.; Bai, J.H.; Liu, X.H. China’s coastal wetlands: Understanding environmental changes and human impacts for management and conservation. Wetlands 2016, 36, S1–S9. [Google Scholar] [CrossRef] [Green Version]
- Bagheri Bodaghabadi, M.; Salehi, M.H.; Martínez-Casasnovas, J.A.; Mohammadi, J.; Toomanian, N.; Esfandiarpoor Borujeni, I. Using canonical correspondence analysis (CCA) to identify the most important DEM attributes for digital soil mapping applications. Catena 2011, 86, 66–74. [Google Scholar] [CrossRef]
- Yu, Y.H.; Suo, A.N.; Jiang, N. Response of ecosystem service to landscape change in Panjin coastal wetland. Procedia Earth Planet. Sci. 2011, 2, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, Y.; Zhu, X.; Cao, K.; Feng, L. Integrative assessment and management implications on ecosystem services loss of coastal wetlands due to reclamation. J. Clean. Prod. 2017, 163, S101–S112. [Google Scholar] [CrossRef]
- Yan, F.Q.; Zhang, S.W. Ecosystem service decline in response to wetland loss in the Sanjiang Plain, Northeast China. Ecol. Eng. 2019, 130, 117–121. [Google Scholar] [CrossRef]
- Wang, C.D.; Li, X.; Yu, H.J.; Wang, Y.T. Tracing the spatial variation and value change of ecosystem services in Yellow River Delta, China. Ecol. Ind. 2019, 96, 270–277. [Google Scholar] [CrossRef]
- Luo, Q.L.; Zhou, J.F.; Li, Z.G.; Yu, B.L. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef]
- Cui, Y.L.; Dong, B.; Chen, L.N.; Gao, X.; Cui, Y.H. Study on habitat suitability of overwintering cranes based on landscape pattern changea case study of typical lake wetlands in the middle and lower reaches of the Yangtze River. Environ. Sci. Pollut. Res. 2019, 26, 14962–14975. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.Y.; Qin, C.Z.; Hong, X.; Kang, G.H.; Qin, M.Z.; Yang, D.; Pang, B.; Li, Y.Y.; He, J.J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, K.; Li, Y.J.; Zhou, Y. Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China. Environ. Sci. Pollut. Res. 2016, 23, 14957–14967. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, Z.; Mao, D.; Zhang, J.; Xi, Y.; Du, B.; Zhang, B. What did China’s National Wetland Conservation Program Achieve? Observations of changes in land cover and ecosystem services in the Sanjiang Plain. J. Environ. Manag. 2020, 267, 110623. [Google Scholar] [CrossRef]
- Lian, X. Review on Advanced Practice of Provincial Spatial Planning: Case of a Western, Less Developed Province. Int. Rev. Spat. Plan. Sustain. Dev. 2018, 6, 185–202. [Google Scholar] [CrossRef] [Green Version]
Data | Date of Data | Description | Source |
---|---|---|---|
Land use map | 25 August 1962 | <3.6 m | Keyhole (KH5) https://earthexplorer.usgs.gov/ |
2 May 1972 | 0.3 m | Keyhole (KH9) https://earthexplorer.usgs.gov/ | |
9 August 1988 14 May1998 20 October 2008 15 October 2016 | 30 m × 30 m | Landsat1,5,7,8 https://earthexplorer.usgs.gov/ | |
184 Soil samples | October 2014 | 68 samples | National reserve |
116 samples | Out of national reserve |
Igeo | RI | Ecological Risk Ranks | |
---|---|---|---|
<1 | <40 | <70 | low |
1–2 | 40–80 | 70–140 | moderate |
2–3 | 80–160 | 140–280 | considerable |
3–5 | 160–320 | - | high |
>5 | ≥320 | ≥280 | very high |
Categories | Sub-Categorie/Billion Dollars | 1962 | 1972 | 1988 | 1998 | 2008 | 2016 | 1962–2016(%) |
---|---|---|---|---|---|---|---|---|
Supplying services | Food production | 0.10 | 0.12 | 0.12 | 0.11 | 0.10 | 0.10 | −1.11 |
Raw material | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.33 | |
Regulating services | Gas regulation | 0.19 | 0.17 | 0.17 | 0.16 | 0.15 | 0.14 | −22.50 |
Climate regulation | 1.09 | 0.85 | 0.84 | 0.82 | 0.80 | 0.73 | −33.01 | |
Hydrological regulation | 1.25 | 0.93 | 0.88 | 0.82 | 0.84 | 0.88 | −29.43 | |
Waste regulation | 1.92 | 1.46 | 1.42 | 1.36 | 1.35 | 1.31 | −31.58 | |
Supporting services | Soil formation and retention | 0.48 | 0.46 | 0.45 | 0.44 | 0.42 | 0.39 | −20.47 |
Biodiversity protection | 0.71 | 0.60 | 0.59 | 0.57 | 0.55 | 0.53 | −26.00 | |
Cultural services | Recreation and culture | 0.46 | 0.37 | 0.36 | 0.34 | 0.34 | 0.34 | −26.89 |
Total | 6.24 | 5.01 | 4.87 | 4.67 | 4.60 | 4.46 | −28.58 |
Type | Year | Cultivated Land | Wetland | Water area | Forestland |
---|---|---|---|---|---|
Change rate (%) | 1962–1972 | 42.33 | −25.13 | −31.34 | 292.50 |
1972–1988 | −1.77 | −1.62 | −15.47 | −100.00 | |
1988–1998 | −5.05 | −1.04 | −20.45 | -- | |
1998–2008 | −7.63 | −2.88 | 19.39 | -- | |
2008–2016 | −3.86 | −10.62 | 42.46 | -- | |
1962–2016 | 17.89 | −36.73 | −21.47 | -- |
Minimum | Maximum | Average | S.D. | CV(%) | Background Value (China) | Background Value (Liaoning Province) | |
---|---|---|---|---|---|---|---|
Cu(mg/kg) | 4.55 | 31.67 | 17.23 | 6.05 | 35.1 | 22.6 | 19.8 |
Cr (mg/kg) | 50.65 | 275.79 | 154.95 | 52.16 | 33.66 | 61 | 57.9 |
Cd (mg/kg) | 0.26 | 3.46 | 1.41 | 0.82 | 58.23 | 0.097 | 0.108 |
Ni (mg/kg) | 20.87 | 59.34 | 40.71 | 9.13 | 22.44 | 26.9 | 25.6 |
Zn (mg/kg) | 53.4 | 149.5 | 102.21 | 19.44 | 19.02 | 74.2 | 63.5 |
Pb (mg/kg) | 2.95 | 19.57 | 11.97 | 3.66 | 30.54 | 26 | 21.4 |
Variables | Explanation (%) | Contribution (%) | Pseudo-F | Significance-p |
---|---|---|---|---|
Wetland area | 36.0 | 44.5 | 23.1 | 0.002 |
Cd | 30.2 | 37.3 | 35.9 | 0.002 |
Distance to river | 5.7 | 7.6 | 8.0 | 0.012 |
Fishery output | 3.2 | 3.9 | 4.9 | 0.024 |
Cr | 1.8 | 2.2 | 2.9 | 0.049 |
Agricultural output | 1.5 | 1.8 | 2.5 | 0.048 |
Distance to oil wells | 0.5 | 0.6 | 0.8 | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Hu, Y.; Liu, M.; Li, C.; Lv, J. Ecological and Environmental Effects of Estuarine Wetland Loss Using Keyhole and Landsat Data in Liao River Delta, China. Remote Sens. 2021, 13, 311. https://doi.org/10.3390/rs13020311
Yin H, Hu Y, Liu M, Li C, Lv J. Ecological and Environmental Effects of Estuarine Wetland Loss Using Keyhole and Landsat Data in Liao River Delta, China. Remote Sensing. 2021; 13(2):311. https://doi.org/10.3390/rs13020311
Chicago/Turabian StyleYin, Hongyan, Yuanman Hu, Miao Liu, Chunlin Li, and Jiujun Lv. 2021. "Ecological and Environmental Effects of Estuarine Wetland Loss Using Keyhole and Landsat Data in Liao River Delta, China" Remote Sensing 13, no. 2: 311. https://doi.org/10.3390/rs13020311
APA StyleYin, H., Hu, Y., Liu, M., Li, C., & Lv, J. (2021). Ecological and Environmental Effects of Estuarine Wetland Loss Using Keyhole and Landsat Data in Liao River Delta, China. Remote Sensing, 13(2), 311. https://doi.org/10.3390/rs13020311