Superpixel-Based Regional-Scale Grassland Community Classification Using Genetic Programming with Sentinel-1 SAR and Sentinel-2 Multispectral Images
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Image Preprocessing
2.2.1. Sentinel-1 Data
2.2.2. Sentinel-2 Data
2.3. Ground Truth Data Acquisition
3. Methods
3.1. Watershed-Based Superpixel Segmentation
3.2. Feature Extraction and Selection
- N features are fed into a classifier, and importance of each feature is calculated;
- The feature with the lowest importance is removed from the current feature set, and the other features are input into the classifier again to calculate importance of each feature;
- Step 2 is repeated until the feature set was empty;
- All features are sorted by decreasing order of importance, and a threshold is selected. The features with importance greater than this threshold are then retained.
3.3. Classification Selection and Hyperparameter Optimization Based on GP Algorithm
3.3.1. Individual Tree
3.3.2. Genetic Operator
- The replication operator selects a few individuals in the current population according to certain rules and retains them directly to the next generation.
- The crossover operator randomly selects two individuals as parents from the current population. A node is then randomly selected as the crossover point in each parent individual, and the part below this node represents the segment to be exchanged (called the crossover segment). Offspring individuals are generated by swapping the crossing segments of parent individuals. The crossover process of individual trees and is presented in Figure 6.
- The mutation operator randomly selects a node in a parent individual as a mutation point and replaces the subtree below the mutation point with a randomly generated individual tree. Figure 7 illustrates the mutation process of the individual tree .
3.3.3. Fitness Function
3.3.4. Flow of the GP Algorithm
3.4. Segmentation and Classification Evaluation
4. Results
4.1. Segmentation Performance Evaluation
4.2. Feature Selection Result
4.3. Classification Result Assessment
5. Discussion
5.1. The Effect of Input Variables on Classification Accuracy
5.2. The Effect of Classification Model on Classification Accuracy
5.3. The Universality of the Proposed Method
5.4. The Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Liu, Q.; Meng, X.; Zhang, J.; Yao, F.; Zhang, H. The Impact of Seasonality and Response Period on Qualifying the Relationship between Ecosystem Productivity and Climatic Factors over the Eurasian Steppe. Remote Sens. 2021, 13, 3159. [Google Scholar] [CrossRef]
- De Simone, W.; Allegrezza, M.; Frattaroli, A.R.; Montecchiari, S.; Tesei, G.; Zuccarello, V.; Di Musciano, M. From Remote Sensing to Species Distribution Modelling: An Integrated Workflow to Monitor Spreading Species in Key Grassland Habitats. Remote Sens. 2021, 13, 1904. [Google Scholar] [CrossRef]
- Rapinel, S.; Mony, C.; Lecoq, L.; Clement, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote Sens. Environ. 2019, 223, 115–129. [Google Scholar] [CrossRef]
- Adamo, M.; Tomaselli, V.; Tarantino, C.; Vicario, S.; Veronico, G.; Lucas, R.; Blonda, P. Knowledge-based classification of grassland ecosystem based on multi-temporal WorldView-2 data and FAO-LCCS taxonomy. Remote Sens. 2020, 12, 1447. [Google Scholar] [CrossRef]
- Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Pitkänen, T.P.; Käyhkö, N. Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data. ISPRS J. Photogramm. Remote Sens. 2017, 130, 150–161. [Google Scholar] [CrossRef]
- Xu, D. Distribution Change and Analysis of Different Grassland Types in Hulunber Grassland. Ph.D. Thesis, Chinese Academy of Agricultural Sciences Dissertation, Beijing, China, 2019. [Google Scholar]
- Oddi, L.; Cremonese, E.; Ascari, L.; Filippa, G.; Galvagno, M.; Serafino, D.; Cella, U.M.D. Using UAV Imagery to Detect and Map Woody Species Encroachment in a Subalpine Grassland: Advantages and Limits. Remote Sens. 2021, 13, 1239. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of information about individual trees from high-spatial-resolution UAV-acquired images of an orchard. Remote Sens. 2020, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Melville, B.; Lucieer, A.; Aryal, J. Assessing the impact of spectral resolution on classification of lowland native grassland communities based on field spectroscopy in Tasmania, Australia. Remote Sens. 2018, 10, 308. [Google Scholar] [CrossRef] [Green Version]
- Melville, B.; Lucieer, A.; Aryal, J. Classification of lowland native grassland communities using hyperspectral Unmanned Aircraft System (UAS) Imagery in the Tasmanian midlands. Drones 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Demarchi, L.; Kania, A.; Ciężkowski, W.; Piórkowski, H.; Oświecimska-Piasko, Z.; Chormański, J. Recursive feature elimination and random forest classification of natura 2000 grasslands in lowland river valleys of poland based on airborne hyperspectral and LiDAR data fusion. Remote Sens. 2020, 12, 1842. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Lopatin, J.; Fassnacht, F.E.; Kattenborn, T.; Schmidtlein, S. Mapping plant species in mixed grassland communities using close range imaging spectroscopy. Remote Sens. Environ. 2017, 201, 12–23. [Google Scholar] [CrossRef]
- Hong, G.; Zhang, A.; Zhou, F.; Brisco, B. Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 12–19. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Feng, L.; Zhang, J.; Deng, F. Mapping Maize Cultivated Area Combining MODIS EVI Time Series and the Spatial Variations of Phenology over Huanghuaihai Plain. Appl. Sci. 2020, 10, 2667. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, Z.; Wu, J. Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data. Phys. Med. 2019, 65, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, T.; Ji, Q.; He, Y.; Ghebrezgabher, M.G. Regional-scale grassland classification using moderate-resolution imaging spectrometer datasets based on multistep unsupervised classification and indices suitability analysis. J. Appl. Remote Sens. 2014, 8, 083548. [Google Scholar] [CrossRef]
- Masjedi, A.; Zoej, M.J.V.; Maghsoudi, Y. Classification of polarimetric SAR images based on modeling contextual information and using texture features. IEEE Trans. Geosci. Remote Sens. 2015, 54, 932–943. [Google Scholar] [CrossRef]
- Xun, L.; Zhang, J.; Cao, D.; Yang, S.; Yao, F. A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2021, 181, 148–166. [Google Scholar] [CrossRef]
- Khan, I.; Zhang, X.; Rehman, M.; Ali, R. A literature survey and empirical study of meta-learning for classifier selection. IEEE Access 2020, 8, 10262–10281. [Google Scholar] [CrossRef]
- Prošek, J.; Šímová, P. UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy? Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 151–162. [Google Scholar] [CrossRef]
- Mora, A.; Santos, T.; Łukasik, S.; Silva, J.; Falcão, A.J.; Fonseca, J.M.; Ribeiro, R.A. Land cover classification from multispectral data using computational intelligence tools: A comparative study. Information 2017, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Eiben, A.E.; Schoenauer, M. Evolutionary computing. Inf. Process. Lett. 2002, 82, 1–6. [Google Scholar] [CrossRef]
- Mehr, A.D.; Nourani, V. A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling. Environ. Model. Softw. 2017, 92, 239–251. [Google Scholar] [CrossRef]
- Fayed, H.A.; Atiya, A.F. Speed up grid-search for parameter selection of support vector machines. Appl. Soft Comput. 2019, 80, 202–210. [Google Scholar] [CrossRef]
- Le, T.T.; Fu, W.; Moore, J.H. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 2020, 36, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 2012, 51, 907–924. [Google Scholar] [CrossRef]
- Zhang, G.; Jia, X.; Hu, J. Superpixel-based graphical model for remote sensing image mapping. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5861–5871. [Google Scholar] [CrossRef]
- Csillik, O. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sens. 2017, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Farooq, A.; Jia, X.; Hu, J.; Zhou, J. Multi-resolution weed classification via convolutional neural network and superpixel based local binary pattern using remote sensing images. Remote Sens. 2019, 11, 1692. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y. Research on Landscape Dynamic and Ecological Pattern Optimization in Desert Steppe-Taking the Siziwang Banner of inner Mongolia as an Example. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2019. [Google Scholar]
- Wang, D. Study on Community Characteristics of Plants in Peturning Farmland to Grassland in Farming Pastoral Ecotone-Taking Siziwang Banner as an Example. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2019. [Google Scholar]
- Zhang, X. Scrub, Desert, and Steppe. In Vegetation and Its Geographical Pattern in China: An Illustration of the Vegetation Map of the People’s Republic of China (1 : 1000000); Geological Publishing House: Beijing, China, 2007; pp. 257–385. [Google Scholar]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.; Mathis, M.; Brumby, S. Global land use/land cover with Sentinel-2 and deep learning. In Proceedings of the IGARSS 2021—2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 12–16 July 2021. [Google Scholar]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Minh, D.H.T. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. 2020, 247, 111954. [Google Scholar]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, M.C.; Martinez, J.M.; Peña-Luque, S. Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sens. Environ. 2021, 253, 112209. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Guo, Q.; Hu, T.; Guan, H.; Jin, S.; An, S.; Chen, X.; Guo, K.; Hao, Z.; Hu, Y.; et al. An updated vegetation map of China (1: 1000000). Sci. Bull. 2020, 65, 1125–1136. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Z.; Cheng, S.; Yang, Z.; Akwensi, P.H. An individual tree segmentation method based on watershed algorithm and three-dimensional spatial distribution analysis from airborne LiDAR point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1055–1067. [Google Scholar] [CrossRef]
- Biswas, H.; Zhang, K.; Ross, M.S.; Gann, D. Delineation of Tree Patches in a Mangrove-Marsh Transition Zone by Watershed Segmentation of Aerial Photographs. Remote Sens. 2020, 12, 2086. [Google Scholar] [CrossRef]
- Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Sun, Y.; Shang, K.; Zhang, L.; Wang, S. Crop classification based on feature band set construction and object-oriented approach using hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4117–4128. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Q.; Zhang, Q.; Zou, Q.; Wu, Z. Unsupervised simplification of image hierarchies via evolution analysis in scale-sets framework. IEEE Trans. Image Process. 2017, 26, 2394–2407. [Google Scholar] [CrossRef] [PubMed]
- Guigues, L.; Cocquerez, J.P.; Le Men, H. Scale-sets image analysis. Int. J. Comput. Vis. 2006, 68, 289–317. [Google Scholar] [CrossRef]
- Vilaplana, V.; Marques, F.; Salembier, P. Binary partition trees for object detection. IEEE Trans. Image Process. 2008, 17, 2201–2216. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.R.; Kisiel, C.C.; Duckstein, L. Bayesian decision theory applied to design in hydrology. Water Resour. Res. 1972, 8, 33–41. [Google Scholar] [CrossRef]
- Chen, M.; Ke, Y.; Bai, J.; Li, P.; Lyu, M.; Gong, Z.; Zhou, D. Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: A case study in the Yellow River Delta, China. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102180. [Google Scholar] [CrossRef]
- Wu, Z.; He, L.; Hu, Z.; Zhang, Y.; Wu, G. Hierarchical segmentation evaluation of region-based image hierarchy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2718–2727. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Q.; Zou, Q.; Li, Q.; Wu, G. Stepwise evolution analysis of the region-merging segmentation for scale parameterization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2461–2472. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, X.; Wang, W.; Wang, L. Integration of optical and SAR remote sensing images for crop-type mapping based on a novel object-oriented feature selection method. Int. J. Agric. Biol. Eng. 2020, 13, 178–190. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Zhang, M.; Lin, H. Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102164. [Google Scholar] [CrossRef]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality reduction and feature selection for object-based land cover classification based on Sentinel-1 and Sentinel-2 time series using Google Earth Engine. Remote Sens. 2020, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sens. 2015, 7, 16091–16107. [Google Scholar] [CrossRef] [Green Version]
- Misra, P.; Yadav, A.S. Improving the classification accuracy using recursive feature elimination with cross-validation. Int. J. Emerg. Technol. 2020, 11, 659–665. [Google Scholar]
- Akhtar, F.; Li, J.; Pei, Y.; Xu, Y.; Rajput, A.; Wang, Q. Optimal features subset selection for large for gestational age classification using gridsearch based recursive feature elimination with cross-validation scheme. In Frontier Computing; Hung, J., Yen, N., Chang, J.W., Eds.; Springer: Singapore, 2020; pp. 63–71. [Google Scholar]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I. Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression. Remote Sens. 2018, 10, 1117. [Google Scholar] [CrossRef] [Green Version]
- Koza, J.R.; Koza, J.R. Ruggedness of Genetic Programming. In Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; pp. 569–582. [Google Scholar]
- Xie, C. Video Anomaly Detection in Crowede Scenes Based on Genetic Programming. Master’s Thesis, Nanjing University, Nanjing, China, 2015. [Google Scholar]
- Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning. In Proceedings of the Workshop on Automatic Machine Learning; Frank, H., Lars, K., Joaquin, V., Eds.; PMLR: New York, NY, USA, 2016; pp. 66–74. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Olson, R.S.; Urbanowicz, R.J.; Andrews, P.C.; Lavender, N.A.; Moore, J.H. Automating biomedical data science through tree-based pipeline optimization. In European Conference on the Applications of Evolutionary Computation; Springer: Cham, Switzerland, 2016; pp. 123–137. [Google Scholar]
- Johnson, B.A.; Bragais, M.; Endo, I.; Magcale-Macandog, D.B.; Macandog, P.B.M. Image segmentation parameter optimization considering within-and between-segment heterogeneity at multiple scale levels: Test case for mapping residential areas using landsat imagery. ISPRS J. Photogramm. Remote Sens. 2015, 4, 2292–2305. [Google Scholar] [CrossRef] [Green Version]
- Shortridge, A. Practical limits of Moran’s autocorrelation index for raster class maps. Comput. Environ. Urban Syst. 2007, 31, 362–371. [Google Scholar] [CrossRef]
- Espindola, G.M.; Camara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Q.; Qi, Q.; Yang, J.; Liu, Y. Region merging considering within-and between-segment heterogeneity: An improved hybrid remote-sensing image segmentation method. Remote Sens. 2018, 10, 781. [Google Scholar] [CrossRef] [Green Version]
- Böck, S.; Immitzer, M.; Atzberger, C. On the objectivity of the objective function—Problems with unsupervised segmentation evaluation based on global score and a possible remedy. Remote Sens. 2017, 9, 769. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar, N.; Behrens, T.; Scholten, T. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space. Remote Sens 2020, 12, 1095. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Guo, H.; Zhang, L.; Qiu, Y.; Sun, Z.; Liao, J.; Liu, G.; Zhang, Y. Improved alpine grassland mapping in the Tibetan Plateau with MODIS time series: A phenology perspective. Int. J. Digit. Earth 2015, 8, 133–152. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, L.; Yao, F. Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information. ISPRS J. Photogramm. Remote Sens. 2014, 94, 102–113. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.; Liu, M.; Jia, M.; Lin, H.; Chu, L.M.; Devlin, A.T. Potential of combining optical and dual polarimetric SAR data for improving mangrove species discrimination using rotation forest. Remote Sens. 2018, 10, 467. [Google Scholar] [CrossRef] [Green Version]
- Habibi, M.; Sahebi, M.R.; Maghsoudi, Y.; Ghayourmanesh, S. Classification of polarimetric SAR data based on object-based multiple classifiers for urban land-cover. J. Indian Soc. Remote 2016, 44, 855–863. [Google Scholar] [CrossRef]
- Xun, L.; Zhang, J.; Cao, D.; Wang, J.; Zhang, S.; Yao, F. Mapping cotton cultivated area combining remote sensing with a fused representation-based classification algorithm. Comput. Electron. Agric. 2021, 181, 105940. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Meng, B.; Yang, Z.; Yu, H.; Qin, Y.; Sun, Y.; Zhang, J.; Chen, J.; Wang, Z.; Zhang, W.; Li, M.; et al. Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai–Tibetan Plateau. Remote Sens. 2021, 13, 2483. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
Community | Constructive Species [36] | Coverage (%) [36] | Examples |
---|---|---|---|
RES | Reaumuria soongarica (Pall.) Maxim | 8–12 | |
STC | Stipa caucasica subsp. glareosa (P. A. Smirn.) Tzvelev | 10–15 | |
STT | Stipa tianschanica var. gobica (Roshev.) P. C. Kuo & Y. H. Sun | 10–20 | |
ARF | Artemisia frigida willd | 20–25 | |
STB | Stipa breviflora Griseb | 20–40 | |
STS | Stipa sareptana var. krylovii (Roshev.) P. C. Kuo & Y. H. Sun | 35–40 | |
ACS | Achnatherum splendens (Trin.) Nevski | 35–50 |
Satellite | Acquisition Time | Product Type | Number of Images | Cloud Percentage |
---|---|---|---|---|
Sentinel-1 | 2 July 2019, 7 July 2019 | GRD | 4 | — |
Sentinel-2 | 3 July 2019 | Level-2A | 7 | Less than 1% |
Sentinel-2 Bands | Central Wavelength (m) | Spatial Resolution (m) |
---|---|---|
Band 1: Coastal aerosol | 0.443 | 60 |
Band 2: Blue | 0.490 | 10 |
Band 3: Green | 0.560 | 10 |
Band 4: Red | 0.665 | 10 |
Band 5: Vegetation red edge | 0.705 | 20 |
Band 6: Vegetation red edge | 0.740 | 20 |
Band 7: Vegetation red edge | 0.783 | 20 |
Band 8: NIR | 0.842 | 10 |
Band 8b: Narrow NIR | 0.865 | 20 |
Band 9: Water vapour | 0.945 | 60 |
Band 10: SWIR-Cirrius | 1.375 | 60 |
Band 11: SWIR | 1.610 | 60 |
Band 12: SWIR | 2.190 | 60 |
Categories | Features | Description | Reference |
---|---|---|---|
Spectral Information | Band 2, 3, 4, 5, 6, 7, 8, and 8b | The reflectance in red, blue, green, NIR, and red edge band | [42] |
Vegetation Indices | NDVI | [60] | |
SR | [60] | ||
EVI | [61] | ||
[62] | |||
Textural Features | GLGM_Variance, GLGM_Homogeneity, GLGM_Contrast, GLGM_Dissimilarity, GLGM_Entropy, GLGM_Correlation, GLGM_Second Moment | Variance, Homogeneity, Contrast, Dissimilarity, Entropy, Correlation, and Second Moment of VV and VH polarization | [63] |
Backscatter Information | and | Backscatter coefficient of VV and VH polarization | [39] |
Categories | Statistics | Features |
---|---|---|
Spectral Information | Mean | Band 2, 3, 4, 5, 6, 7, 8, 8b |
Standard Deviation | Band 4, 7, 8b | |
Vegetation Indices | Mean | NDVI, SR, |
Standard Deviation | NDVI, SR, | |
Textural Features | Mean | Band 2 (Homogeneity, Second Moment, Dissimilarity, Entropy, Correlation) *, Band 4 (Entropy, Homogeneity, Second Moment), Band 7 (Entropy), Band 8 (Second Moment) (Second Moment, Entropy, Dissimilarity, Correlation, Contrast, Homogeneity, Variance), (Correlation, Second Moment, Entropy, Contrast, Variance, Homogeneity, Dissimilarity) |
Standard Deviation | Band 2 (Homogeneity, Entropy, Correlation) Band 3 (Homogeneity, Entropy), Band 7 (Entropy, Second Moment) Band 4 (Homogeneity, Dissimilarity, Entropy, Correlation), Band 8 (Entropy, Correlation), Band 8b (Entropy, Second Moment) (Variance, Contrast, Entropy, Contrast, Second Moment) (Second Moment, Correlation) | |
Backscatter Information | Mean | , |
Standard Deviation | , |
Categories | Statistics | Features |
---|---|---|
Spectral Information | Mean | Band 2, 3, 4, 7, 8 |
Standard Deviation | Band 2, 4 | |
Backscatter Information | Mean | VV, VH |
Standard Deviation | VV |
Experiment | Classifier (Input Variable) | OA (%) | Kappa |
---|---|---|---|
1 | LinearSVC + ET (MSVT) | 84.21 | 0.8086 |
2 | LinearSVC (MSVT) | 76.32 | 0.7126 |
3 | ET (MSVT) | 73.68 | 0.6827 |
4 | SVM (MSVT) | 75.44 | 0.7035 |
5 | SVM (MS) | 46.49 | 0.3594 |
6 | GBDT (MS) | 59.65 | 0.5157 |
Experiment | Classifier (Input Variables) | Accuracy (%) | Category | ||||||
---|---|---|---|---|---|---|---|---|---|
RES | STC | STT | ARF | STB | STS | ACS | |||
1 | LinearSVC+ET (MSVT) | PA | 100 | 84.61 | 75 | 100 | 44.44 | 85.71 | 89.29 |
UA | 87.5 | 68.75 | 80 | 75 | 80 | 88.89 | 92.59 | ||
2 | LinearSVC (MSVT) | PA | 100 | 81.82 | 55 | 85.71 | 42.86 | 80.77 | 80 |
UA | 81.25 | 56.25 | 73.33 | 75 | 60 | 77.78 | 88.89 | ||
3 | ET (MSVT) | PA | 80 | 100 | 63.16 | 83.33 | 27.27 | 80 | 78.57 |
UA | 75 | 62.5 | 80 | 62.5 | 60 | 74.07 | 81.48 | ||
4 | SVM (MSVT) | PA | 100 | 100 | 57.14 | 60 | 44.44 | 81.48 | 82.14 |
UA | 75 | 43.75 | 80 | 75 | 80 | 81.48 | 85.19 | ||
5 | SVM (MS) | PA | 57.89 | 0 | 35.71 | 0 | 0 | 62.5 | 36.36 |
UA | 78.57 | 0 | 47.62 | 0 | 0 | 83.33 | 80 | ||
6 | GBDT (MS) | PA | 63.64 | 68.75 | 46.67 | 100 | 44.44 | 75 | 45.16 |
UA | 50 | 73.33 | 50 | 40 | 30.77 | 77.78 | 66.67 |
Experiment | Optimization Method | Input Variables | Classifier | Hyperparameter |
---|---|---|---|---|
4 | random search | MSVT | SVM | the penalty factor: 16 kernel function: polynomial the parameter coef0 of polynomial: 0.1 the parameter degree of polynomial: 5 the parameter gamma of polynomial: 0.1 |
5 | random search | MS | SVM | radial basis function (RBF) the parameter gamma of RBF: 0.1 kernel function: the penalty factor: 17 |
6 | GP | MS | GBDT | learning rate: 0.1 the number of trees: 100 the maximum depth of a tree: 8 the number of features for splitting: 5 the minimum number of samples in a leaf node: 7 the minimum number of samples for node splitting: 8 the ratio of samples used for training to total samples: 85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Zhang, J.; Deng, F.; Zhang, S.; Zhang, D.; Xun, L.; Ji, M.; Feng, Q. Superpixel-Based Regional-Scale Grassland Community Classification Using Genetic Programming with Sentinel-1 SAR and Sentinel-2 Multispectral Images. Remote Sens. 2021, 13, 4067. https://doi.org/10.3390/rs13204067
Wu Z, Zhang J, Deng F, Zhang S, Zhang D, Xun L, Ji M, Feng Q. Superpixel-Based Regional-Scale Grassland Community Classification Using Genetic Programming with Sentinel-1 SAR and Sentinel-2 Multispectral Images. Remote Sensing. 2021; 13(20):4067. https://doi.org/10.3390/rs13204067
Chicago/Turabian StyleWu, Zhenjiang, Jiahua Zhang, Fan Deng, Sha Zhang, Da Zhang, Lan Xun, Mengfei Ji, and Qian Feng. 2021. "Superpixel-Based Regional-Scale Grassland Community Classification Using Genetic Programming with Sentinel-1 SAR and Sentinel-2 Multispectral Images" Remote Sensing 13, no. 20: 4067. https://doi.org/10.3390/rs13204067
APA StyleWu, Z., Zhang, J., Deng, F., Zhang, S., Zhang, D., Xun, L., Ji, M., & Feng, Q. (2021). Superpixel-Based Regional-Scale Grassland Community Classification Using Genetic Programming with Sentinel-1 SAR and Sentinel-2 Multispectral Images. Remote Sensing, 13(20), 4067. https://doi.org/10.3390/rs13204067