Assessing the Vertical Displacement of the Grand Ethiopian Renaissance Dam during Its Filling Using DInSAR Technology and Its Potential Acute Consequences on the Downstream Countries
Abstract
:1. Introduction
2. Data and Methods
2.1. The GERD Project (Main and Saddle Dams)
2.2. Data Used
- a.
- Satellite Synthetic Aperture Radar and Optical Imagery
- b.
- Sentinel-2 magery for CoastSat
- c.
- Displacement Accuracy Assessment at different Coherence values
2.3. Methods
- a.
- Synthetic Aperture Radar Interferometry (InSAR)
- b.
- Differential Synthetic Aperture Radar Interferometry (DInSAR)
- c.
- CoastSat
3. Results
3.1. The Monitoring of the Main Dam Displacement over Six Cross-Sections
3.2. The Monitoring of the Saddle Dam Displacement over Nine Cross-Sections
3.3. Spatial Representation of Displacements over GERD’s Main and Saddle Dam Locations
3.4. Analysis of Local Geological Conditions and Impact on Saddle Dam
3.5. Annual Ground Displacement over the GERD Location
3.6. Water Edge Analysis at Different Transects of the GERD’s Main Dam
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madson, A.; Sheng, Y. Reservoir induced deformation analysis for several filling and operational scenarios at the grand Ethiopian renaissance dam impoundment. Remote Sens. 2020, 12, 1886. [Google Scholar] [CrossRef]
- Siddig, K.; Basheer, M.; Luckmann, J. Economy-wide assessment of potential long-term impacts of the Grand Ethiopian Renaissance Dam on Sudan. Water Int. 2021, 46, 325–341. [Google Scholar] [CrossRef]
- Kansara, P.; Li, W.; El-Askary, H.; Lakshmi, V.; Piechota, T.; Struppa, D.; Abdelaty Sayed, M. An Assessment of the Filling Process of the Grand Ethiopian Renaissance Dam and Its Impact on the Downstream Countries. Remote Sens. 2021, 13, 711. [Google Scholar] [CrossRef]
- Elsayed, H.; Djordjević, S.; Savic, D.; Tsoukalas, I.; Makropoulos, C. The Nile Water-Food-Energy Nexus under Uncertainty: Impacts of the Grand Ethiopian Renaissance Dam. J. Water Resour. Plan. Manag. 2020, 146, 04020085. [Google Scholar] [CrossRef]
- Abtew, W.; Dessu, S.B. Grand Ethiopian renaissance dam site importance. In The Grand Ethiopian Renaissance Dam on the Blue Nile; Springer: Berlin/Heidelberg, Germany, 2019; pp. 63–77. [Google Scholar]
- Basheer, M.; Wheeler, K.G.; Elagib, N.A.; Etichia, M.; Zagona, E.A.; Abdo, G.M.; Harou, J.J. Filling Africa’s Largest Hydropower Dam Should Consider Engineering Realities. One Earth 2020, 3, 277–281. [Google Scholar] [CrossRef]
- Dandrawy, M.E.; Omran, E.-S.E. Integrated Watershed Management of Grand Ethiopian Renaissance Dam via Watershed Modeling System and Remote Sensing. In Environmental Remote Sensing in Egypt; Springer: Berlin/Heidelberg, Germany, 2020; pp. 533–574. [Google Scholar]
- Wheeler, K.G.; Jeuland, M.; Hall, J.W.; Zagona, E.; Whittington, D. Understanding and managing new risks on the Nile with the Grand Ethiopian Renaissance Dam. Nat. Commun. 2020, 11, 5222. [Google Scholar] [CrossRef]
- Zhang, Y.; Block, P.; Hammond, M.; King, A. Ethiopia’s Grand Renaissance Dam: Implications for downstream riparian countries. J. Water Resour. Plan. Manag. 2015, 141, 05015002. [Google Scholar] [CrossRef]
- Gabriels, D.; Cornelis, W.M. Human-induced land degradation. In Land Use, Land Cover and Soil Sciences—Volume III: Land Use Planning; EOLSS Publications: Abu Dhabi, UAE, 2009; pp. 131–143. [Google Scholar]
- Harris, A. What Is Deformation in Earth Science? Available online: https://sciencing.com/deformation-earth-science-21924.html (accessed on 10 July 2021).
- Gökalp, E.; Taşçı, L. Deformation Monitoring by GPS at Embankment Dams and Deformation Analysis. Surv. Rev. 2009, 41, 86–102. [Google Scholar] [CrossRef]
- Sjödahl, M.; Gren, P.; Sárady, I.; Miroshnicova, N. Laser hole drilling process studied using laser speckle correlation. In Speckle06: Speckles, From Grains to Flowers; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6341, p. 63412M. [Google Scholar]
- Borghero, C. Feasibility Study of Dam Deformation Monitoring in Northern Sweden Using Sentinel1 SAR Interferometry. Master’s Thesis, University of Gävle, Gävle, Sweden, 2018. [Google Scholar]
- Maltese, A.; Pipitone, C.; Dardanelli, G.; Capodici, F.; Muller, J.-P. Toward a Comprehensive Dam Monitoring: On-Site and Remote-Retrieved Forcing Factors and Resulting Displacements (GNSS and PS–InSAR). Remote Sens. 2021, 13, 1543. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Li, Z.; Ding, D.; Qiao, L.; Xu, J.; Li, G.; Wang, H. Coastal Dam Inundation Assessment for the Yellow River Delta: Measurements, Analysis and Scenario. Remote Sens. 2020, 12, 3658. [Google Scholar] [CrossRef]
- Chen, Y.; Ahmed, M.; Tangdamrongsub, N.; Murgulet, D. Reservoir-Induced Land Deformation: Case Study from the Grand Ethiopian Renaissance Dam. Remote Sens. 2021, 13, 874. [Google Scholar] [CrossRef]
- Gama, F.F.; Mura, J.C.; Paradella, W.R.; de Oliveira, C.G. Deformations Prior to the Brumadinho Dam Collapse Revealed by Sentinel-1 InSAR Data Using SBAS and PSI Techniques. Remote Sens. 2020, 12, 3664. [Google Scholar] [CrossRef]
- GUPTA, N.; SYED, T.H.; ATHIPHRO, A. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR). J. Earth Syst. Sci. 2013, 122, 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhang, D.; Wang, J.; Huang, Z.; Pan, D. Mapping Land Subsidence Related to Underground Coal Fires in the Wuda Coalfield (Northern China) Using a Small Stack of ALOS PALSAR Differential Interferograms. Remote Sens. 2013, 5, 1152–1176. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Lin, H.; Ma, J.; Kong, B.; Wang, Y. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study. Remote Sens. Environ. 2011, 115, 257–268. [Google Scholar] [CrossRef]
- Rudy, A.C.A.; Lamoureux, S.F.; Treitz, P.; Short, N.; Brisco, B. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 51–61. [Google Scholar] [CrossRef]
- Moghaddam, N.; Nourollah, H.; Vasco, D.W.; Samsonov, S.V.; Rüdiger, C. Interferometric SAR modelling of near surface data to improve geological model in the Surat Basin, Australia. J. Appl. Geophys. 2021, 194, 104444. [Google Scholar] [CrossRef]
- Attalla, R. Grand Ethiopian Renaissance Dam (GERD); Worcester Polytechnic Institute: Worcester, MA, USA, 2015; pp. 23–24. [Google Scholar]
- Grand Ethiopian Renaissance Dam (Ethiopia) | Studio Pietrangeli. Available online: https://www.pietrangeli.com/gerdp-hydroelectric-plant-ethiopia-africa (accessed on 12 July 2021).
- Sentinel-1—Data Products—Sentinel Online—Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products (accessed on 16 July 2021).
- Sentinel-2—Missions—Sentinel Online—Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 17 July 2021).
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Maneja, R.H.; Miller, J.D.; Li, W.; Thomas, R.; El-Askary, H.; Perera, S.; Flandez, A.V.B.; Basali, A.U.; Alcaria, J.F.A.; Gopalan, J.; et al. Multidecadal analysis of beach loss at the major offshore sea turtle nesting islands in the northern Arabian Gulf. Ecol. Indic. 2021, 121, 107146. [Google Scholar] [CrossRef]
- Braun, A.; Veci, L. TOPS Interferometry Tutorial; SkyWatch Space Applications Inc.: Waterloo, ON, Canada, 2021; 25p, Available online: https://step.esa.int/docs/tutorials/S1TBX%20TOPSAR%20Interferometry%20with%20Sentinel-1%20Tutorial_v2.pdf (accessed on 3 September 2021).
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 1987, 21, 163–169. [Google Scholar] [CrossRef]
- Cipolletti, M.P.; Delrieux, C.A.; Perillo, G.M.E.; Cintia Piccolo, M. Superresolution border segmentation and measurement in remote sensing images. Comput. Geosci. 2012, 40, 87–96. [Google Scholar] [CrossRef]
- MIT Abdul Latif Jameel World Water and Food Security Laboratory. The Grand Ethiopian Renaissance Dam: An Opportunity for Collaboration and Shared Benefits in the Eastern Nile Basin; MIT Abdul Latif Jameel World Water and Food Security Laboratory: Cambridge, MA, USA, 2015. [Google Scholar]
- Ullo, S.L.; Addabbo, P.; Martire, D.D.; Sica, S.; Fiscante, N.; Cicala, L.; Angelino, C.V. Application of DInSAR Technique to High Coherence Sentinel-1 Images for Dam Monitoring and Result Validation Through In Situ Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 875–890. [Google Scholar] [CrossRef]
- Fárová, K.; Jelének, J.; Kopačková-Strnadová, V.; Kycl, P. Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkovičky Landslide, Czech Republic. Remote Sens. 2019, 11, 2670. [Google Scholar] [CrossRef] [Green Version]
- Rocca, F. DINSAR: Differential SAR Interferometry; Earth ESA: Paris, France, 2007; 32p, Available online: https://earth.esa.int/landtraining07/D1LB5-1-Rocca.pdf (accessed on 3 September 2021).
- Yang, Y.; Pepe, A.; Manzo, M.; Bonano, M.; Liang, D.N.; Lanari, R. A simple solution to mitigate noise effects in time-redundant sequences of small baseline multi-look DInSAR interferograms. Remote Sens. Lett. 2013, 4, 609–618. [Google Scholar] [CrossRef]
- Gama, F.F.; Paradella, W.R.; Mura, J.C.; de Oliveira, C.G. Advanced DINSAR analysis on dam stability monitoring: A case study in the Germano mining complex (Mariana, Brazil) with SBAS and PSI techniques. Remote Sens. Appl. Soc. Environ. 2019, 16, 100267. [Google Scholar] [CrossRef]
- Abebe, T.; Mazzarini, F.; Innocenti, F.; Manetti, P. The Yerer-Tullu Wellel volcanotectonic lineament: A transtensional structure in central Ethiopia and the associated magmatic activity. J. Afr. Earth Sci. 1998, 26, 135–150. [Google Scholar] [CrossRef]
- Davidson, A. compiler. The Omo river project, reconnaissance geology and geochemistry of parts of Ilubabor, Kefa, Gemu Gofa and Sidamo, Ethiopia. Ethiop. Inst. Geol. Surv. Bull 1983, 2, 1–89. [Google Scholar]
- Stratigraphic and Structural Evolution of the Blue Nile Basin, Northwestern Ethiopian Plateau—Gani—2009—Geological Journal—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/gj.1127 (accessed on 18 July 2021).
- Holmes, A. The sequence of Precambrian orogenic belts in South and central Africa. Proceed 18th Intern. Geol. Congr. Lond. 1948 1951, 14, 254–269. [Google Scholar]
- Tefera, M.; Chernet, T.; Haro, W. Explanation of the Geological Map of Ethiopia; Geological Survey of Ethiopia: Addis Ababa, Ethiopia, 1996. [Google Scholar]
- Pietrangeli, G.; Pittalis, G.; Rinaldi, M.; Cifra, R. Design and construction of composite cut-off system at Grand Ethiopian Renaissance Dam, Ethiopia. In Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-42444-1. [Google Scholar]
- Editor, E.C. Two Bottom Outlets Of GERD Completed, Become Operational (18 April 2021)—Embassy of Ethiopia 2021. Available online: https://ethiopianembassy.org/two-bottom-outlets-of-gerd-completed-become-operational-april-18-2021/ (accessed on 3 September 2021).
- Egypt: Ethiopian Claim that 2 GERD Bottom Outlets are Capable of Enabling Average Flow of Blue Nile “Incorrect”. Available online: https://www.egypttoday.com/Article/1/101074/Egypt-Ethiopian-claim-that-2-GERD-bottom-outlets-are-capable (accessed on 17 July 2021).
- Heggy, E.; Sharkawy, Z.; Abotalib, A.Z. Egypt’s water budget deficit and suggested mitigation policies for the Grand Ethiopian Renaissance Dam filling scenarios. Environ. Res. Lett. 2021, 16, 074022. [Google Scholar] [CrossRef]
- Kahsay, T.N.; Kuik, O.; Brouwer, R.; van der Zaag, P. Estimation of the transboundary economic impacts of the Grand Ethiopia Renaissance Dam: A computable general equilibrium analysis. Water Resour. Econ. 2015, 10, 14–30. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Askary, H.; Fawzy, A.; Thomas, R.; Li, W.; LaHaye, N.; Linstead, E.; Piechota, T.; Struppa, D.; Sayed, M.A. Assessing the Vertical Displacement of the Grand Ethiopian Renaissance Dam during Its Filling Using DInSAR Technology and Its Potential Acute Consequences on the Downstream Countries. Remote Sens. 2021, 13, 4287. https://doi.org/10.3390/rs13214287
El-Askary H, Fawzy A, Thomas R, Li W, LaHaye N, Linstead E, Piechota T, Struppa D, Sayed MA. Assessing the Vertical Displacement of the Grand Ethiopian Renaissance Dam during Its Filling Using DInSAR Technology and Its Potential Acute Consequences on the Downstream Countries. Remote Sensing. 2021; 13(21):4287. https://doi.org/10.3390/rs13214287
Chicago/Turabian StyleEl-Askary, Hesham, Amr Fawzy, Rejoice Thomas, Wenzhao Li, Nicholas LaHaye, Erik Linstead, Thomas Piechota, Daniele Struppa, and Mohamed Abdelaty Sayed. 2021. "Assessing the Vertical Displacement of the Grand Ethiopian Renaissance Dam during Its Filling Using DInSAR Technology and Its Potential Acute Consequences on the Downstream Countries" Remote Sensing 13, no. 21: 4287. https://doi.org/10.3390/rs13214287
APA StyleEl-Askary, H., Fawzy, A., Thomas, R., Li, W., LaHaye, N., Linstead, E., Piechota, T., Struppa, D., & Sayed, M. A. (2021). Assessing the Vertical Displacement of the Grand Ethiopian Renaissance Dam during Its Filling Using DInSAR Technology and Its Potential Acute Consequences on the Downstream Countries. Remote Sensing, 13(21), 4287. https://doi.org/10.3390/rs13214287