Volumetric Analysis of the Landslide in Abe Barek, Afghanistan Based on Nonlinear Mapping of Stereo Satellite Imagery-Derived DEMs
Abstract
:1. Introduction
- Applicability of nonlinear mapping technique on minimizing geometric errors.
- Validation of nonlinear mapping technique by the comparison of several descriptive and graphical parameters.
- Landslide detection and volume estimation by using the corrected DoD.
- Validation and comparison of the obtained volume of the displaced material with previous studies.
2. The Landslide in Abe Barek, Afghanistan
- Weakening of the rock-based silt-covered area due to the repeated seismic events.
- Slope instability further intensifies due to the remaining too loose materials from the previous landslides at the same position.
- Slope instability due to the increased infiltration of rainwater into the loose soil.
- The presence of sensitive material which is very prone to landslides.
- Increasing the soil water content from the rapid melting of deep snow and spring rains up to 200 mm.
- Land use and irrigation activities.
3. Material
4. Methodology
4.1. Nonlinear Mapping Method
4.2. Evaluation and Applicability of the Method
4.2.1. Statistical Assessment
4.2.2. Shifting Vectors Assessment
4.3. Quality Assessment
5. Results
5.1. Comparison of Cross-Sections of DEMs in the Affected and Unaffected Mountain Areas
5.2. Volume Estimation
6. Discussion
6.1. Comparison of the Obtained Landslide Volume with Previous Landslide Studies
6.2. Advantages and Shortcoming of the Method
6.3. Future Studies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuster, R.L. Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere; U.S. Dept. of the Interior, U.S. Geological Survey: Menlo Park, CA, USA, 2001. [Google Scholar]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Petley, D.N.; Dunning, S.A.; Rosser, N.J. The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. In Landslide Risk Management; Hungr, O., Fell, R., Couture, R., Eberhardt, E., Eds.; Taylor and Francis Group: London, UK, 2005; pp. 377–384. [Google Scholar]
- Haque, U.; Da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef]
- Afghanistan Natural Disaster Incident Reports [2012 through 2020]. Available online: https://data.humdata.org/dataset/afghanistan-natural-disaster-incidents-in-2020 (accessed on 20 October 2020).
- Gupta, M. Afghanistan: National Disaster Management Plan, 2010. National Legislative Bodies/National Authorities, UNDP, 2010. Available online: https://www.preventionweb.net/files/31182_afghanistannationaldisastermanageme-451.pdf (accessed on 7 November 2020).
- UNITAR/UNOSAT. The Ab Barak Landslide: Past and Future. 2014. Available online: https://unitar.org/maps/map/2058 (accessed on 29 October 2020).
- Zhang, J.; Gurung, D.; Liu, R.; Murthy, M.; Su, F. Abe Barek landslide and landslide susceptibility assessment in Badakhshan province, Afghanistan. Landslides 2015, 12, 597–609. [Google Scholar] [CrossRef]
- Tsutsui, K.; Rokugawa, S.; Nakagawa, H.; Miyazaki, S.; Cheng, C.; Shiraishi, T.; Yang, S. Detection and Volume Estimation of Large-Scale Landslides Based on Elevation-Change Analysis Using DEMs Extracted from High-Resolution Satellite Stereo Imagery. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1681–1696. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Landslide Volumetric Analysis Using Cartosat-1-Derived DEMs. IEEE Geosci. Remote. Sens. Lett. 2010, 7, 582–586. [Google Scholar] [CrossRef]
- Miura, H. Fusion Analysis of Optical Satellite Images and Digital Elevation Model for Quantifying Volume in Debris Flow Disaster. Remote Sens. 2019, 11, 1096. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Chen, T. Estimating volume of deep-seated landslides and mass transport in Basihlan river basin, Taiwan. Eng. Geol. 2020, 278, 105825. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, B.; Han, Y.; Zuo, Z.; Zhang, X. Modeling Accumulated Volume of Landslides Using Remote Sensing and DTM Data. Remote Sens. 2014, 6, 1514–1537. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.; Chan, Y.; Hu, J. Digital Elevation Model Differencing and Error Estimation from Multiple Sources: A Case Study from the Meiyuan Shan Landslide in Taiwan. Remote Sens. 2016, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, J.A.; He, D.C. Error Correction of Digital Elevation Models Produced by Automatic Matching of Digital Stereo Images. In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; Volume 2, pp. 446–449. [Google Scholar]
- Fonseca, L.M.G.; Manjunath, B.S. Registration techniques for multisensor remotely sensed imagery. Photogramm. Engr. Remote Sens. 1996, 62, 1049–1056. [Google Scholar]
- Le Moigne, J.; Campbell, W.J.; Cromp, R.F. An automated parallel image registration technique based on the correlation of wavelet features. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1849–1864. [Google Scholar] [CrossRef]
- Sarvaiya, J.N.; Patnaik, S. Automatic Image Registration Using Mexican Hat Wavelet, Invariant Moment, and Radon Transform. Int. J. Adv. Comput. Sci. Appl. 2011, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, Y. Optimization of altitude change values for extracting topographical changes by LIDAR. Int. J. Eros. Control Eng. 2006, 58, 18–22. (In Japanese) [Google Scholar]
- Miura, H. Soil volume estimation in debris flow areas using lidar data in the 2014 Hiroshima, Japan rainstorm. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications VI, Toulouse, France, 22–24 September 2015; The International Society of Optics and Photonics: Bellingham, WA, USA, 2015; Volume VI, p. 96440K. [Google Scholar] [CrossRef]
- Ahmed, A. More Than 2000 Feared Dead in Landslides. The New York Times. 2014. Available online: https://www.nytimes.com/2014/05/04/world/asia/aid-effort-begins-at-scene-of-afghan-landslides.html (accessed on 25 October 2020).
- Emma, G. Afghanistan Mudslides: Hundreds Feared Dead. The Guardian. 2014. Available online: https://www.theguardian.com/world/2014/may/02/afghanistan-landslide-badakhshan-leaves-thousand-missing (accessed on 27 October 2020).
- Martinez, M.; Basil, Y.; Sediqi, Q. Twin landslides Site That Killed at Least 2000 Afghans Declared a Mass Grave. CNN, 2014. Available online: https://edition.cnn.com/2014/05/03/world/asia/afghanistan-landslide/index.html (accessed on 22 October 2020).
- Wakil Kohsar/AFP/Getty Image. The Atlantic. Available online: https://www.theatlantic.com/photo/2014/05/massive-landslide-buries-remote-afghan-village/100729/ (accessed on 10 September 2020).
- Shroder, J.F. Natural Resources in Afghanistan: Geographic and Geologic Perspectives on Centuries of Conflict, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 24–27. ISBN 978-0-12-800135-6. [Google Scholar]
- Boyd, O.S.; Mueller, C.S.; Rukstales, K.S. Preliminary Earthquake Hazard Map of Afghanistan; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2007; pp. 5–8. [Google Scholar] [CrossRef]
- United Nations Population Fund (UNFPA). Badakhshan, a Socio-Economic and Demographic Profile Household, Listing—2003; UNFPA: Kabul, Afghanistan, 2003; pp. 2–3. Available online: https://www.academia.edu/35118452/Badakhshan_A_Socio_Economic_and_Demographic_Profile_With_the_financial_and_technical_assistance_of_UNFPA (accessed on 5 November 2020).
- Wheeler, R.L.; Bufe, C.G.; Johnson, M.L.; Dart, R.L.; Norton, G.A. Seismotectonic Map of Afghanistan, with an Annotated Bibliography; U.S. Dept. of the Interior, US Geological Survey: Reston, VA, USA, 2005; pp. 7–10, Open-File Report 2005–1264, USGS Afghanistan Project Product No. 011. [Google Scholar]
- Shroder, J.F.; Schettler, M.J.; Weihs, B.J. Loess failure in northeast Afghanistan. Phys. Chem. Earth 2011, 36, 1287–1293. [Google Scholar] [CrossRef]
- Shroder, J.F.; Weihs, B.J.; Schettler, M.J. Mass movement in northeast Afghanistan. Phys. Chem. Earth 2011, 36, 1267–1286. [Google Scholar] [CrossRef]
- Agisoft. Metashape. Available online: https://www.agisoft.com/ (accessed on 4 December 2020).
- Kosugi, Y.; Sakamoto, M.; Fukunishi, M.; Lu, W.; Doihara, T.; Kakimoto, S. Urban change detection related to earthquakes using an adaptive nonlinear mapping of high-resolution images. IEEE Geosci. Remote Sens. Lett. 2004, 1, 152–156. [Google Scholar] [CrossRef]
- Nakamura, M.; Sakamoto, M.; Kosugi, Y. Stabilizing the accuracy of change detection from geographic images by multi-leveled exploration and selective smoothing. In ITE (The Institute of Image Information and Televisions Engineers) Technical Reports; The Institite of Image Information and Television Engineers: Tokyo, Japan, 2002; Volume 27.77, pp. 1–6. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.R.; Lulla, K. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2015; pp. 131–133. ISBN 978-0-13-405816-0. [Google Scholar]
- Abdullah-Al-Wadud, M.; Kabir, M.H.; Dewan, M.A.A.; Chae, O. A Dynamic Histogram Equalization for Image Contrast Enhancement. IEEE Trans. Consum. Electron. 2007, 53, 593–600. [Google Scholar] [CrossRef]
- Rawat, K.S.; Singh, S.K.; Singh, M.I.; Garg, B.L. Comparative evaluation of vertical accuracy of elevated points with ground control points from ASTERDEM and SRTMDEM with respect to CARTOSAT-1DEM. Remote Sens. Appl. 2019, 13, 289–297. [Google Scholar] [CrossRef]
- Simonett, D.S. Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea. In Landform Studies from Australia and New Guinea; Jennings, J.N., Mabbutt, J.A., Eds.; Cambridge University Press: Cambridge, UK, 1967; pp. 64–84. [Google Scholar]
- Rice, R.M.; Corbett, E.S.; Bailey, R.G. Soil slips related to vegetation, topography, and soil in Southern California. Water Resour. Res. 1969, 5, 647–659. [Google Scholar] [CrossRef]
- Abele, G. Bergsturze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen; Wissenschaftliche Alpenvereinshefte: München, Germany, 1974; Volume 25, p. 274. (In Germany) [Google Scholar]
- Innes, J.N. Lichenometric dating of debris-flow deposits in the Scottish Highlands. Earth Surf. Process. Landf. 1983, 8, 579–588. [Google Scholar] [CrossRef]
- Whitehouse, I.E. Distribution of large rock avalanche deposits in the central Southern Alps, New Zealand, N. Z. J. Geol. Geophys. 1983, 26, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.C.; Torres-Sanchez, A.J. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 1998, 24, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Martin, Y.; Rood, K.; Schwab, J.W.; Church, M. Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Can. J. Earth Sci. 2002, 39, 189–205. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, R.H.; Evans, S.G. Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf. Process. Landf. 2004, 29, 1321–1339. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Galli, M.; Reichenbach, P.; Rossi, M. Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology 2008, 96, 105–122. [Google Scholar] [CrossRef]
- Imaizumi, F.; Sidle, R.C.; Kamei, R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf. Process. Landf. 2008, 33, 827–840. [Google Scholar] [CrossRef]
- Rice, R.M.; Foggin, G.T. Effects of high-intensity storms on soil slippage on mountainous watersheds in Southern California. Water Resour. Res. 1971, 7, 1485–1496. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Rossi, M.; Valigi, D. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet. Sci. Lett. 2009, 279, 222–229. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.M.; Dijkstra, T.A.; Jordan, C.J.; Chen, G.; Zeng, R.Q.; Novellino, A. Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sens. Environ. 2020, 241, 111738. [Google Scholar] [CrossRef]
- Nadi, S.; Shojaei, D.; Ghiasi, Y. Accuracy Assessment of DEMs in Different Topographic Complexity Based on an Optimum Number of GCP Formulation and Error Propagation Analysis. J. Surv. Eng. 2020, 146, 4019019. [Google Scholar] [CrossRef]
Pre-Event | Post-Event | |||
---|---|---|---|---|
Image ID | 105041000005F800 | 10504100000CBE100 | 106001000932AC00 | 1060010009356D00 |
Date | 13 June 2012 | 13 June 2012 | 7 July 2014 | 15 July 2014 |
Satellite | GeoEye-1 | GeoEye-1 | IKONOS-2 | IKONOS-2 |
Band | Pan-sharpened | Pan-sharpened | Panchromatic | Panchromatic |
Spatial resolution (m) | 0.5 | 0.5 | 0.8 | 0.8 |
Off-nadir (deg.) | 18.4 | 29.6 | 24.1 | 9.6 |
Satellite azimuth (deg.) | N63.1E | N36.8E | N220.1E | N169.4E |
Sun elevation (deg.) | 68.7 | 68.6 | 70.0 | 67.8 |
Sun azimuth (deg.) | N124.2E | N124.0E | N132.4E | N129.0E |
Cloud cover (%) | 1.0 | 5.0 | 3.0 | 0.1 |
Overlapped area (km2) | 24.5 | 30.5 | ||
Pair quality | Very good | Good |
No. | Size of Subarea (NW) | Search Area (NS, Pixel) | Consensus Area (NC) | No. of Iterations (n) | Mean Value (m) | Standard Deviation (m) | Sum of Square | Remarks |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 1.278 | 3.337 | 2.00 × 107 | Uncorrected |
2 | 5 | 5 | 3 | 3 | 0.475 | 1.467 | 3.87 × 106 | Corrected |
3 | 5 | 7 | 3 | 3 | 0.221 | 1.254 | 2.83 × 106 | Corrected |
4 | 5 | 9 | 3 | 3 | 0.152 | 1.152 | 2.39 × 106 | Corrected |
5 | 7 | 5 | 3 | 3 | 0.862 | 2.197 | 8.68 × 106 | Corrected |
6 | 7 | 7 | 3 | 3 | 0.492 | 1.592 | 4.56 × 106 | Corrected |
7 | 7 | 9 | 3 | 3 | 0.166 | 1.308 | 3.08 × 106 | Corrected |
8 | 9 | 5 | 3 | 3 | 0.500 | 1.672 | 5.03 × 106 | Corrected |
9 | 9 | 7 | 3 | 3 | 0.247 | 1.468 | 3.87 × 106 | Corrected |
10 | 9 | 9 | 3 | 3 | 0.187 | 1.436 | 3.71 × 106 | Corrected |
Corrected A | Uncorrected B | |||||||
---|---|---|---|---|---|---|---|---|
Erosion m3 | Deposition m3 | Total m3 | Erosion m3 | Deposition m3 | Total m3 | Erosion % | Deposition % | |
Upstream | −1.03 × 106 | 4.78 × 104 | 1.08 × 106 | −1.56 × 106 | 8.74 × 104 | 1.61 × 106 | 51 | 57 |
Downstream | −1.58 × 104 | 5.25 × 105 | 5.41 × 106 | −4.26 × 104 | 7.96 × 105 | 8.38 × 105 | 170 | 52 |
Total | −1.05 × 106 | 5.73 × 105 | −1.61 × 106 | 8.83 × 105 | 53 | 54 | ||
Area (m2) | 1.22 × 105 | 1.23 × 105 | 1.22 × 105 | 1.23 × 105 | - | - | ||
Ave. depth (V/A), m | -8.6 | +4.6 | −13.2 | +7.2 | 53 | 57 |
No. | Number of Data | Maximum AL | Minimum AL | Equation | Source |
---|---|---|---|---|---|
1 | 207 | 1.9 × 105 | 2.3 × 100 | VL = 0.1479AL1.368 | [39] |
2 | 29 | 2 × 102 | 2.1 × 100 | VL = 0.234AL1.11 | [40] |
3 | 53 | 6 × 107 | 2 × 105 | VL = 0.242AL1.250 | [41] |
4 | 30 | 5 × 102 | 3 × 101 | VL = 0.0329AL1.385 | [42] |
5 | 45 | 3.9 × 106 | 4 × 104 | VL = 0.769AL1.250 | [43] |
6 | 1019 | 1.6 × 104 | 5 × 101 | VL = 1.826AL0.898 | [44] |
7 | 615 | 5.2 × 104 | 2 × 102 | VL = 1.0359AL0.880 | [45] |
8 | 124 | 1/2 × 105 | 7 × 102 | VL = 0.1549AL1.0905 | [46] |
9 | 539 | 1 × 109 | 1 × 101 | VL = 0.0844AL1.4324 | [47] |
10 | 11 | 4 × 103 | 5 × 101 | VL = 0.19AL1.19 | [48] |
11 | 37 | 1.5 × 103 | 1.1 × 101 | VL = 0.328AL1.104 | [49] |
12 | 677 | 1 × 109 | 2 × 100 | VL = 0.074AL1.450 | [50] |
13 | 50 | 2.1 × 105 | 9.6 × 102 | VL = 0.333AL1.399 | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atefi, M.R.; Miura, H. Volumetric Analysis of the Landslide in Abe Barek, Afghanistan Based on Nonlinear Mapping of Stereo Satellite Imagery-Derived DEMs. Remote Sens. 2021, 13, 446. https://doi.org/10.3390/rs13030446
Atefi MR, Miura H. Volumetric Analysis of the Landslide in Abe Barek, Afghanistan Based on Nonlinear Mapping of Stereo Satellite Imagery-Derived DEMs. Remote Sensing. 2021; 13(3):446. https://doi.org/10.3390/rs13030446
Chicago/Turabian StyleAtefi, Mujeeb Rahman, and Hiroyuki Miura. 2021. "Volumetric Analysis of the Landslide in Abe Barek, Afghanistan Based on Nonlinear Mapping of Stereo Satellite Imagery-Derived DEMs" Remote Sensing 13, no. 3: 446. https://doi.org/10.3390/rs13030446
APA StyleAtefi, M. R., & Miura, H. (2021). Volumetric Analysis of the Landslide in Abe Barek, Afghanistan Based on Nonlinear Mapping of Stereo Satellite Imagery-Derived DEMs. Remote Sensing, 13(3), 446. https://doi.org/10.3390/rs13030446