Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa
Abstract
:1. Introduction
2. Material and Methods
2.1. Case Studies
2.2. Data Acquisition and Preprocessing
2.3. Definitions
2.4. Classification of Built-Up and Non-Built-Up Areas
2.5. Post-Processing
2.6. Validation
2.7. Measuring and Characterizing Urban Expansion
3. Results
3.1. Assessment of the Classification Models
3.2. Growth Rates of Built-Up Areas
3.3. Population Densities of Built-Up Areas
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2019 Revision; Technical Report; United Nations: New York, NY, USA, 2019. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2018 Revision; Technical Report; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Cohen, B. Urban Growth in Developing Countries: A Review of Current Trends and a Caution Regarding Existing Forecasts. World Dev. 2004, 32, 23–51. [Google Scholar] [CrossRef]
- Bocquier, P. Analyzing Urbanization in Sub-Saharan Africa. In New Forms of Urbanization; Routledge: London, UK, 2003; pp. 133–150. [Google Scholar]
- Andersson Djurfeldt, A. Urbanization and Linkages to Smallholder Farming in Sub-Saharan Africa: Implications for Food Security. Glob. Food Secur. 2015, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, G.; Mitlin, D.; Satterthwaite, D.; Turok, T.; Turok, I. Africa’s Urban Transition and the Role of Regional Collaboration; Technical Report 5; International Institute for Environment and Development (IIED): London, UK, 2009. [Google Scholar]
- Tatem, A.J.; Guerra, C.A.; Kabaria, C.W.; Noor, A.M.; Hay, S.I. Human Population, Urban Settlement Patterns and Their Impact on Plasmodium Falciparum Malaria Endemicity. Malar. J. 2008, 7, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dye, C. Health and Urban Living. Science 2008, 319, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Hay, S.I.; Guerra, C.A.; Tatem, A.J.; Atkinson, P.M.; Snow, R.W. Urbanization, Malaria Transmission and Disease Burden in Africa: Opinion—Tropical Infectious Diseases. Nat. Rev. Microbiol. 2005, 3, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Gould, P.; Keary, B.S. Global Urbanization and Impact on Health. Int. J. Hyg. Environ. Health 2003, 206, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Nath, I.; Capon, A.; Hasan, N.; Jaron, D. Health and Wellbeing in the Changing Urban Environment: Complex Challenges, Scientific Responses, and the Way Forward. Curr. Opin. Environ. Sustain. 2012, 4, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, D.; Helbing, D. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena. Science 2013, 342, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Lin, G.C. Urbanization and the Changing System of Cities in Socialist China: A Historical and Geographic Assessment. J. Popul. Stud. 2002, 24, 89–139. [Google Scholar]
- Wentz, E.; Anderson, S.; Fragkias, M.; Netzband, M.; Mesev, V.; Myint, S.; Quattrochi, D.; Rahman, A.; Seto, K. Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing. Remote Sens. 2014, 6, 3879–3905. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Arino, O.; Leroy, M.; Ranera, F.; Gross, D.; Bicheron, P.; Nino, F.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F. Globcover-a Global Land Cover Service with MERIS. In Proceedings of the ENVISAT Symposium, Montreux, Switzerland, 23–27 April 2007; pp. 23–27. [Google Scholar]
- Schneider, A.; Friedl, M.A.; Potere, D. A New Map of Global Urban Extent from MODIS Satellite Data. Environ. Res. Lett. 2009, 4, 044003. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Ehrlich, D.; Florczyk, A.J.; Freire, S.; Julea, A.; Kemper, T.; Syrris, V. The Global Human Settlement Layer from Landsat Imagery. In Proceedings of the IGARSS, Beijing, China, 10–15 July 2016; pp. 7276–7279. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30m Resolution: A POK-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Huang, C.; Brown de Colstoun, E.C.; Tilton, J.C.; Tan, B. Human Built-Up And Settlement Extent (HBASE) Dataset From Landsat. 2017. Available online: https://sedac.ciesin.columbia.edu/data/set/ulandsat-hbase-v1 (accessed on 19 May 2020).
- Linard, C.; Tatem, A.J.; Gilbert, M. Modelling Spatial Patterns of Urban Growth in Africa. Appl. Geogr. 2013, 44, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tatem, A.J.; Noor, A.M.; von Hagen, C.; Di Gregorio, A.; Hay, S.I. High Resolution Population Maps for Low Income Nations: Combining Land Cover and Census in East Africa. PLoS ONE 2007, 2, e1298. [Google Scholar] [CrossRef] [PubMed]
- Pesaresi, M.; Ehrlich, D.; Freire, S. The Global Human Settlement Layer (GHSL)–New Tools and Geodatasets for Improving Disaster Risk Assessment and Crisis Management. In Proceedings of the 11th International ISCRAM Conference, University Park, PA, USA, 1 May 2014. [Google Scholar]
- Li, X.; Gong, P.; Liang, L. A 30-Year (1984–2013) Record of Annual Urban Dynamics of Beijing City Derived from Landsat Data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Patel, N.N.; Angiuli, E.; Gamba, P.; Gaughan, A.; Lisini, G.; Stevens, F.R.; Tatem, A.J.; Trianni, G. Multitemporal Settlement and Population Mapping from Landsat Using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M. Detection of Land Use/Land Cover Changes and Urban Sprawl in Al-Khobar, Saudi Arabia: An Analysis of Multi-Temporal Remote Sensing Data. ISPRS Int. J. Geo Inf. 2016, 5, 15. [Google Scholar] [CrossRef]
- Schneider, A. Monitoring Land Cover Change in Urban and Peri-Urban Areas Using Dense Time Stacks of Landsat Satellite Data and a Data Mining Approach. Remote Sens. Environ. 2012, 124, 689–704. [Google Scholar] [CrossRef]
- Angel, S.; Blei, A.M.; Parent, J.; Lamson-Hall, P.; Galarza Sanchez, N. Atlas of Urban Expansion, The 2016 Edition, Volume 1: Areas and Densities; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Schneider, A.; Mertes, C.M. Expansion and Growth in Chinese Cities, 1978–2010. Environ. Res. Lett. 2014, 9, 024008. [Google Scholar] [CrossRef]
- Herold, M.; Roberts, D.A.; Gardner, M.E.; Dennison, P.E. Spectrometry for Urban Area Remote Sensing—Development and Analysis of a Spectral Library from 350 to 2400 Nm. Remote Sens. Environ. 2004, 91, 304–319. [Google Scholar] [CrossRef]
- Small, C. A Global Analysis of Urban Reflectance. Int. J. Remote Sens. 2005, 26, 661–681. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Ibrahim, G.; Hameed, H.; Wheeler, J.; Adamu, B.; Ibrahim, S.; Najmaddin, P. Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, Y.; Lu, D. Mapping the Land-Cover Distribution in Arid and Semiarid Urban Landscapes with Landsat Thematic Mapper Imagery. Int. J. Remote Sens. 2015, 36, 4483–4500. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhong, C.; Su, A.; Xiong, C.; Wang, J.; Liu, J. Mapping Urban Bare Land Automatically from Landsat Imagery with a Simple Index. Remote Sens. 2017, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Potere, D.; Schneider, A.; Angel, S.; Civco, D. Mapping Urban Areas on a Global Scale: Which of the Eight Maps Now Available Is More Accurate? Int. J. Remote Sens. 2009, 30, 6531–6558. [Google Scholar] [CrossRef]
- Forget, Y.; Shimoni, M.; Gilbert, M.; Linard, C. Complementarity Between Sentinel-1 and Landsat 8 Imagery for Built-Up Mapping in Sub-Saharan Africa. Preprints 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the Impervious Surface Estimation with Combined Use of Optical and SAR Remote Sensing Images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Tupin, F. Fusion of Optical and SAR Images. In Radar Remote Sensing of Urban Areas; Soergel, U., Ed.; Number 15 in Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2010; pp. 133–159. [Google Scholar]
- Braun, A.; Hochschild, V. Combined Use of SAR and Optical Data for Environmental Assessments around Refugee Camps in Semiarid Landscapes. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Gamba, P. Image and Data Fusion in Remote Sensing of Urban Areas: Status Issues and Research Trends. Int. J. Image Data Fusion 2014, 5, 2–12. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as Sensors: The World of Volunteered Geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Mooney, P.; Minghini, M. A Review of OpenStreetMap Data. In Mapping and the Citizen Sensor; Ubiquity Press: London, UK, 2017; pp. 37–59. [Google Scholar] [CrossRef] [Green Version]
- Forget, Y.; Linard, C.; Gilbert, M. Supervised Classification of Built-Up Areas in Sub-Saharan African Cities Using Landsat Imagery and OpenStreetMap. Remote Sens. 2018, 10, 1145. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.; Voss, J.; Auer, M.; Carter, S.; Zipf, A. Open Land Cover from OpenStreetMap and Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 206–213. [Google Scholar] [CrossRef]
- Yang, D.; Fu, C.S.; Smith, A.C.; Yu, Q. Open Land-Use Map: A Regional Land-Use Mapping Strategy for Incorporating OpenStreetMap with Earth Observations. Geo Spat. Inf. Sci. 2017, 20, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Basiri, A.; Haklay, M.; Foody, G.; Mooney, P. Crowdsourced Geospatial Data Quality: Challenges and Future Directions. Int. J. Geogr. Inf. Sci. 2019, 33, 1588–1593. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- NASA JPL. NASA Shuttle Radar Topography Mission Global 1 Arc Second. NASA EOSDIS Land Processes DAAC; 2013. Available online: https://lpdaac.usgs.gov/products/srtmgl1nv003/ (accessed on 19 May 2020).
- Linard, C.; Gilbert, M.; Snow, R.W.; Noor, A.M.; Tatem, A.J. Population Distribution, Settlement Patterns and Accessibility across Africa in 2010. PLoS ONE 2012, 7, e031743. [Google Scholar] [CrossRef] [Green Version]
- Worldpop. Africa 1km Population. University of Southampton, 2016. Available online: https://www.worldpop.org/doi/10.5258/SOTON/WP00004 (accessed on 19 May 2020).
- Roy, D.P.; Ju, J.; Mbow, C.; Frost, P.; Loveland, T. Accessing Free Landsat Data via the Internet: Africa’s Challenge. Remote Sens. Lett. 2010, 1, 111–117. [Google Scholar] [CrossRef]
- Clauss, K.; Valgur, M.; Marcel, W.; Sølvsteen, J.; Delucchi, L.; Unnic; Kinyanjui, L.K.; Schlump; Martinber; Baier, G.; et al. Sentinelsat. 2018. Available online: https://zenodo.org/record/2629555#.YBkXaXko9PY (accessed on 19 May 2020).
- Forget, Y. Pylandsat. 2019. Available online: https://zenodo.org/record/2537105#.YBkXgnko9PY (accessed on 19 May 2020).
- Forget, Y. ASARapi. 2018. Available online: https://zenodo.org/record/1291423#.YBkXknko9PY (accessed on 19 May 2020).
- ESA. Sentinel Application Platform (SNAP). 2018. Available online: https://step.esa.int/main/toolboxes/snap/ (accessed on 19 May 2020).
- Small, D.; Shubert, A. Guide to ASAR Geocoding. In ESA-ESRIN Technical Note RSL-ASAR-GC-AD 1; ESA-ESRIN: Frascati, Italy, 2008. [Google Scholar]
- Potere, D.; Schneider, A. A Critical Look at Representations of Urban Areas in Global Maps. GeoJournal 2007, 69, 55–80. [Google Scholar] [CrossRef]
- Pesaresi, M.; Melchiorri, M.; Siragusa, A.; Kemper, T. Atlas of the Human Planet 2016: Mapping Human Presence on Earth with the Global Human Settlement Layer; Technical Report; Joint Research Centre, European Commission: Ispra, Italy, 2017. [Google Scholar]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping Global Urban Areas Using MODIS 500-m Data: New Methods and Datasets Based on ‘Urban Ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Mertes, C.; Schneider, A.; Sulla-Menashe, D.; Tatem, A.; Tan, B. Detecting Change in Urban Areas at Continental Scales with MODIS Data. Remote Sens. Environ. 2015, 158, 331–347. [Google Scholar] [CrossRef]
- Oliphant, T.E. Guide to NumPy; Continuum Press: Austin, TX, USA, 2015. [Google Scholar]
- Oliphant, T.E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Gillies, S. Rasterio: Geospatial Raster I/O for Python Programmers. Available online: https://github.com/mapbox/rasterio (accessed on 19 May 2020).
- Gillies, S. Shapely: Manipulation and Analysis of Geometric Objects. Available online: https://github.com/Toblerity/Shapely (accessed on 19 May 2020).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28–30 June 2010; pp. 51–56. [Google Scholar]
- Grizonnet, M.; Michel, J.; Poughon, V.; Inglada, J.; Savinaud, M.; Cresson, R. Orfeo ToolBox: Open Source Processing of Remote Sensing Images. Open Geospat. Data Softw. Stand. 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, P.; Wang, J. Urban Built-Up Area Extraction from Landsat TM/ETM+ Images Using Spectral Information and Multivariate Texture. Remote Sens. 2014, 6, 7339–7359. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5. [Google Scholar]
- Angiuli, E.; Trianni, G. Urban Mapping in Landsat Images Based on Normalized Difference Spectral Vector. IEEE Geosci. Remote Sens. Lett. 2014, 11, 661–665. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, X. Use of Normalized Difference Bareness Index in Quickly Mapping Bare Areas from TM/ETM+. In Proceedings of the IGARSS, Seoul, Korea, 29 July 2005; IEEE: New York, NY, USA, 2005; pp. 1666–1668. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Q.; Zhang, L.; Plaza, A. New Postprocessing Methods for Remote Sensing Image Classification: A Systematic Study. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7140–7159. [Google Scholar] [CrossRef]
- Brenning, A. Spatial Cross-Validation and Bootstrap for the Assessment of Prediction Rules in Remote Sensing: The R Package Sperrorest; IEEE: New York, NY, USA, 2012; pp. 5372–5375. [Google Scholar] [CrossRef]
- Corbane, C.; Baghdadi, N.; Descombes, X.; Wilson, G.; Villeneuve, N.; Petit, M. Comparative Study on the Performance of Multiparameter SAR Data for Operational Urban Areas Extraction Using Textural Features. IEEE Geosci. Remote Sens. Lett. 2009, 6, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
City (Country) | Population | Climate | Elevation | Slope |
---|---|---|---|---|
Antananarivo (MDG) | 2,454,009 | Subtropical highland | 1319.6 m | 14.8% |
Bouake (CIV) | 836,441 | Tropical savanna | 290.7 m | 6.1% |
Brazzaville (COG) | 7,858,583 | Tropical savanna | 327.3 m | 9.8% |
Bukavu (COD) | 1,068,012 | Tropical savanna | 1756.1 m | 22.8% |
Chimoio (MOZ) | 457,422 | Humid subtropical | 612.6 m | 8.3% |
Dakar (SEN) | 3,308,199 | Hot semi-arid | 12.5 m | 2.3% |
Dodoma (TZA) | 481,263 | Hot semi-arid | 1139.9 m | 6.6% |
Freetown (SLE) | 1,196,714 | Tropical monsoon | 121.0 m | 5.4% |
Gao (MLI) | 161,019 | Hot desert | 272.1 m | 4.5% |
Ikirun (NGA) | 1,323,133 | Tropical savanna | 394.7 m | 8.1% |
Iringa (TZA) | 252,164 | Humid subtropical | 1576.9 m | 10.3% |
Johannesburg (ZAF) | 4,816,594 | Subtropical highland | 1611.0 m | 7.5% |
Kabwe (ZMB) | 255,667 | Humid subtropical | 1168.7 m | 3.7% |
Kampala (UGA) | 3,477,053 | Tropical rainforest | 1171.0 m | 7.5% |
Kaolack (SEN) | 447,639 | Hot semi-arid | 14.2 m | 3.9% |
Katsina (NGA) | 1,019,434 | Hot semi-arid | 495.5 m | 4.2% |
Kayamandi (ZAF) | 1,291,104 | Warm-summer med. | 281.2 m | 16.8% |
Kinshasa (COD) | 8,265,198 | Tropical savanna | 319.6 m | 9.1% |
Kisumu (KEN) | 1,183,345 | Tropical rainforest | 1292.6 m | 6.9% |
Libreville (GAB) | 744,131 | Tropical monsoon | 18.2 m | 4.8% |
Lusaka (ZMB) | 2,557,066 | Humid subtropical | 1216.4 m | 4.4% |
Mbeya (TZA) | 665,390 | Subtropical highland | 1791.6 m | 20.0% |
Mekele (ETH) | 452,457 | Hot semi-arid | 2143.1 m | 15.5% |
Monrovia (LBR) | 1,381,459 | Tropical monsoon | 16.8 m | 2.9% |
Nairobi (KEN) | 5,175,740 | Temperate oceanic | 1738.6 m | 7.9% |
Ndola (ZMB) | 637,717 | Humid subtropical | 1289.0 m | 5.1% |
Nelspruit (ZAF) | 164,982 | Humid subtropical | 853.9 m | 16.4% |
Nzerekore (GIN) | 339,140 | Tropical savanna | 468.3 m | 11.2% |
Obuasi (GHA) | 375,931 | Tropical savanna | 196.4 m | 12.0% |
Okene (NGA) | 983,744 | Tropical savanna | 298.9 m | 9.5% |
Onitsha (NGA) | 2,593,562 | Tropical savanna | 74.6 m | 5.9% |
Ouagadougou (BFA) | 2,239,604 | Hot semi-arid | 306.5 m | 3.8% |
Owo (NGA) | 427,986 | Tropical savanna | 271.7 m | 7.7% |
Pietermaritzburg (ZAF) | 617,133 | Temperate oceanic | 867.6 m | 15.2% |
Pietersburg (ZAF) | 205,025 | Hot semi-arid | 1303.5 m | 5.1% |
Saint-Louis (SEN) | 297,477 | Hot desert | 5.9 m | 2.0% |
San Pedro (CIV) | 113,641 | Tropical savanna | 31.1 m | 7.3% |
Shaki (NGA) | 395,163 | Tropical savanna | 393.3 m | 5.6% |
Tamale (GHA) | 498,597 | Tropical savanna | 148.4 m | 5.3% |
Toamasina (MDG) | 333,439 | Tropical rainforest | 45.4 m | 7.6% |
Tulear (MDG) | 305,710 | Hot desert | 82.7 m | 9.1% |
Umuahia (NGA) | 1,450,588 | Tropical monsoon | 104.2 m | 7.9% |
Windhoek (NAM) | 383,456 | Hot desert | 1819.4 m | 16.5% |
Yamoussoukro (CIV) | 358,063 | Tropical savanna | 196.7 m | 6.1% |
Ziguinchor (SEN) | 293,083 | Tropical savanna | 14.9 m | 3.9% |
Sensor | Type | Period | Resolution |
---|---|---|---|
ERS-1 | SAR | 1991–2000 | 25 m |
ERS-2 | SAR | 1995– | 25 m |
Sentinel-1 | SAR | 2014– | 10 m |
Landsat 5 TM | Multi-spectral | 1984–2012 | 30 m |
Landsat 7 ETM+ | Multi-spectral | 1999– | 30 m |
Landsat 8 OLI | Multi-spectral | 2013– | 30 m |
Case Study | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|
Antananarivo | . | 0.88 | . | 0.93 |
Bukavu | . | 0.87 | 0.87 | 0.87 |
Chimoio | . | 0.91 | . | 0.95 |
Dakar | . | 0.91 | . | 0.96 |
Dodoma | . | . | . | 0.95 |
Gao | 0.90 | . | . | 0.93 |
Johannesburg | . | 0.95 | . | 0.95 |
Kampala | . | 0.92 | . | 0.94 |
Katsina | 0.92 | . | . | 0.97 |
Kinshasa | . | 0.90 | . | 0.81 |
Nairobi | . | . | 0.97 | 0.95 |
Okene | . | . | . | 0.97 |
Onitsha | . | . | . | 0.96 |
Ouagadougou | 0.94 | . | 0.94 | 0.95 |
Saint-Louis | . | 0.97 | . | 0.98 |
Umuahia | . | . | . | 0.94 |
Windhoek | . | 0.95 | . | 0.91 |
City Size | Small | Medium | Large | Mean | |
---|---|---|---|---|---|
Income Class | |||||
Low | 141.62 (12) | 33.62 (3) | 37.04 (5) | 99.28 (20) | |
Lower-Middle | 157.70 (8) | 92.80 (6) | 89.04 (2) | 124.78 (16) | |
Upper-Middle | 522.90 (3) | 153.03 (2) | 107.19 (2) | 298.45 (7) | |
Mean | 196.95 (23) | 87.61 (11) | 64.19 (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forget, Y.; Shimoni, M.; Gilbert, M.; Linard, C. Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa. Remote Sens. 2021, 13, 525. https://doi.org/10.3390/rs13030525
Forget Y, Shimoni M, Gilbert M, Linard C. Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa. Remote Sensing. 2021; 13(3):525. https://doi.org/10.3390/rs13030525
Chicago/Turabian StyleForget, Yann, Michal Shimoni, Marius Gilbert, and Catherine Linard. 2021. "Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa" Remote Sensing 13, no. 3: 525. https://doi.org/10.3390/rs13030525
APA StyleForget, Y., Shimoni, M., Gilbert, M., & Linard, C. (2021). Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa. Remote Sensing, 13(3), 525. https://doi.org/10.3390/rs13030525