iCOR Atmospheric Correction on Sentinel-3/OLCI over Land: Intercomparison with AERONET, RadCalNet, and SYN Level-2
Abstract
:1. Introduction
2. Atmospheric Correction Algorithms
2.1. iCOR
2.2. SYN L2
3. Data and Methods
3.1. Regions of Interest and iCOR Retrievals
3.2. Validation Data
3.2.1. AERONET
3.2.2. 6SV Simulations Using AERONET Observations
- Angular configuration: Solar zenith angle (SZA), solar azimuth angle (SAA), viewing zenith angle (VZA), and viewing azimuth angle (VAA)
- Date (day and month)
- AERONET AOT, TCWV, and ozone concentrations
- AERONET station altitude [m], obtained from the information available at https://aeronet.gsfc.nasa.gov/
- OLCI SRF information at 2.5 nm spectral resolution
- OLCI-observed TOA radiance
3.2.3. RadCalNet Observations
3.2.4. Sentinel-3 SYN L2
3.3. Validation Methods
3.3.1. Sampling Strategy
3.3.2. Vegetation Indices
3.3.3. RadCalNet Intercomparison
- RadCalNet TOC reflectances were cubically interpolated from 30 min to 1 sec for every wavelength;
- TOC reflectance values at different wavelengths were extracted at the sensor overpass time;
- TOC reflectances from point 2 were cubically interpolated from 10 nm to 0.1 nm (;
- TOC reflectances from point 3 were convolved with the OLCI mean SRF (), using Equation (5) [22]:
3.3.4. Validation Metrics
4. Results
4.1. Intercomparison with 6SV Simulations Using AERONET Input
4.2. Intercomparison with RadCalNet Observations
4.3. Intercomparison with Sentinel-3 SYN L2
4.3.1. Statistical Consistency iCOR Versus SYN L2
4.3.2. Temporal Consistency iCOR vs. SYN L2
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Attema, E.P.W. The active microwave instrument on-board the ERS-1 satellite. Proc. IEEE 1991, 79, 791–799. [Google Scholar] [CrossRef]
- Louet, J.; Bruzzi, S. ENVISAT mission and system. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; p. 16. [Google Scholar]
- Passot, X. VEGETATION image processing methods in the CTIV. Proc. Veg. 2001, 2, 3–6. [Google Scholar]
- Kravitz, J.; Matthews, M.; Bernard, S.; Griffith, D. Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 2020, 237, 111562. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Gower, J.; King, S. The distribution of pelagic Sargassum observed with OLCI. Int. J. Remote Sens. 2020, 41, 5669–5679. [Google Scholar] [CrossRef]
- Wang, X.; Ling, F.; Yao, H.; Liu, Y.; Xu, S. Unsupervised Sub-pixel water body mapping with sentinel-3 OLCI image. Remote Sens. 2019, 11, 327. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wylie, B.; Loveland, T.; Fosnight, E.; Tieszen, L.L.; Ji, L.; Gilmanov, T. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands. Remote Sens. Environ. 2007, 106, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.A.; Dash, J.; Lidon, A.L.; Lopez-Baeza, E.; Dransfeld, S. Synergetic Exploitation of the Sentinel-2 missions for validating the Sentinel-3 ocean and land color instrument terrestrial chlorophyll index over a vineyard dominated Mediterranean environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2244–2251. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van Der Zande, D.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Doxani, G.; Vermote, E.; Roger, J.C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric correction inter-comparison exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renosh, P.R.; Doxaran, D.; de Keukelaere, L.; Gossn, J.I. Evaluation of atmospheric correction algorithms for sentinel-2-MSI and sentinel-3-OLCI in highly turbid estuarine waters. Remote Sens. 2020, 12, 1285. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Bouvet, M.; Thome, K.; Berthelot, B.; Bialek, A.; Czapla-Myers, J.; Fox, N.P.; Goryl, P.; Henry, P.; Ma, L.; Marcq, S.; et al. RadCalNet: A radiometric calibration network for earth observing imagers operating in the visible to shortwave infrared spectral range. Remote Sens. 2019, 11, 2401. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Hoke, M.L.; et al. MODTRAN5: 2006 Update; Shen, S.S., Lewis, P.E., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; p. 62331F. [Google Scholar]
- North, P.R.J.; Brockmann, C.; Fischer, J.; Gomez-Chova, L.; Grey, W.; Heckel, A.; Moreno, J.; Preusker, R.; Regner, P. MERIS/AATSR synergy algorithms for cloud screening, aerosol retrieval and atmospheric correction. In Proceedings of the 2nd MERIS/AATSR User Workshop, ESRIN, Frascati, Italy, 22–26 September 2008; ESA Publications Division, European Space Agency: Noordwijk, The Netherlands, 2008; pp. 22–26. [Google Scholar]
- Sterckx, S. iCOR-OLCI Plugin for SNAP Toolbox—Software User Manual, 2019. Available online: https://cdn2.hubspot.net/hubfs/2834550/marketing/MAILS/iCOR/iCORpluginUserManual_OLCI_v1.0.pdf (accessed on 27 October 2020).
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the satellite signal in the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. 6S User Guide Version 3, Appendix III, 55 pp, 2006. Available online: https://ltdri.org/files/6S/6S_Manual_Part_2.pdf (accessed on 28 November 2019).
- Vermote, E.; Justice, C.O.; Bréon, F.M. Towards a generalized approach for correction of the BRDF effect in MODIS directional reflectances. IEEE Trans. Geosci. Remote Sens. 2009, 47, 898–908. [Google Scholar] [CrossRef]
- Jing, X.; Leigh, L.; Pinto, C.T.; Helder, D. Evaluation of RadCalNet output data using Landsat 7, Landsat 8, Sentinel 2A, and Sentinel 2B Sensors. Remote Sens. 2019, 11, 541. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Duveiller, G.; Fasbender, D.; Meroni, M. Revisiting the concept of a symmetric index of agreement for continuous datasets. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. LAI and fAPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products. Remote Sens. Environ. 2007, 110, 317–331. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Meygret, A.; Santer, R.P.; Berthelot, B. ROSAS: A Robotic Station for Atmosphere and Surface Characterization Dedicated to on-Orbit Calibration; Butler, J.J., Xiong, X., Gu, X., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; p. 815311. [Google Scholar]
- Carr, S.B. The Aerosol Models in MODTRAN: Incorporating Selected Measurements from Northern Australia; Australian Government Department of Defence Science and Technology Organisation: Edinburgh, Australia, 2005.
- Fraser, R.S.; Kaufman, Y.J. The relative importance of aerosol scattering and absorption in remote sensing. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 625–633. [Google Scholar] [CrossRef]
- Bourg, L.; Smith, D.; Rouffi, F.; Hénocq, C.; Bruniquel, J.; Cox, C.; Etxaluze, M.; Polehampton, E. S3MPC OPT Annual Performance Report-Year 2019. Sentinel-3 Mission Performance Center. 2020. Available online: https://sentinel.esa.int/documents/247904/1848151/Sentinel-3-Optical-Annual-Performance-Report-2019.pdf (accessed on 27 October 2020).
Station Name | ROI and Land Cover | Lat [°] | Long [°] | Max Cloud Cover [%] | Nr. PDUs S3A | Nr. PDUs S3B |
---|---|---|---|---|---|---|
Alta Floresta | NBRA CUL | −9.8713 | −56.1045 | 20 | 29 | 25 |
Amazon ATTO Tower | NBRA BEF | −2.1442 | −58.9999 | |||
XiangHe | CHIN CUL | 39.7536 | 116.9515 | 20 | 18 | 12 |
Beijng CAMS | CHIN URB | 39.9333 | 116.3167 | |||
Bujumbura | CAFR CUL | −3.3800 | 29.3838 | 20 | 14 | 7 |
Chilbolton | WEUR CUL | 51.1445 | −1.4370 | 50 | 85 | 84 |
Aubière LAMP | WEUR OTH | 45.7610 | 3.1110 | |||
Lille | WEUR OTH | 50.6117 | 3.1417 | |||
Palaiseau | WEUR CUL | 48.7116 | 2.2150 | |||
Lake Argyle | NAUS HER | −16.1081 | 128.7485 | 5 | 63 | 52 |
Jabiru | NAUS SHR | −12.6607 | 132.8931 | |||
TOTAL | 209 | 180 |
Site Name | Site Owner | Instrumentation Maintenance | Location | Spectral Range (μm) | Surface Reflectance Variability at 500 × 500 m (%) |
---|---|---|---|---|---|
Railroad Valley(RVUS) | United States Bureau of Land Management (BLM) | Remote Sensing Group- College of Optical Sciences University of Arizona (USA) | Nevada, USA | 0.4–2.5 | 1 |
Gobabeb (GONA) | Gobabeb Research and Training Centre | National Physical Laboratory (UK) | Naukluft National Park, Namibia | 0.4–1.81 1.92–2.3 | 3 |
Validation Metric | Formula |
---|---|
Accuracy (Acc) or mean bias | |
Precision (Prec) or repeatability | |
Uncertainty (Unc) or Root Mean Squared Difference (RMSD) | |
Root of the unsystematic mean product difference (RMPDu) | |
Root of the systematic mean product difference (RMPDs) | |
Coefficient of determination (R2) | |
Temporal smoothness (δ) | |
Time series smoothness index (TSI) | |
Relative difference [Δ, %] |
ROI | S3A | S3B | TOTAL |
---|---|---|---|
WEUR | 90 (194) | 57 (164) | |
NAUS | 3 (51) | 9 (66) | |
NBRA | 4 (41) | 2 (32) | |
CHIN | 9 (25) | 6 (12) | |
TOTAL | 106 (311) | 74 (374) | 180 (685) |
Sensor | RVUS | GONA | RVUS Time Interval | GONA Time Interval |
---|---|---|---|---|
OLCI S3A | 17 | 63 | 04/09/2016–09/07/2020 | 21/07/2017–01/10/2019 |
OLCI S3B | - | 38 * | - | 15/12/2018–08/10/2019 |
ROI | N | Intercept | Slope | R2 | RMSD | RMPDu | RMPDs |
---|---|---|---|---|---|---|---|
All | 8.87 × 106 | 0.079 | 0.581 | 0.533 | 0.144 | 0.125 | 0.072 |
WEUR | 1.48 × 107 | 0.113 | 0.401 | 0.323 | 0.176 | 0.142 | 0.104 |
NAUS | 1.48 × 107 | 0.104 | 0.403 | 0.141 | 0.098 | 0.097 | 0.013 |
CAFR | 3.20 × 106 | 0.125 | 0.537 | 0.335 | 0.146 | 0.132 | 0.062 |
NBRA | 8.04 × 106 | 0.028 | 0.799 | 0.706 | 0.130 | 0.119 | 0.052 |
CHIN | 3.42 ×106 | 0.131 | 0.515 | 0.382 | 0.190 | 0.158 | 0.105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolters, E.; Toté, C.; Sterckx, S.; Adriaensen, S.; Henocq, C.; Bruniquel, J.; Scifoni, S.; Dransfeld, S. iCOR Atmospheric Correction on Sentinel-3/OLCI over Land: Intercomparison with AERONET, RadCalNet, and SYN Level-2. Remote Sens. 2021, 13, 654. https://doi.org/10.3390/rs13040654
Wolters E, Toté C, Sterckx S, Adriaensen S, Henocq C, Bruniquel J, Scifoni S, Dransfeld S. iCOR Atmospheric Correction on Sentinel-3/OLCI over Land: Intercomparison with AERONET, RadCalNet, and SYN Level-2. Remote Sensing. 2021; 13(4):654. https://doi.org/10.3390/rs13040654
Chicago/Turabian StyleWolters, Erwin, Carolien Toté, Sindy Sterckx, Stefan Adriaensen, Claire Henocq, Jérôme Bruniquel, Silvia Scifoni, and Steffen Dransfeld. 2021. "iCOR Atmospheric Correction on Sentinel-3/OLCI over Land: Intercomparison with AERONET, RadCalNet, and SYN Level-2" Remote Sensing 13, no. 4: 654. https://doi.org/10.3390/rs13040654
APA StyleWolters, E., Toté, C., Sterckx, S., Adriaensen, S., Henocq, C., Bruniquel, J., Scifoni, S., & Dransfeld, S. (2021). iCOR Atmospheric Correction on Sentinel-3/OLCI over Land: Intercomparison with AERONET, RadCalNet, and SYN Level-2. Remote Sensing, 13(4), 654. https://doi.org/10.3390/rs13040654