Simulating Scenarios of Future Intra-Urban Land-Use Expansion Based on the Neural Network–Markov Model: A Case Study of Lusaka, Zambia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Intra-Urban-LU Classification
2.3. Modeling Intra-Urban-LU Expansion
2.3.1. Selection of Driver Variables
2.3.2. Transition-Potential Modeling and Simulation
2.3.3. Model Validation
2.3.4. Scenario Development for Future Intra-Urban-LU Simulation
2.3.5. Intra-Urban-LU Change Detection and Analysis
3. Results
3.1. Intra-Urban-LU Maps and Expansion
3.2. Model Validation
3.3. Scenario-Based Intra-Urban-LU Simulation
4. Discussion
4.1. Intra-Urban-LU Expansion and its Drivers
4.2. Modeling and Validation
4.3. Scenario-Based Intra-Urban-LU Simulation
4.4. Implications for Sustainable Urban Landscape Planning and Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boadi, K.; Kuitunen, M.; Raheem, K.; Hanninen, K. Urbanisation without development: Environmental and health implications in African cities. Environ. Dev. Sustain. 2005, 7, 465–500. [Google Scholar] [CrossRef]
- Guneralp, B.; Shuaib, L.; Hillary, M.; Parnell, S.; Seto, K.C. Urbanization in Africa: Challenges and opportunities for conservation. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Mutunga, C.; Zulu, E.; De Souza, R.-M. Population Dynamics, Climate Change, and Sustainable Development in Africa; Population Action International: Washington, DC, USA; African Institute for Development Policy: Nairobi, Kenya, 2012. [Google Scholar]
- Karekezi, S.; Majoro, L. Improving modern energy services for Africa’s urban poor. Energy Policy 2002, 30, 1015–1028. [Google Scholar] [CrossRef]
- Clarke, J.I. Polarisation and Depolarisation in Africa. In Urban Ecology and Health in the Third World; Lawrence, M.S., Malcolm, T.S., Bilsborough, A., Eds.; Cambridge University Press: New York, NY, USA, 1993; pp. 260–273. [Google Scholar]
- Freire, M.E.; Lall, S.; Leipziger, D. Africa’s Urbanization: Challenges and Opportunities. Growth Dialogue 2014, 7, 1–30. [Google Scholar]
- The Pressures of Growth: Rapid Urbanisation in Africa and the Middle East; Nato Strategic Direction South (NSDS): Lago Patria, Italy, 2019.
- Simwanda, M.; Murayama, Y. Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustain. Cities Soc. 2018, 39, 262–274. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial Analysis of Surface Urban Heat Islands in Four Rapidly Growing African Cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Simwanda, M.; Murayama, Y. An Internet-Based GIS Platform Providing Data for Visualization and Spatial Analysis of Urbanization in Major Asian and African Cities. ISPRS Int. J. Geo-Inf. 2017, 6, 257. [Google Scholar] [CrossRef] [Green Version]
- Thapa, R.B.; Murayama, Y. Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc. Urban Plan. 2012, 105, 140–148. [Google Scholar] [CrossRef]
- Rafiee, R.; Mahiny, A.S.; Khorasani, N.; Darvishsefat, A.A.; Danekar, A. Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities 2009, 26, 19–26. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Liu, Y. Modelling sustainable urban growth in a rapidly urbanising region using a fuzzy-constrained cellular automata approach. Int. J. Geogr. Inf. Sci. 2012, 26, 151–167. [Google Scholar] [CrossRef]
- Grekousis, G.; Manetos, P.; Photis, Y.N. Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the Athens metropolitan area. Cities 2013, 30, 193–203. [Google Scholar] [CrossRef]
- Hagenauer, J.; Helbich, M. Local modelling of land consumption in Germany with RegioClust. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 46–56. [Google Scholar] [CrossRef]
- Karolien, V.; Anton, V.R.; Maarten, L.; Eria, S.; Paul, M. Urban growth of Kampala, Uganda: Pattern analysis and scenario development. Landsc. Urban Plan. 2012, 106, 199–206. [Google Scholar]
- Arsanjani, J.J.; Helbich, M.; de Noronha Vaz, E. Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran. Cities 2013, 32, 33–42. [Google Scholar] [CrossRef]
- Almeida, C.M.; Gleriani, J.M.; Castejon, E.F.; Soares-Filho, B.S. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. Int. J. Geogr. Inf. Sci. 2008, 22, 943–963. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Wu, X.; Yao, Y.; Wu, X.; Chen, Y. Multiple intra-urban land use simulations and driving factors analysis: A case study in Huicheng, China. GISci. Remote Sens. 2018, 56, 282–308. [Google Scholar] [CrossRef]
- Godoy, M.; Soares-Filho, B. Modelling intra-urban dynamics in the Savassi neighbourhood, Belo Horizonte city, Brazil. In Modelling Environmental Dynamics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 319–338. [Google Scholar]
- Yang, J.; Liu, W.; Li, Y.; Li, X.; Ge, Q. Simulating Intraurban Land Use Dynamics under Multiple Scenarios Based on Fuzzy Cellular Automata: A Case Study of Jinzhou District, Dalian. Complexity 2018. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.W.; Shen, G.Q.; Wang, H.; Hong, J. Simulating land use change in urban renewal areas: A case study in Hong Kong. Habitat Int. 2015, 46, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Partanen, J. An Urban Cellular Automata Model for Simulating Dynamic States on a Local Scale. Entropy 2016, 19, 12. [Google Scholar] [CrossRef] [Green Version]
- Braimoh, A.K.; Onishi, T. Spatial determinants of urban land use change in Lagos, Nigeria. Nigeria 2007, 24, 502–515. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Liu, X.; Xu, X.; Chen, G. Experiences and issues of using cellular automata for assisting urban and regional planning in China Experiences and issues of using cellular automata for assisting urban and regional planning in China. Int. J. Geogr. Inf. Sci. 2017, 31, 1606–1629. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Asghari, A.; Taleai, M.; Tayyebi, A. Sensitivity analysis and accuracy assessment of the land transformation model using cellular automata. GISci. Remote Sens. 2017, 54, 1–18. [Google Scholar] [CrossRef]
- Benenson, I.; Omer, I.; Hatna, E. Entity-based modeling of urban residential dynamics: The case of Yaffo, Tel Aviv. Environ. Plan. B Plan. Des. 2002, 29, 491–512. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y.; Ranagalage, M. Modeling the drivers of urban land use changes in Lusaka, Zambia using multi-criteria evaluation: An analytic network process approach. Land Use Policy 2020, 92, 104441. [Google Scholar] [CrossRef]
- Wang, J.; Mountrakis, G. Developing a multi-network urbanization model: A case study of urban growth in Denver, Colorado. Int. J. Geogr. Inf. Sci. 2011, 25, 229–253. [Google Scholar] [CrossRef] [Green Version]
- Yeh, A.G.O.; Li, X. Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning. Photogramm. Eng. Remote Sens. 2003, 69, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Mas, J.F.; Puig, H.; Palacio, J.L.; Sosa-López, A. Modelling deforestation using GIS and artificial neural networks. Environ. Model. Softw. 2004, 19, 461–471. [Google Scholar] [CrossRef]
- Lek, S.; Guégan, J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 1999, 120, 65–73. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Kuffer, M.; Barros, J. Urban Morphology of Unplanned Settlements: The Use of Spatial Metrics in VHR Remotely Sensed Images. Proc. Environ. Sci. 2011, 7, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Stoler, J.; Daniels, D.; Weeks, J.R.; Stow, D.A.; Coulter, L.L.; Finch, B.K. Assessing the utility of satellite imagery with differing spatial resolutions for deriving proxy measures of slum presence in Accra, Ghana. GISci. Remote Sens. 2012, 1, 31–52. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y. Integrating Geospatial Techniques for Urban Land Use Classification in the Developing Sub-Saharan African City of Lusaka, Zambia. ISPRS Int. J. Geo-Inf. 2017, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Clark, H.; Wu, H. The sustainable development goals: 17 goals to transform our world. In Furthering the Work of the United Nations; UN: New York, NY, USA, 2016; pp. 36–54. [Google Scholar]
- 2010 Census of Population and Housing; Central Statistical Office (CSO): Lusaka, Zambia, 2012.
- 2000 Census of Population and Housing; Central Statistical Office (CSO): Lusaka, Zambia, 2003.
- Eastman, J.R. TerraSet Manual: Geospatial Monitoring and Modeling System; Clark University: Worcester, MA, USA, 2016. [Google Scholar]
- Tewolde, M.G.; Cabral, P. Urban Sprawl Analysis and Modeling in Asmara, Eritrea. Remote Sens. 2011, 3, 2148–2165. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.N.; Rai, P.K. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- Iizuka, K.; Johnson, B.A.; Onishi, A.; Magcale-Macandog, D.B.; Endo, I.; Bragais, M. Modeling Future Urban Sprawl and Landscape Change in the Laguna de Bay Area, Philippines. Land 2017, 6, 26. [Google Scholar] [CrossRef]
- Ranagalage, M.; Wang, R.; Gunarathna, M.H.J.P.; Dissanayake, D.; Murayama, Y.; Simwanda, M. Spatial Forecasting of the Landscape in Rapidly Urbanizing Hill Stations of South Asia: A Case Study. Remote Sens. 2019, 11, 1743. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, S.A.; Nakagoshi, N. Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia. Landsc. Urban Plan. 2006, 77, 263–275. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzgo, R.; Fischer, G.; Folke, C.; et al. The Causes of Land-Use and Land-Cover Change: Moving Beyond the Myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Glassman, A.; Ezeh, A. Delivering on the Data Revolution in Sub-Saharan Africa; Center for Global Development: Washington, DC, USA, 2014. [Google Scholar]
- Ahmed, B.; Ahmed, R. Modeling Urban Land Cover Growth Dynamics Using Multi-Temporal Satellite Images: A Case Study of Dhaka, Bangladesh. ISPRS Int. J. Geo-Inf. 2012, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Shafizadeh-Moghadam, H.; Asghari, A.; Tayyebi, A.; Taleai, M. Computers, Environment and Urban Systems Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Comput. Environ. Urban Syst. 2017, 64, 297–308. [Google Scholar] [CrossRef]
- Zhang, W.; Goh, A.T. Geoscience Frontiers Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci. Front. 2016, 7, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Eastman, J.R. Idrisi andes tutorial; Clark Labs, Clark University: Worcester, MA, USA, 2006; 284p. [Google Scholar]
- Pontius, R.G. Quantification error versus location error in comparison of categorical maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Pontius, R.G.; Boersma, W.; Castella, J.C.; Clarke, K.D.; Nijs, T.; Dietzel, C.; Koomen, E. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Pontiuns, R.G.J. Statistical Methods to Partition Effects of Quantity and Location During Comparison of Categorical Maps at Multiple Resolutions. Photogramm. Eng. Remote Sens. 2002, 68, 1041–1049. [Google Scholar]
- Pontius, R.G., Jr.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Kamusoko, C.; Gamba, J. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model. ISPRS Int. J. Geo-Inf. 2015, 4, 447–470. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Hosseinali, F.; Alesheikh, A.A.; Nourian, F. Agent-based modeling of urban land-use development, case study: Simulating future scenarios of Qazvin city. Cities 2013, 31, 105–113. [Google Scholar] [CrossRef]
- Perveen, S.; Kamruzzaman, M.; Yigitcanlar, T. Developing policy scenarios for sustainable urban growth management: A Delphi approach. Sustainability 2017. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Kong, F.; Yang, X.; James, P.; Dronova, I. Exploring zoning scenario impacts upon urban growth simulations using a dynamic spatial model. Cities 2018, 81, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Zambia: Lusaka Urban Sector Profile: Participatory Slum Upgrading Programme in African, Caribbean and Pacific Countries; UN-Habitat: Nairobi, Kenya, 2007.
- Chitonge, H.; Mfune, O. The urban land question in Africa: The case of urban land con fl icts in the City of Lusaka, 100 years after its founding. Habitat Int. 2015, 48, 209–218. [Google Scholar] [CrossRef]
- City Planning; Lusaka City Council (LCC): Lusaka, Zambia, 2017.
- Dunford, R.; Su, Q.; Tamang, E.; Wintour, A. The Pareto principle. Plymouth Stud. Sci. 2014, 7, 140–148. [Google Scholar]
- Backbaus, J. The Pareto Principle. Anal. Krit. 1980, 2, 146–171. [Google Scholar]
- The World’s Cities in 2016—Data Booklet; ST/ESA/SER.A/392; United Nations, Department of Economic and Social Affairs (UN/DESA), Population Division: New York, NY, USA, 2016.
- Mulenga, C.L. Urban Slums Reports: The case of Lusaka, Zambia. Case Stud. Glob. Rep. Hum. Settl. 2003, 16. [Google Scholar]
- Laros, M.; Jones, F. The State of African Cities 2014: Re-Imagining Sustainable Urban Transitions; UN-Habitat: Nairobi, Kenya, 2014; ISBN 9789211333978. [Google Scholar]
- Mutisya, E.; Yarime, M. Understanding the Grassroots Dynamics of Slums in Nairobi: The Dilemma of Kibera Informal Settlements. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2011, 2, 197–213. [Google Scholar]
- Huchzermeyer, M.; Karam, A.; Maina, M. Johannesburg after apartheid—Open Access selection. In Changing Space, Changing City; Harrison, P., Gotz, G., Todes, A., Wray, C., Eds.; Wits University Press: Johannesburg, South Africa, 2014. [Google Scholar]
- Okeyinka, R.Y. Housing in the third world cities and sustainable urban developments. Dev. Ctry. Stud. 2014, 4, 112–121. [Google Scholar]
- Simatele, D.M. Kwacha Ngwee: A Snapshot of Zambia’s Contemporary Migration Patterns. ICFAI J. Urban Policy 2009, 4, 1–26. [Google Scholar]
- Van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- Riccioli, F.; El Asmar, T.; El Asmar, J.; Fagarazzi, C. Artificial neural network for multifunctional areas. Environ. Monit. Assess. 2016, 188. [Google Scholar] [CrossRef] [PubMed]
- Lusaka City State of Environment Report; Lusaka City Council (LCC): Lusaka, Zambia, 2008.
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). Sustainable Development Goals (SDGs). 2030. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 22 June 2020).
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gómez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- A Survey on Urban Sustainability; European Metropolitan network Institute (EMI): The Hague, The Netherlands, 2012.
- Basiago, A.D. Economic, Social, and Environmental Sustainability in Development Theory and Urban Planning Practice. Environmentalist 1999, 19, 145–161. [Google Scholar] [CrossRef]
- Kamete, A.Y. Interrogating planning’s power in an African city: Time for reorientation? Plan. Theory 2012, 11, 66–88. [Google Scholar] [CrossRef]
No. | Intra-Urban-LU Class | Description |
---|---|---|
1 | Unplanned High-Density Residential (UHDR) | Unplanned 1 residential areas comprising dense informal settlements with very high population density (RD > 2000 du/km2 and PD of 12,000–28,000 people/km2) |
2 | Unplanned Low-Density Residential (ULDR) | All unplanned residential areas with medium- to high-cost housing and low population density (RD < 2000 du/km2 and PD of 400–2000 people/km2). |
3 | Planned Medium-/High-Density Residential (PMHDR) | Planned 2 residential areas with low- to medium-cost houses with high population density (RD > 2000 du/km2 and PD of 2000–22,000 people/km2). |
4 | Planned Low-Density Residential (PLDR) | Planned areas with high-cost houses and low population density RD < 2000 du/km2 and PD of 400–2000 people/km2). |
5 | Commercial and Industrial (CMI) 3 | Areas comprising general retail, shopping malls, markets, hotels, financial services, manufacturing, warehousing, quarrying, and commercial agriculture facilities |
6 | Public Institutions and Service (PIS) 4 | Areas comprising education and health facilities, religious institutions, government and administration houses, municipal utilities, transportation terminals, and aviation facilities |
No. | Driver Variable | Representation Characteristics | Nature of Representation (Influence of) |
---|---|---|---|
1 | UHDR |
|
|
2 | ULDR |
|
|
3 | PMHDR |
|
|
4 | PLDR |
|
|
5 | CMI |
|
|
6 | PIS |
|
|
7 | Major roads |
|
|
8 | CBD |
|
|
9 | DEM |
|
|
10 | Slope |
|
|
11 | Forest |
|
|
12 | Agriculture |
|
|
13 | Water |
|
|
Urban-LU Class | Urban-LU | |||||||
---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | |||||
Area | % | Area | % | Area | % | Area | % | |
UHDR | 2526 | 30.61 | 3520 | 33.57 | 4688 | 29.52 | 5898 | 30.14 |
ULDR | 231 | 2.8 | 818 | 7.8 | 1589 | 10 | 2230 | 11.39 |
PMHDR | 2196 | 26.61 | 2498 | 23.82 | 3217 | 20.26 | 3554 | 18.16 |
PLDR | 900 | 10.91 | 1348 | 12.86 | 2061 | 12.98 | 2821 | 14.42 |
CMI | 1931 | 23.39 | 2046 | 19.51 | 3365 | 21.19 | 4048 | 20.68 |
PIS | 470 | 5.69 | 632 | 6.03 | 961 | 6.05 | 1020 | 5.21 |
8254 | 10,861 | 15,881 | 19,572 | |||||
Urban-LU Class | Urban-LU Expansion | |||||||
2000–2005 | 2005–2010 | 2010–2015 | 2000–2015 | |||||
Area | % | Area | % | Area | % | Area | % | |
UHDR | 993 | 38.11 | 1168 | 23.28 | 1210 | 32.78 | 3372 | 29.79 |
ULDR | 587 | 22.5 | 771 | 15.35 | 641 | 17.37 | 1998 | 17.66 |
PMHDR | 302 | 11.57 | 719 | 14.33 | 337 | 9.14 | 1358 | 12 |
PLDR | 448 | 17.17 | 713 | 14.2 | 761 | 20.6 | 1921 | 16.97 |
CMI | 115 | 4.42 | 1319 | 26.28 | 684 | 18.52 | 2118 | 18.71 |
PIS | 163 | 6.24 | 329 | 6.56 | 59 | 1.59 | 550 | 4.86 |
2607 | 100.0 | 5020 | 100.0 | 3691 | 100 | 11,318 | 100.0 |
Intra-Urban LU Map | Kappa Index (%) | Agreement and Disagreement (%) | Ratio Indices | FoM (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kno | Klocation | Kquantity | N | H | M | F | HOC | MOC | FOC | ||||
Simulated 2010 | 95.15 | 85.02 | 83.11 | 77.17 | 11.68 | 6.04 | 5.11 | 0.66 | 0.34 | 0.30 | 51.14 | ||
Simulated 2015 | 94.05 | 92.62 | 91.09 | 88.46 | 8.40 | 1.34 | 1.80 | 0.86 | 0.14 | 0.19 | 72.76 |
Intra-Urban-LU Classes | Observed | Simulated | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2015 | 2020 | 2025 | 2030 | |||||||
S1 | S2 | S1 | S2 | S3 | S1 | S2 | S3 | |||
UHDR | 5898 | 6750 | 6747 | 7701 | 7694 | 6750 | 8359 | 8057 | 7035 | |
ULDR | 2230 | 2230 | 2229 | 2524 | 2230 | 2230 | 2805 | 2523 | 2235 | |
PMHDR | 3554 | 4102 | 4095 | 4482 | 4102 | 4102 | 4597 | 4266 | 4237 | |
PLDR | 2821 | 3194 | 3192 | 3729 | 3515 | 3376 | 4158 | 3875 | 5817 | |
CMI | 4048 | 4624 | 4614 | 5185 | 4973 | 4896 | 5785 | 5564 | 7690 | |
PIS | 1020 | 1280 | 1280 | 1438 | 1280 | 1280 | 1588 | 1437 | 1310 | |
Total | 19,571 | 22,181 | 22,157 | 25,059 | 24,959 | 22,635 | 27,292 | 23,957 | 28,325 | |
Percent of total intra-urban-LU Expansion | ||||||||||
UHDR | 30.1 | 30.4 | 30.5 | 30.7 | 30.8 | 29.8 | 30.6 | 32.8 | 24.8 | |
ULDR | 11.4 | 10.1 | 10.1 | 10.1 | 8.9 | 9.9 | 10.3 | 9.3 | 7.9 | |
PMHDR | 18.2 | 18.5 | 18.5 | 17.9 | 16.4 | 18.1 | 16.8 | 17.1 | 15 | |
PLDR | 14.4 | 14.4 | 14.4 | 14.9 | 14.1 | 14.9 | 15.2 | 14.7 | 20.5 | |
CMI | 20.7 | 20.8 | 20.8 | 20.7 | 19.9 | 21.6 | 21.2 | 20.8 | 27.2 | |
PIS | 5.2 | 5.8 | 5.8 | 5.7 | 5.1 | 5.7 | 5.8 | 5.4 | 4.6 | |
Intra-urban-LU Expansion | ||||||||||
2015–2020 | 2020–2025 | 2025–2030 | 2015–2030 | |||||||
S1 | S2 | S1 | S2 | S1 | S2 | S3 | S1 | S2 | S3 | |
UHDR | 852 | 849 | 951 | 947 | 659 | 363 | 285 | 2461 | 2159 | 1137 |
ULDR | 0 | 0 | 294 | 0 | 282 | 293 | 5 | 575 | 293 | 5 |
PMHDR | 548 | 541 | 380 | 8 | 114 | 164 | 135 | 1043 | 712 | 683 |
PLDR | 373 | 371 | 535 | 323 | 429 | 360 | 2441 | 1337 | 1054 | 2996 |
CMI | 576 | 566 | 560 | 359 | 600 | 591 | 2794 | 1737 | 1516 | 3642 |
PIS | 260 | 260 | 158 | 0 | 150 | 157 | 30 | 568 | 417 | 290 |
Total | 2610 | 2587 | 2878 | 1637 | 2233 | 1928 | 5690 | 7721 | 6151 | 8754 |
Percent Change | ||||||||||
UHDR | 14.4 | 14.4 | 14.1 | 14 | 8.6 | 4.7 | 4.2 | 41.7 | 36.6 | 19.3 |
ULDR | 0 | 0 | 13.2 | 0 | 11.2 | 13.2 | 0.2 | 25.8 | 13.1 | 0.2 |
PMHDR | 15.4 | 15.2 | 9.3 | 0.2 | 2.5 | 4 | 3.3 | 29.3 | 20 | 19.2 |
PLDR | 13.2 | 13.1 | 16.8 | 10.1 | 11.5 | 10.2 | 72.3 | 47.4 | 37.4 | 106.2 |
CMI | 14.2 | 14 | 12.1 | 7.8 | 11.6 | 11.9 | 57.1 | 42.9 | 37.4 | 90 |
PIS | 25.5 | 25.5 | 12.3 | 0 | 10.4 | 12.3 | 2.4 | 55.7 | 40.9 | 28.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simwanda, M.; Murayama, Y.; Phiri, D.; Nyirenda, V.R.; Ranagalage, M. Simulating Scenarios of Future Intra-Urban Land-Use Expansion Based on the Neural Network–Markov Model: A Case Study of Lusaka, Zambia. Remote Sens. 2021, 13, 942. https://doi.org/10.3390/rs13050942
Simwanda M, Murayama Y, Phiri D, Nyirenda VR, Ranagalage M. Simulating Scenarios of Future Intra-Urban Land-Use Expansion Based on the Neural Network–Markov Model: A Case Study of Lusaka, Zambia. Remote Sensing. 2021; 13(5):942. https://doi.org/10.3390/rs13050942
Chicago/Turabian StyleSimwanda, Matamyo, Yuji Murayama, Darius Phiri, Vincent R. Nyirenda, and Manjula Ranagalage. 2021. "Simulating Scenarios of Future Intra-Urban Land-Use Expansion Based on the Neural Network–Markov Model: A Case Study of Lusaka, Zambia" Remote Sensing 13, no. 5: 942. https://doi.org/10.3390/rs13050942
APA StyleSimwanda, M., Murayama, Y., Phiri, D., Nyirenda, V. R., & Ranagalage, M. (2021). Simulating Scenarios of Future Intra-Urban Land-Use Expansion Based on the Neural Network–Markov Model: A Case Study of Lusaka, Zambia. Remote Sensing, 13(5), 942. https://doi.org/10.3390/rs13050942