Errors in Broadband Permittivity Determination Due to Liquid Surface Distortions in Semi-Open Test Cell †
Abstract
:1. Introduction
2. Measurement Procedures
2.1. Classical Approach
2.2. Meniscus Removal Method
3. EM Simulation
4. Simulation Results
4.1. Analysis of Errors Caused by the Meniscus
4.2. Analysis of Errors Caused by Tilt (Skew) of the Cell
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaatze, U. Techniques for measuring the microwave dielectric properties of materials. Metrologia 2010, 47, S91. [Google Scholar] [CrossRef]
- Park, C.H.; Behrendt, A.; LeDrew, E.; Wulfmeyer, V. New Approach for Calculating the Effective Dielectric Constant of the Moist Soil for Microwaves. Remote Sens. 2017, 9, 732. [Google Scholar] [CrossRef] [Green Version]
- Koyama, C.N.; Liu, H.; Takahashi, K.; Shimada, M.; Watanabe, M.; Khuut, T.; Sato, M. In-situ measurement of soil permittivity at various depths for the calibration and validation of low-frequency SAR soil moisture models by using GPR. Remote Sens. 2017, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Omer, A.E.; Safavi-Naeini, S.; Hughson, R.; Shaker, G. Blood glucose level monitoring using an FMCW millimeter-wave radar sensor. Remote Sens. 2020, 12, 385. [Google Scholar] [CrossRef] [Green Version]
- Tereshchenko, O.V.; Buesink, F.J.K.; Leferink, F.B.J. An overview of the techniques for measuring the dielectric properties of materials. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–4. [Google Scholar]
- Keysight Technologies. Basics of Measuring the Dielectric Properties of Materials. Application Note 5989-2589EN. 2020. Available online: https://www.keysight.com/zz/en/assets/7018-01284/application-notes/5989-2589.pdf (accessed on 3 March 2021).
- Kremer, F. Dielectric spectroscopy—Yesterday, today and tomorrow. J. Non. Cryst. Solids 2002, 305, 1–9. [Google Scholar] [CrossRef]
- Krupka, J. Frequency domain complex permittivity measurements at microwave frequencies. Meas. Sci. Technol. 2006, 17, R55–R70. [Google Scholar] [CrossRef]
- Raymond, W.J.K.; Chakrabarty, C.K.; Hock, G.C.; Ghani, A.B. Complex permittivity measurement using capacitance method from 300 kHz to 50 MHz. Measurement 2013, 46, 3796–3801. [Google Scholar] [CrossRef]
- Krupka, J. Measurements of the complex permittivity of highly concentrated aqueous NaCl solutions and ferrofluid employing microwave cylindrical cavities. Meas. Sci. Technol. 2015, 26, 095702. [Google Scholar] [CrossRef]
- Ghodgaonkar, D.K.; Varadan, V.V.; Varadan, V.K. A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies. IEEE Trans. Instrum. Meas. 1989, 38, 789–793. [Google Scholar] [CrossRef]
- Duvillaret, L.; Garet, F.; Coutaz, J.L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Baker-Jarvis, J.; Janezic, M.D.; Riddle, B.F.; Johhnk, R.T.; Kabos, P.; Holloway, C.L.; Geyer, R.G.; Grosvenor, C.A. Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials. Natl. Inst. Stand. Technol., Tech. Note 1536; 2005. Available online: https://www.nist.gov/publications/measuring-permittivity-and-permeability-lossy-materials-solids-liquids-metals-and (accessed on 3 March 2021).
- Costa, F.; Borgese, M.; Degiorgi, M.; Monorchio, A. Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices. Electronics 2017, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Somlo, P. A convenient self-checking method for the automated microwave measurement of mu and epsilon. IEEE Trans. Instrum. Meas. 1993, 42, 213–216. [Google Scholar] [CrossRef]
- Wiatr, W.; Ciamulski, T. Applicability of the transmission-reflection method for broadband characterization of seawater permittivity in a semi-open coaxial test cell. In Proceedings of the 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Gdansk, Poland, 16–18 June 2014; pp. 1–4. [Google Scholar]
- Hasar, U.C.; Kaya, Y.; Barroso, J.J.; Ertugrul, M. Determination of reference-plane invariant, thickness-independent, and broadband constitutive parameters of thin materials. IEEE Trans. Microw. Theory Tech. 2015, 63, 2313–2321. [Google Scholar] [CrossRef]
- Clanet, C.; Quéré, D. Onset of menisci. J. Fluid Mech. 2002, 460, 131–149. [Google Scholar] [CrossRef]
- Qaddoumi, N.; Ganchev, S.; Zoughi, R. Microwave diagnosis of low-density fiberglass composites with resin binder. Res. Nondestruct. Eval. 1996, 8, 177–188. [Google Scholar] [CrossRef]
- Zoughi, R. Microwave Non-Destructive Testing and Evaluation; Non-Destructive Evaluation Series; Springer: Dordrecht, The Netherlands, 2000; Volume 4. [Google Scholar]
- Paffi, A.; Apollonio, F.; Liberti, M.; Balzano, Q. Effect of the meniscus at the solid-liquid interface on the microwave exposure of biological samples. In Proceedings of the 2014 44th European Microwave Conference, Rome, Italy, 6–9 October 2014; pp. 691–694. [Google Scholar]
- Bois, K.; Handjojo, L.; Benally, A.; Mubarak, K.; Zoughi, R. Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials. IEEE Trans. Instrum. Meas. 1999, 48, 1141–1148. [Google Scholar] [CrossRef]
- Hasar, U.C. A calibration-independent method for accurate complex permittivity determination of liquid materials. Rev. Sci. Instrum. 2008, 79, 086114. [Google Scholar] [CrossRef]
- Hasar, U.C.; Cansiz, A. Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements. Microw. Opt. Technol. Lett. 2010, 52, 75–78. [Google Scholar] [CrossRef]
- Kalisiak, M.; Wiatr, W. Complete meniscus removal method for broadband liquid characterization in a semi-open coaxial test cell. Sensors 2019, 19, 2092. [Google Scholar] [CrossRef] [Green Version]
- Weir, W. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 1974, 62, 33–36. [Google Scholar] [CrossRef]
- Nicolson, A.M.; Ross, G.F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Kalisiak, M.; Wiatr, W. Broadband permittivity measurement of liquids in a semi-open coaxial test cell with meniscus-effect removal. In Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 14–17 May 2018; pp. 546–549. [Google Scholar]
- Gregory, A.P.; Clarke, R.N. Tables of the complex permittivity of dielectric reference liquids at frequencies up to 5 GHz. Npl Rep. Mat23 2012. Available online: https://eprintspublications.npl.co.uk/4347/ (accessed on 3 March 2021).
- Ellison, W.J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C. J. Phys. Chem. Ref. Data 2007, 36, 1–18. [Google Scholar] [CrossRef]
- Electromagnetics Suite 19.2.0. ANSYS®. 2018. Available online: https://www.ansys.com/products/electronics/ansys-hfss (accessed on 3 March 2021).
- Wu, K.; Sun, S.; Li, L.; Han, L.; Zhu, L.; Tse, C.M. The match game: Numerical de-embedding of field simulation and parameter extraction of circuit models for electromagnetic structure using calibration techniques. IEEE Microw. Mag. 2016, 17, 77–92. [Google Scholar] [CrossRef]
Delta S Set | Pass | Computation Time | Tetrahedra | Delta S Achieved |
---|---|---|---|---|
6 | 4 min | 5.6 k | ||
10 | 7 min | 13 k | ||
21 | 7 h | 212 k |
Liquid | IPA | IPA50% | H2O | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | Method | S1 | S2 | MR | S1 | S2 | MR | S1 | S2 | MR |
Flat surface | Simulated [mm] | 2.000 | 4.000 | 2.000 | 2.000 | 4.000 | 2.000 | 2.000 | 4.000 | 2.000 |
Estimated [mm] | 2.001 | 4.001 | 1.999 | 2.000 | 4.000 | 2.000 | 2.000 | 4.000 | 2.001 | |
Relative error [%] | 0.04 | 0.02 | −0.05 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.03 | |
Meniscus | Simulated [mm] | 2.000 | 4.000 | 2.000 | 2.000 | 4.000 | 2.000 | 2.000 | 4.000 | 2.000 |
Estimated [mm] | 1.976 | 3.963 | 2.000 | 1.945 | 3.946 | 2.000 | 1.949 | 3.949 | 2.000 | |
Relative error [%] | −1.22 | −0.92 | 0.00 | −2.76 | −1.34 | 0.01 | −2.54 | −1.29 | 0.01 |
Tilt Angle | 0° | 1° | 5° | ||||||
---|---|---|---|---|---|---|---|---|---|
Method | S1 | S2 | MR | S1 | S2 | MR | S1 | S2 | MR |
Simulated [mm] | 2.000 | 4.000 | 2.000 | 2.000 | 4.000 | 2.000 | 2.000 | 4.000 | 2.000 |
Estimated [mm] | 2.000 | 4.000 | 2.001 | 2.002 | 4.002 | 2.000 | 2.007 | 4.007 | 1.998 |
Relative error [%] | 0.02 | 0.01 | 0.03 | 0.09 | 0.04 | 0.02 | 0.35 | 0.18 | −0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalisiak, M.; Wiatr, W. Errors in Broadband Permittivity Determination Due to Liquid Surface Distortions in Semi-Open Test Cell. Remote Sens. 2021, 13, 983. https://doi.org/10.3390/rs13050983
Kalisiak M, Wiatr W. Errors in Broadband Permittivity Determination Due to Liquid Surface Distortions in Semi-Open Test Cell. Remote Sensing. 2021; 13(5):983. https://doi.org/10.3390/rs13050983
Chicago/Turabian StyleKalisiak, Michał, and Wojciech Wiatr. 2021. "Errors in Broadband Permittivity Determination Due to Liquid Surface Distortions in Semi-Open Test Cell" Remote Sensing 13, no. 5: 983. https://doi.org/10.3390/rs13050983
APA StyleKalisiak, M., & Wiatr, W. (2021). Errors in Broadband Permittivity Determination Due to Liquid Surface Distortions in Semi-Open Test Cell. Remote Sensing, 13(5), 983. https://doi.org/10.3390/rs13050983