Historical Changes in Land Use and Suitability for Future Agriculture Expansion in Western Bahia, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover Classification
2.3. Suitability for Future Agricultural Expansion
2.3.1. Suitable Areas
2.3.2. Criteria Thresholds
2.3.3. Constrained and Restricted Areas
2.3.4. Evaluation of Results
2.3.5. Assessment of Future Expansion
3. Results
3.1. Land Use and Land Cover Classification
3.2. Suitability for Future Expansion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Spatial Multicriteria Decision Analysis (SMCDA)
Appendix A.1. Weight Analysis
Criteria | pp | LULCC | Slope |
---|---|---|---|
pp | 1 | 2 | 8 |
LULCC | 1/2 | 1 | 5 |
Slope | 1/8 | 1/5 | 1 |
Sum | 1.625 | 3.200 | 14.0 |
Criteria | pp | LULCC | slope | Weight |
---|---|---|---|---|
pp | 0.615 | 0.625 | 0.571 | 0.604 |
LULCC | 0.308 | 0.313 | 0.357 | 0.326 |
slope | 0.077 | 0.062 | 0.072 | 0.070 |
Sum | 1 | 1 | 1 | 1 |
Appendix A.2. The Multiobjective Decision-Making Process
- Definition of the (n × n) pair-wise comparison matrix according to Table A1, where n is the number of criteria.
- Computation of the importance weight of each entry in column j of A by the sum of the entries in column j. This results in a normalized matrix (Awn×n).
- Computation of the ci values as the average of the entries in row i of Awn×n to yield the column vector Cn×1.
- Computation of the vector Xn×1 = An×n × Cn×1, which is the second-best approximation to the eigenvector to estimate the highest eigenvalue of the pair-wise matrix (λmax).
- Computation of the consistency of judgments
- 6.
- Computation of the ordered weighted average (OWA)
- 7.
- Risk of multicriteria analysis
- 8.
- Interpretation of the multiobjective decision-making process results
Appendix A.3. Fuzzy-Set Values Used in the SMCDA Criteria
References
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. Available online: http://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 3 July 2010).
- Dias, L.C.P.; Pimenta, F.M.; Santos, A.B.; Costa, M.H.; Ladle, R.J. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob. Chang. Biol. 2016, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Abrahão, G.M.; Costa, M.H. Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: The rise (and possible fall) of double-cropping systems. Agric. For. Meteorol. 2018, 256–257, 32–45. [Google Scholar] [CrossRef]
- Costa, M.H.; Fleck, L.C.; Cohn, A.S.; Abrahão, G.M.; Brando, P.M.; Coe, M.T.; Fu, R.; Lawrence, D.; Pires, G.F.; Pousa, R.; et al. Climate risks to Amazon agriculture suggest a rationale to conserve local ecosystems. Front. Ecol. Environ. 2019, 17, 584–590. [Google Scholar] [CrossRef]
- Conab—Série Histórica das Safras. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras (accessed on 25 January 2021).
- ANA (Agência Nacional de Águas). Atlas Irrigação—Uso da Água na Agricultura Irrigada. Available online: http://arquivos.ana.gov.br/imprensa/publicacoes/AtlasIrrigacao-UsodaAguanaAgriculturaIrrigada.pdf (accessed on 6 July 2020).
- Caetano, J.M.; Tessarolo, G.; de Oliveira, G.; Souza, K.D.S.E.; Diniz-Filho, J.A.F.; Nabout, J.C. Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil. PLoS ONE 2018, 13, e0191273. [Google Scholar] [CrossRef] [Green Version]
- Lima, L.B.; Pimenta, F.M.; Dionizio, E.A.; Santos, A.B.; Costa, M.H. Análise Espaço Temporal da Expansão Agrícola no Oeste da Bahia. In Proceedings of the Anais do XXVII Congresso Brasileiro de Cartografia e XXVI Exposicarta, Rio de Janeiro, Brazil, 6–9 November 2017; pp. 1280–1283. [Google Scholar]
- Souza, C.M.; ZShimbo, J.; Rosa, M.R.; Parente, L.L.; AAlencar, A.; Rudorff, B.F.; Hasenack, H.; Matsumoto, M.; GFerreira, L.; Souza-Filho, P.W.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Brannstrom, C.; Jepson, W.; Filippi, A.M.; Redo, D.; Xu, Z.; Ganesh, S. Land change in the Brazilian Savanna (Cerrado), 1986–2002: Comparative analysis and implications for land-use policy. Land Use Policy 2008, 25, 579–595. [Google Scholar] [CrossRef]
- Pousa, R.; Costa, M.H.; Pimenta, F.M.; Fontes, V.C.; Brito, V.F.A.; Castro, M. Climate Change and Intense Irrigation Growth in Western Bahia, Brazil: The Urgent Need for Hydroclimatic Monitoring. Water 2019, 11, 933. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.F.; Walter, B.M.T. As principais fitofisionomias do bioma Cerrado. In Cerrado: Ecologia e Flora, 1st ed.; Embrapa: Brasília, Brazil, 2008; pp. 152–212. ISBN 978-85-7383-397-3. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017. [Google Scholar] [CrossRef]
- USGS—United States Geological Survey. Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat (accessed on 24 February 2021).
- ALOS Global Digital Surface Model. Available online: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/ (accessed on 24 February 2021).
- Earth Observation Group. Available online: https://eogdata.mines.edu/products/vnl/ (accessed on 24 February 2021).
- OpenStreetMaps Project. Available online: https://download.geofabrik.de/south-america/brazil.html (accessed on 24 February 2021).
- ANA—Agência Nacional de Águas. Base Hidrográfica Ottocodificada Multiescalas 2017 5k (BHO5k). Available online: https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/4fd91f0d-f34f-4fca-a961-c2dcb3e0446e/formatters/xsl-view?root=div&view=advanced (accessed on 24 February 2021).
- Sistema IBGE de Recuperação Automática—SIDRA. Available online: https://sidra.ibge.gov.br/home/ipca/brasil (accessed on 15 April 2020).
- Projeto TerraClass Cerrado. Available online: http://www.dpi.inpe.br/tccerrado/ (accessed on 15 April 2020).
- Mapeamento Anual do Desmatamento—PRODES Cerrado. Available online: http://cerrado.obt.inpe.br/ (accessed on 15 April 2020).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Dionizio, E.; Costa, M. Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. Agriculture 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 256–263. [Google Scholar] [CrossRef]
- Crist, E.P. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 2004, 93, 1–17. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- A Framework for Land Evaluation. Available online: http://www.fao.org/3/X5310E/x5310e00.htm (accessed on 15 April 2020).
- Sultan, K.A.; Ziadat, F.M. Comparing two methods of soil data interpretation to improve the reliability of land suitability evaluation. J. Agric. Sci. Technol. 2012, 14, 1425–1438. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Santos, A.B.; Costa, M.H.; Mantovani, C.; Boninsenha, I.; Castro, M. A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil. Remote Sens. 2020, 12, 3725. [Google Scholar] [CrossRef]
- Spagnolo, T.F.O.; Gomes, R.A.T.; Carvalho Junior, O.A.; Guimarães, R.F.; Martins, É.D.S.; Couto Junior, A.F. Dinâmica da expansão agrícola do município de São Desidério-BA entre os anos de 1984 e 2008, importante produtor nacional de soja, algodão e milho. Geo UERJ 2012, 2, 603–618. [Google Scholar] [CrossRef]
- Flores, P.M.; Guimarães, R.F.; De Carvalho Júnior, O.A.; Gomes, R.A.T. Análise multitemporal da expansão agrícola no município de Barreiras—Bahia (1988–2008). CAMPO-TERRITÓRIO Rev. Geogr. Agrária 2012, 7, 1–19. [Google Scholar]
- Gurgel, R.S.; de Carvalho Júnior, O.A.; Gomes, R.A.T.; Guimarães, R.F.; Martins, É.D.S. Relação entre a evolução do uso da terra com as unidades geomorfológicas no município de Riachão das Neves (BA). GeoTextos 2013, 9, 177–202. [Google Scholar] [CrossRef]
- Castro, S.; Arnaldo, R.; Gomes, T.; Guimarães, R.F.; Abílio, O.; Júnior, D.C. Análise da dinâmica da paisagem no município de Formosa do Rio Preto (BA). Espaço Geogr. 2013, 16, 307–323. [Google Scholar]
- Gaspar, M.T.P.; Campos, J.E.G.; De Moraes, R.A.V. Determinação das espessuras do Sistema Aquífero Urucuia a partir de estudo geofísico. Rev. Bras. Geociências 2012, 42, 154–166. [Google Scholar] [CrossRef]
- De Oliveira, S.N.; de Carvalho Júnior, O.A.; Gomes, R.A.T.; Guimarães, R.F.; McManus, C.M. Landscape-fragmentation change due to recent agricultural expansion in the Brazilian Savanna, Western Bahia, Brazil. Reg. Environ. Chang. 2017, 17, 411–423. [Google Scholar] [CrossRef]
- Dionizio, E.A.; Pimenta, F.M.; Lima, L.B.; Costa, M.H. Carbon stocks and dynamics of different land uses on the Cerrado agricultural frontier. PLoS ONE 2020, 15, e0241637. [Google Scholar] [CrossRef]
- Campos, R.; Pires, G.F.; Costa, M.H. Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier. Agriculture 2020, 10, 156. [Google Scholar] [CrossRef]
- De Albuquerque, A.O.; de Carvalho Júnior, O.A.; Carvalho, O.L.F.D.; de Bem, P.P.; Ferreira, P.H.G.; de Moura, R.D.S.; Silva, C.R.; Trancoso Gomes, R.A.; Fontes Guimarães, R. Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data. Remote Sens. 2020, 12, 2159. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Saaty, T.L.; Sodenkamp, M. The Analytic Hierarchy and Analytic Network Measurement Processes: The Measurement of Intangibles. In Handbook of Multicriteria Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 91–166. [Google Scholar]
- Franek, J.; Kresta, A. Judgment Scales and Consistency Measure in AHP. Procedia Econ. Financ. 2014, 12, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Dal Sasso, P.; Trisorio Liuzzi, G.; Gentile, F. Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy. Land Use Policy 2015, 48, 131–143. [Google Scholar] [CrossRef]
- Ghajari, Y.E.; Alesheikh, A.A.; Modiri, M.; Hosnavi, R.; Abbasi, M. Spatial modelling of urban physical vulnerability to explosion hazards using GIS and fuzzy MCDA. Sustainability 2017, 9, 1274. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Malczewski, J. Integrating multicriteria analysis and geographic information systems: The ordered weighted averaging (OWA) approach. Int. J. Environ. Technol. Manag. 2006, 6, 7–19. [Google Scholar] [CrossRef]
- Rinner, C.; Malczewski, J. Web-enabled spatial decision analysis using Ordered Weighted Averaging (OWA). J. Geogr. Syst. 2002, 4, 385–403. [Google Scholar] [CrossRef]
- Yalew, S.G.G.; Van Griensven, A.; van der Zaag, P. AgriSuit: A web-based GIS-MCDA framework for agricultural land suitability assessment. Comput. Electron. Agric. 2016, 128, 1–8. [Google Scholar] [CrossRef]
- Massei, G.; Rocchi, L.; Paolotti, L.; Greco, S.; Boggia, A. Decision Support Systems for environmental management: A case study on wastewater from agriculture. J. Environ. Manag. 2014. [Google Scholar] [CrossRef] [Green Version]
- Boggia, A.; Massei, G.; Pace, E.; Rocchi, L.; Paolotti, L.; Attard, M. Spatial multicriteria analysis for sustainability assessment: A new model for decision making. Land Use Policy 2018, 71, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, M.K. Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Model. Earth Syst. Environ. 2016, 2, 56. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L.; Vargas, L.G. Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Math. Model. 1984, 5, 309–324. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man. Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Yager, R.R. On the Inclusion of Importances in OWA Aggregations. In The Ordered Weighted Averaging Operators; Springer: Boston, MA, USA, 1997; pp. 41–59. [Google Scholar]
- Yager, R.R.; Kacprzyk, J. (Eds.) The Ordered Weighted Averaging Operators; Springer: Boston, MA, USA, 1997; ISBN 978-1-4613-7806-8. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L.; Vargas, L.G. Hierarchical analysis of behavior in competition: Prediction in chess. Behav. Sci. 1980, 25, 180–191. [Google Scholar] [CrossRef]
Classes | Description |
---|---|
Highly suitable | Land having no significant limitations to the sustained application of a given use or only minor limitations that will not significantly reduce productivity or benefits and will not raise inputs above an acceptable level. |
Moderately suitable | Land having limitations which, in aggregate, will reduce productivity or benefits and increase required inputs to the extent that the overall advantage to be gained from the use, although still attractive, will be appreciably inferior to that expected on highly suitable land. |
Marginally suitable | Land having limitations that, in aggregate, are severe for sustained application of a given use and will reduce productivity or benefits or increase required inputs, an expenditure that is only marginally justified. |
Unsuitable | Land which has qualities that appear to preclude sustained use of the kind under consideration. |
Criteria | Fuzzy Set | Description |
---|---|---|
pp | pp = 100%: pixel value = 1 80% ≤ pp < 100%: pixel value = 0.9 50% ≤ pp < 80%: pixel value = 0.5 pp < 50%: pixel value = 0.1 | Rain duration is the most critical environmental factor in the model. Rainfed crops need at least 120 days of rain to grow healthy. Pixels where the average rainy season duration is greater than or equal to 120 days in 100% of the years from 1993 to 2016 (pp = 100%) receive the highest priority value (1). Pixels achieving this threshold between 80% and 100% of the time receive a moderate priority value (0.9); pixels achieving this between 50% and 80% of the time receive a marginal priority value (0.5); and pixels where pp < 50% receive a priority value close to zero (0.1). |
LULCC | Forest formations: pixel value = 0.3 Savanna formations: pixel value = 0.5 Grasslands: pixel value = 0.9 Mosaic of crops and pasture: pixel value = 1 Rainfed crops: pixel value = 1 Irrigated crops: pixel value = 1 Pasturelands: pixel value = 1 Water bodies: pixel value = 0.1 Urban areas and farm buildings: pixel value = 0.1 | Given the costs of land conversion, LULCC is a limiting factor in agricultural expansion. Areas already used as rainfed crops, irrigated crops, and pasturelands are already converted, so they receive the highest value for suitability (1). Grasslands are easy to convert to agriculture and therefore receive a high priority value (0.9). Savanna formations have higher conversion costs, and we expect that they will typically be converted to agriculture after grasslands, and thus they receive a moderate priority value (0.5). Forest formations should be the last land to be converted to agriculture and therefore receive a low priority value (0.3). Water bodies, urban areas, and land occupied by farm buildings are not usable for agriculture, so they receive the lowest priority value (0.1). |
Slope | Fuzzification method with an inverted J-shaped curve. The lowest slope values receive the highest priority values up to the limit of 30% slope. Above this value, pixels receive values close to zero because of their lowest priority. See Appendix A for more details. | Steeper slopes (more than 30%) make mechanization impractical for rainfed or irrigated croplands. Steeper lands are restricted to use as pastures. |
1990 LULCC | Total 2020 Area by Class (ha) | Total 2020 Natural Vegetation or Agriculture Area (ha) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Forest Formations | Savanna Formations | Grasslands | Mosaics of Crops and Pasture | Rainfed Crops | Irrigated Crops | Pasturelands | Water Bodies | Urban Areas and Farm Buildings | ||||
2020 LULCC | Forest formations | 1.42 × 106 | 8.36 × 104 | 6.31 × 104 | 6.33 × 102 | 1.57 × 102 | 2.35 × 102 | 2.84 × 103 | 2.83 × 102 | 1.94 × 101 | 1.57 × 106 | 7.87 × 106 |
Savanna formations | 1.11 × 106 | 2.56 × 106 | 9.19 × 105 | 1.17 × 104 | 8.80 × 102 | 5.53 × 102 | 1.75 × 104 | 8.95 × 102 | 4.15 × 101 | 4.62 × 106 | ||
Grasslands | 4.16 × 104 | 5.95 × 104 | 1.57 × 106 | 1.51 × 103 | 1.27 × 103 | 1.54 × 102 | 4.79 × 103 | 1.20 × 102 | 6.08 × 101 | 1.68 × 106 | ||
Mosaics of crops and pasture | 5.30 × 104 | 1.31 × 105 | 1.50 × 104 | 3.79 × 104 | 1.56 × 101 | 3.20 × 102 | 1.17 × 105 | 1.77 × 102 | 1.53 × 102 | 3.54 × 105 | 5.14 × 106 | |
Rainfed crops | 4.98 × 105 | 6.88 × 105 | 9.00 × 105 | 7.34 × 103 | 7.83 × 105 | 2.11 × 103 | 3.33 × 105 | 6.69 × 102 | 3.23 × 102 | 3.21 × 106 | ||
Irrigated crops | 2.06 × 104 | 6.29 × 104 | 7.34 × 104 | 4.25 × 102 | 3.04 × 104 | 2.02 × 104 | 9.71 × 103 | 0 | 2.36 | 2.18 × 105 | ||
Pasturelands | 1.07 × 105 | 5.64 × 105 | 1.01 × 105 | 1.56 × 104 | 3.80 × 102 | 5.75 × 102 | 5.65 × 105 | 1.87 × 102 | 1.12 × 102 | 1.35 × 106 | ||
Water bodies | 2.82 × 103 | 5.17 × 102 | 1.15 × 102 | 3.02 × 101 | 1.49 | 0 | 1.58 × 102 | 3.91 × 103 | 6.16 | 7.56 × 103 | -- | |
Urban areas and farm buildings | 5.00 × 102 | 3.06 × 103 | 1.62 × 103 | 1.19 × 103 | 6.30 × 102 | 0 | 1.60 × 103 | 3.16 | 2.79 × 103 | 1.14 × 104 | -- | |
Total 1990 area by class (ha) | 3.25 × 106 | 4.15 × 106 | 3.64 × 106 | 7.63 × 104 | 8.17 × 105 | 2.42 × 104 | 1.05 × 106 | 6.28 × 103 | 3.51 × 103 | 1.30 × 107 | -- | |
Total 1990 natural vegetation or agricultural area (ha) | 1.10 × 107 | 1.97 × 106 | -- | -- | -- | -- |
Land Use and Land Cover Class | Total Area by Suitability Class (ha) | Change by Class 2020−1990 (ha) | Change by LULCC (ha) | ||
---|---|---|---|---|---|
Suitability Class | 1990 | 2020 | |||
Cropland | High | 7.73 × 105 | 3.17 × 106 | 2.39 × 106 | 2.57 × 106 |
Moderate | 2.59 × 104 | 1.97 × 105 | 1.70 × 105 | ||
Marginal | 7.94 × 102 | 7.96 × 103 | 7.06 × 103 | ||
Pastureland | High | 4.81 × 105 | 4.38 × 105 | −4.51 × 104 | 2.99 × 105 |
Moderate | 4.78 × 105 | 8.24 × 105 | 3.43 × 105 | ||
Marginal | 2.81 × 103 | 4.48 × 103 | 1.53 × 103 | ||
Remaining natural vegetation areas | High | 2.04 × 106 | 6.57 × 105 | −1.38 × 106 | −2.87 × 106 |
Moderate | 6.08 × 106 | 5.00 × 106 | −1.08 × 106 | ||
Marginal | 6.40 × 105 | 2.54 × 105 | −3.86 × 105 | ||
Unsuitable | 1.57 × 105 | 1.33 × 105 | −2.43 × 104 | ||
Total agricultural area (ha) | 1.76 × 106 | 4.63 × 106 | 2.87 × 106 | ||
Total natural vegetation area (ha) | 8.92 × 106 | 6.05 × 106 | −2.87 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, F.M.; Speroto, A.T.; Costa, M.H.; Dionizio, E.A. Historical Changes in Land Use and Suitability for Future Agriculture Expansion in Western Bahia, Brazil. Remote Sens. 2021, 13, 1088. https://doi.org/10.3390/rs13061088
Pimenta FM, Speroto AT, Costa MH, Dionizio EA. Historical Changes in Land Use and Suitability for Future Agriculture Expansion in Western Bahia, Brazil. Remote Sensing. 2021; 13(6):1088. https://doi.org/10.3390/rs13061088
Chicago/Turabian StylePimenta, Fernando Martins, Allan Turini Speroto, Marcos Heil Costa, and Emily Ane Dionizio. 2021. "Historical Changes in Land Use and Suitability for Future Agriculture Expansion in Western Bahia, Brazil" Remote Sensing 13, no. 6: 1088. https://doi.org/10.3390/rs13061088
APA StylePimenta, F. M., Speroto, A. T., Costa, M. H., & Dionizio, E. A. (2021). Historical Changes in Land Use and Suitability for Future Agriculture Expansion in Western Bahia, Brazil. Remote Sensing, 13(6), 1088. https://doi.org/10.3390/rs13061088