Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review
Abstract
:1. Introduction
1.1. Permafrost in a Warming World
1.2. Efforts in Satellite Earth Observation for Monitoring Permafrost and Permafrost-Affected Landscapes
1.3. Objectives of This Review
2. Review Methodology
- The number of published articles per year
- The number of studies per country
- The nationality of the first authors institution
- Frequently investigated study regions across the globe
- The frequency of investigated environmental categories
- The frequency of investigated research foci
- Applied spatio-temporal resolutions of remote sensing data
- Observed temporal coverage of time series analyses
- Studied spatial scales
- Frequencies of remote sensing platforms
- Utilized sensor types and sensor combinations
3. Results
3.1. Temporal Development of Permafrost Related Studies
3.2. Distribution of Study Countries and First Author Institution Nationalities
3.3. Spatial Distribution of Reviewed Articles
3.4. Categorization of Environmental Research Foci
3.4.1. Environmental Research Focus: Atmospheric Features and Processes
3.4.2. Environmental Research Focus: Surface Water Features and Processes
3.4.3. Environmental Research Focus: Surface Land Features and Processes
3.4.4. Environmental Research Focus: Thermal Features and Processes
3.4.5. Environmental Research Focus: Subsurface Features and Processes
3.5. Applied Spatio-Temporal Resolutions of Reviewed Articles
3.6. Platform and Sensor Distribution Across Reviewed Articles
3.7. Relevant and Openly-Available Products for Permafrost-Related Analyses
4. Discussion
5. Conclusions
- The frequency of satellite Earth observation of permafrost related publications increased over the past two decades, with a particular growth during the last 10 years. The total number of publications hereby more than doubled since 2015.
- A strong relationship between the studied country and the first authors institution nationality could be observed. 93% of articles with a study focus in China were conducted by Chinese institutions, 80% of studies carried out in the United States are associated with American institutions and 58% of investigations in Canada are linked to Canadian institutions.
- Most studies (75%) were conducted in Russia, China, the United States and Canada.
- While the majority of first authors are affiliated with American (28%), Chinese (18%), German (15%) or Canadian (14%) institutions, first authors from Russian institutions (2%) appear underrepresented, potentially due to the exclusion of non-English articles.
- Geographical focus regions across the reviewed articles are revealed to be the North Slope Borough and its Arctic Coastal Plain in Alaska, the Mackenzie Delta in Canada, the Lena Delta and Yamal and Gydan Peninsulas in Russia as well as the Beiluhe region on the Qinghai–Tibet Plateau (QTP) in China.
- Many remote areas especially in the continuous permafrost zone of Russia and the Nunavut territory in Canada are still only sparsely covered by satellite remote sensing studies.
- The majority of studies (94%) is distributed across the Northern Hemisphere, whereas only a few articles (6%) investigated the Southern Hemisphere due to the confined distribution of permafrost in alpine regions for example, Andes and ice-free areas for example, South Shetland Islands in the Antarctic.
- Almost half (43%) of all reviewed articles studied land surface features/processes, followed by surface water features/processes (25%) and subsurface features/processes (21%). Studies related to thermal features/processes and atmospheric features and processes appear heavily underrepresented with only 7% and 4% of all reviewed publications, respectively.
- The category land surface features/processes is also revealed to have the strongest growing rates of 85 publications during the last five years within the framework of this review, followed by surface water features/processes (48 publications during the last five years), subsurface features/processes (47 publications during the last five years), thermal features/processes (16 publications during the last five years) and atmospheric features/processes (7 publications during the last five years).
- A regional deviation of study foci could be observed, with Canada, Russia and the United States featuring lake extent dynamics as the most common research objective, whereas studies in China mostly focus on surface displacement measurements along the Qinghai–Tibet Railway (QTR).
- Although almost half of all articles employed a time series analysis (10 scenes or more), 39% of which cover less than five years and only 21% cover more than 20 years.
- The majority of studies (62%) are limited to local scales, with only 8% of articles applying their analyses on a circumpolar scale.
- A general trend towards coarser spatial resolutions with increasing study area sizes can be observed and thus, 74% of circumpolar studies conducted their research on spatial resolutions >1000 m.
- The applied spatio-temporal resolution varies across different research topics. Topics such as frost heave/thaw settlement, coastal erosion or thaw slumps are usually conducted on local scales and with high spatial resolution, whereas observations of for example, freeze/thaw dynamics feature large regional or circumpolar extents and lower spatial resolutions.
- More than half (55%) of studies applied optical imagery, followed by SAR (20%). The most frequent platform is hereby aerial (31% of articles), followed by the Landsat satellites (27% of articles). As of right now, imagery from the Sentinel-fleet makes up only a small fraction (6%) of used satellite systems thus far. However, a growing application rate could be observed during the last three years, with Sentinel-1 being applied in 14% and Sentinel-2 in 12% of studies in 2019. Although aerial-exclusive studies have been excluded from this review, it still proved to be the most common platform. A complementary usage of airborne remote-sensing either as a historical reference, for validation or for the analysis of small scale features in conjunction with high-resolution satellite data are thereby explanations.
- Openly available Arctic products enable detailed analysis and validation of many permafrost related parameters. However, many products still lack either in thematic detail, spatial and temporal coverage and/or resolution are often concentrated around specific key regions.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, J.; Ferrians, O.; Heginbottom, J.; Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions; Version 2; National Snow and Ice Data Center: Boulder, CO, USA, 2002. [Google Scholar] [CrossRef]
- Schuur, E.A.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Nicolai, M.; Okem, A.; Petzold, J.; et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC Intergovernmental Panel on Climate Change (IPCC), 2019; in press. [Google Scholar]
- Whiteman, G.; Hope, C.; Wadhams, P. Vast costs of Arctic change. Nature 2013, 499, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Arenson, L.U.; Jakob, M. Periglacial geohazard risks and ground temperature increases. In Engineering Geology for Society and Territory-Volume 1; Springer: Berlin, Germany, 2015; pp. 233–237. [Google Scholar]
- Farquharson, L.M.; Romanovsky, V.E.; Cable, W.L.; Walker, D.A.; Kokelj, S.V.; Nicolsky, D. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 2019, 46, 6681–6689. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, H.; Wang, C.; Tang, Y.; Zhang, B.; Wu, F.; Wang, J.; Zhang, Z. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai–Tibetan Plateau using Sentinel-1 data. Remote Sens. 2019, 11, 1000. [Google Scholar] [CrossRef] [Green Version]
- Rudy, A.C.; Lamoureux, S.F.; Treitz, P.; Short, N.; Brisco, B. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 51–61. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, H.; Wu, Q.; Zhang, B.; Tang, Y. Seasonal deformation features on Qinghai–Tibet railway observed using time-series InSAR technique with high-resolution TerraSAR-X images. Remote Sens. Lett. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Isaev, V.; Koshurnikov, A.; Pogorelov, A.; Amangurov, R.; Podchasov, O.; Sergeev, D.; Buldovich, S.; Aleksyutina, D.; Grishakina, E.; Kioka, A. Cliff retreat of permafrost coast in south-west Baydaratskaya Bay, Kara Sea, during 2005–2016. Permafr. Periglac. Process. 2019, 30, 35–47. [Google Scholar] [CrossRef]
- Cunliffe, A.M.; Tanski, G.; Radosavljevic, B.; Palmer, W.F.; Sachs, T.; Lantuit, H.; Kerby, J.T.; Myers-Smith, I.H. Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. Cryosphere 2019, 13, 1513–1528. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Farquharson, L.M.; Baughman, C.A.; Buzard, R.M.; Arp, C.D.; Grosse, G.; Bull, D.L.; Günther, F.; Nitze, I.; Urban, F.; et al. A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environ. Res. Lett. 2018, 13, 115001. [Google Scholar] [CrossRef]
- Song, C.; Xu, X.; Sun, X.; Tian, H.; Sun, L.; Miao, Y.; Wang, X.; Guo, Y. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environ. Res. Lett. 2012, 7, 034009. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.D.; Kimball, J.S.; Bartsch, A.; McDonald, K.C. Surface water inundation in the boreal-Arctic: Potential impacts on regional methane emissions. Environ. Res. Lett. 2014, 9, 075001. [Google Scholar] [CrossRef]
- Curasi, S.R.; Loranty, M.M.; Natali, S.M. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape. Environ. Res. Lett. 2016, 11, 045002. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kimball, J.S.; Zhang, K.; McDonald, K.C. Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sens. Environ. 2012, 121, 472–487. [Google Scholar] [CrossRef]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Van Everdingen, R.O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish, Romanian, Russian, Spanish, and Swedish; Arctic Inst. of North America University of Calgary, 2005; Available online: https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf (accessed on 14 January 2021).
- Bartsch, A.; Höfler, A.; Kroisleitner, C.; Trofaier, A.M. Land cover mapping in northern high latitude permafrost regions with satellite data: Achievements and remaining challenges. Remote Sens. 2016, 8, 979. [Google Scholar] [CrossRef] [Green Version]
- Trofaier, A.M.; Westermann, S.; Bartsch, A. Progress in space-borne studies of permafrost for climate science: Towards a multi-ECV approach. Remote Sens. Environ. 2017, 203, 55–70. [Google Scholar] [CrossRef]
- Duguay, C.R.; Zhang, T.; Leverington, D.W.; Romanovsky, V.E. Satellite remote sensing of permafrost and seasonally frozen ground. Geophys.-Monogr.-Am. Geophys. Union 2005, 163, 91. [Google Scholar]
- Chen, W.; Zhang, Y.; Cihlar, J.; Smith, S.L.; Riseborough, D.W. Changes in soil temperature and active layer thickness during the twentieth century in a region in western Canada. J. Geophys. Res. Atmos. 2003, 108, 4696–4708. [Google Scholar] [CrossRef]
- Westermann, S.; Duguay, C.R.; Grosse, G.; Kääb, A. Remote sensing of permafrost and frozen ground. In Remote Sensing of the Cryosphere; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 307–344, Chapter 13. [Google Scholar] [CrossRef]
- Stephani, E.; Drage, J.; Miller, D.; Jones, B.M.; Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permafr. Periglac. Process. 2020, 31, 239–254. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Smith, S.L.; Christiansen, H.H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafr. Periglac. Process. 2010, 21, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Slater, A.G.; Lawrence, D.M. Diagnosing present and future permafrost from climate models. J. Clim. 2013, 26, 5608–5623. [Google Scholar] [CrossRef] [Green Version]
- Pastick, N.J.; Jorgenson, M.T.; Wylie, B.K.; Nield, S.J.; Johnson, K.D.; Finley, A.O. Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sens. Environ. 2015, 168, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhang, S.; Cheng, W.; Zhou, C. Model simulation and prediction of Decadal Mountain permafrost distribution based on remote sensing data in the Qilian Mountains from the 1990s to the 2040s. Remote Sens. 2019, 11, 183. [Google Scholar] [CrossRef] [Green Version]
- Subcommittee, P. Glossary of permafrost and related ground-ice terms. Assoc. Comm. Geotech. Res. Natl. Res. Counc. Can. Ott. 1988, 142, 156. [Google Scholar]
- Nassar, R.; Sioris, C.E.; Jones, D.B.; McConnell, J.C. Satellite observations of CO2 from a highly elliptical orbit for studies of the Arctic and boreal carbon cycle. J. Geophys. Res. Atmos. 2014, 119, 2654–2673. [Google Scholar] [CrossRef]
- Hartley, I.P.; Hill, T.C.; Wade, T.J.; Clement, R.J.; Moncrieff, J.B.; Prieto-Blanco, A.; Disney, M.I.; Huntley, B.; Williams, M.; Howden, N.J.; et al. Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach. Glob. Chang. Biol. 2015, 21, 3712–3725. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, C.J.; Johansen, K.M.L.; Westergaard-Nielsen, A.; Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 2015, 8, 20–23. [Google Scholar] [CrossRef]
- Anthony, K.W.; Daanen, R.; Anthony, P.; von Deimling, T.S.; Ping, C.L.; Chanton, J.P.; Grosse, G. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 2016, 9, 679–682. [Google Scholar] [CrossRef]
- Anthony, K.W.; von Deimling, T.S.; Nitze, I.; Frolking, S.; Emond, A.; Daanen, R.; Anthony, P.; Lindgren, P.; Jones, B.; Grosse, G. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 2018, 9, 1–11. [Google Scholar]
- Schneider, J.; Grosse, G.; Wagner, D. Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions. Remote Sens. Environ. 2009, 113, 380–391. [Google Scholar] [CrossRef] [Green Version]
- Barnhart, K.; Overeem, I.; Anderson, R. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 2014, 8, 1777–1799. [Google Scholar] [CrossRef] [Green Version]
- Novikova, A.; Belova, N.; Baranskaya, A.; Aleksyutina, D.; Maslakov, A.; Zelenin, E.; Shabanova, N.; Ogorodov, S. Dynamics of permafrost coasts of Baydaratskaya Bay (Kara Sea) based on multi-temporal remote sensing data. Remote Sens. 2018, 10, 1481. [Google Scholar] [CrossRef] [Green Version]
- Obu, J.; Lantuit, H.; Grosse, G.; Günther, F.; Sachs, T.; Helm, V.; Fritz, M. Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data. Geomorphology 2017, 293, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Günther, F.; Overduin, P.P.; Sandakov, A.V.; Grosse, G.; Grigoriev, M.N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 2013, 10, 4297–4318. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Antonova, S.; Günther, F.; Mätzler, E.; Vieira, G.; Wegmüller, U.; Westermann, S.; Bartsch, A. Sentinel-1 SAR interferometry for surface deformation monitoring in low-land permafrost areas. Remote Sens. 2018, 10, 1360. [Google Scholar] [CrossRef] [Green Version]
- Antonova, S.; Sudhaus, H.; Strozzi, T.; Zwieback, S.; Kääb, A.; Heim, B.; Langer, M.; Bornemann, N.; Boike, J. Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry. Remote Sens. 2018, 10, 494. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, Q.; Li, Z.; Zhao, R.; Sun, Q. Investigating the ground deformation and source model of the Yangbajing geothermal field in Tibet, China with the WLS InSAR technique. Remote Sens. 2016, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- Short, N.; LeBlanc, A.M.; Sladen, W.; Oldenborger, G.; Mathon-Dufour, V.; Brisco, B. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada. Remote Sens. Environ. 2014, 141, 40–51. [Google Scholar] [CrossRef]
- Kääb, A. Monitoring high-mountain terrain deformation from repeated air-and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS J. Photogramm. Remote Sens. 2002, 57, 39–52. [Google Scholar] [CrossRef]
- Hao, J.; Wu, T.; Wu, X.; Hu, G.; Zou, D.; Zhu, X.; Zhao, L.; Li, R.; Xie, C.; Ni, J.; et al. Investigation of a small landslide in the Qinghai–Tibet Plateau by InSAR and absolute deformation model. Remote Sens. 2019, 11, 2126. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Shushpanov, A.S.; Im, S.T.; Ranson, K.J. Climate-induced landsliding within the larch dominant permafrost zone of central Siberia. Environ. Res. Lett. 2016, 11, 045004. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, M.; Osterkamp, T.E. Response of boreal ecosystems to varying modes of permafrost degradation. Can. J. For. Res. 2005, 35, 2100–2111. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.; Kimball, J.S. Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sens. Environ. 2016, 175, 349–358. [Google Scholar] [CrossRef]
- Grosse, G.; Goetz, S.; McGuire, A.D.; Romanovsky, V.E.; Schuur, E.A. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 2016, 11, 040201. [Google Scholar] [CrossRef]
- Rey, D.M.; Walvoord, M.; Minsley, B.; Rover, J.; Singha, K. Investigating lake-area dynamics across a permafrost-thaw spectrum using airborne electromagnetic surveys and remote sensing time-series data in Yukon Flats, Alaska. Environ. Res. Lett. 2019, 14, 025001. [Google Scholar] [CrossRef]
- Wang, L.; Jolivel, M.; Marzahn, P.; Bernier, M.; Ludwig, R. Thermokarst pond dynamics in subarctic environment monitoring with radar remote sensing. Permafr. Periglac. Process. 2018, 29, 231–245. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G.; Jones, B.M.; Arp, C.D.; Ulrich, M.; Fedorov, A.; Veremeeva, A. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens. 2017, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Farquharson, L.; Mann, D.H.; Grosse, G.; Jones, B.M.; Romanovsky, V. Spatial distribution of thermokarst terrain in Arctic Alaska. Geomorphology 2016, 273, 116–133. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Miller, E.; Liu, L.; Hayes, D.J.; Larsen, C.F. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, C.M.; Chasmer, L.E.; Thompson, D.K.; Quinton, W.L.; Flannigan, M.D.; Olefeldt, D. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Liu, L.; Jiang, L.; Feng, W.; Samsonov, S.V. Using long-term SAR backscatter data to monitor post-fire vegetation recovery in tundra environment. Remote Sens. 2019, 11, 2230. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Caduff, R.; Jones, N.; Barboux, C.; Delaloye, R.; Bodin, X.; Kääb, A.; Mätzler, E.; Schrott, L. Monitoring Rock Glacier Kinematics with Satellite Synthetic Aperture Radar. Remote Sens. 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Brenning, A.; Long, S.; Fieguth, P. Detecting rock glacier flow structures using Gabor filters and IKONOS imagery. Remote Sens. Environ. 2012, 125, 227–237. [Google Scholar] [CrossRef]
- Kartoziia, A. Assessment of the ice wedge polygon current state by means of UAV imagery analysis (Samoylov Island, the Lena Delta). Remote Sens. 2019, 11, 1627. [Google Scholar] [CrossRef] [Green Version]
- Lousada, M.; Pina, P.; Vieira, G.; Bandeira, L.; Mora, C. Evaluation of the use of very high resolution aerial imagery for accurate ice-wedge polygon mapping (Adventdalen, Svalbard). Sci. Total Environ. 2018, 615, 1574–1583. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai–Tibet Plateau: An example from the Beiluhe Region. Geomorphology 2019, 341, 79–85. [Google Scholar] [CrossRef]
- Swanson, D.K.; Nolan, M. Growth of retrogressive thaw slumps in the Noatak Valley, Alaska, 2010–2016, measured by airborne photogrammetry. Remote Sens. 2018, 10, 983. [Google Scholar] [CrossRef] [Green Version]
- Segal, R.A.; Lantz, T.C.; Kokelj, S.V. Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic. Environ. Res. Lett. 2016, 11, 034025. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Harden, J.; Kanevskiy, M.; O’Donnell, J.; Wickland, K.; Ewing, S.; Manies, K.; Zhuang, Q.; Shur, Y.; Striegl, R.; et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. 2013, 8, 035017. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Arp, C.; Jones, M.; Anthony, K.W.; Romanovsky, V. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 2011, 116, G00M03. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hinzman, L.D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; et al. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim. Chang. 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Li, Z.; Chen, Q.; Zhou, J. Interaction between permafrost and infrastructure along the Qinghai–Tibet Railway detected via jointly analysis of C-and L-band small baseline SAR interferometry. Remote Sens. Environ. 2012, 123, 532–540. [Google Scholar] [CrossRef]
- Hjort, J.; Karjalainen, O.; Aalto, J.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Luoto, M. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Lantuit, H.; Overduin, P.P.; Couture, N.; Wetterich, S.; Aré, F.; Atkinson, D.; Brown, J.; Cherkashov, G.; Drozdov, D.; Forbes, D.L.; et al. The Arctic coastal dynamics database: A new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 2012, 35, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Radosavljevic, B.; Lantuit, H.; Pollard, W.; Overduin, P.; Couture, N.; Sachs, T.; Helm, V.; Fritz, M. Erosion and flooding—Threats to coastal infrastructure in the Arctic: A case study from Herschel Island, Yukon Territory, Canada. Estuaries Coasts 2016, 39, 900–915. [Google Scholar] [CrossRef] [Green Version]
- Couture, N.J.; Irrgang, A.; Pollard, W.; Lantuit, H.; Fritz, M. Coastal erosion of permafrost soils along the Yukon Coastal Plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 2018, 123, 406–422. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Grosse, G. Remote sensing of landscape change in permafrost regions. Permafr. Periglac. Process. 2016, 27, 324–338. [Google Scholar] [CrossRef]
- Schnabel, W.E.; Goering, D.J.; Dotson, A.D. Permafrost Engineering on Impermanent Frost. Bridge 2020, 50, 16–23. [Google Scholar]
- Meredith, M.; Sommerkorn, M.; Cassotta, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.; et al. Chapter 3: Polar Regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Nicolai, M., Okem, A., Petzold, J., et al., Eds.; IPCC Intergovernmental Panel on Climate Change (IPCC), 2019; in press. [Google Scholar]
- Humlum, O.; Instanes, A.; Sollid, J.L. Permafrost in Svalbard: A review of research history, climatic background and engineering challenges. Polar Res. 2003, 22, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Qingbai, W.; Yongzhi, L.; Jianming, Z.; Changjiang, T. A review of recent frozen soil engineering in permafrost regions along Qinghai–Tibet Highway, China. Permafr. Periglac. Process. 2002, 13, 199–205. [Google Scholar] [CrossRef]
- Cheng, G. Permafrost studies in the Qinghai–Tibet plateau for road construction. J. Cold Reg. Eng. 2005, 19, 19–29. [Google Scholar] [CrossRef]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Voigt, C.; Lamprecht, R.E.; Marushchak, M.E.; Lind, S.E.; Novakovskiy, A.; Aurela, M.; Martikainen, P.J.; Biasi, C. Warming of subarctic tundra increases emissions of all three important greenhouse gases—Carbon dioxide, methane, and nitrous oxide. Glob. Chang. Biol. 2017, 23, 3121–3138. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.W.; Jones, J.B.; Schuur, E.A.; Chapin III, F.S.; Bowden, W.B.; Bret-Harte, M.S.; Epstein, H.E.; Flannigan, M.D.; Harms, T.K.; Hollingsworth, T.N.; et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environ. Res. Lett. 2016, 11, 034014. [Google Scholar] [CrossRef]
- Kleinen, T.; Brovkin, V. Pathway-dependent fate of permafrost region carbon. Environ. Res. Lett. 2018, 13, 094001. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Koven, C.D.; Schuur, E.; Schädel, C.; Bohn, T.; Burke, E.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J.W.; et al. A simplified, data-constrained approach to estimate the permafrost carbon-Climate feedback. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140423. [Google Scholar] [CrossRef]
- Koven, C.D.; Lawrence, D.M.; Riley, W.J. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl. Acad. Sci. USA 2015, 112, 3752–3757. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, K.; Lantuit, H.; Romanovsky, V.E.; Schuur, E.A.; Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 2014, 9, 085003. [Google Scholar] [CrossRef] [Green Version]
- University of Maryland Center for Environmental Science. IAN Symbol Libraries. Available online: https://ian.umces.edu/symbols/ (accessed on 1 September 2020).
- European Space Agency. Permafrost is a Phenomenon of the Subsurface Thermal State and is Defined as Ground at or Below the Freezing Point of Water for Two or More Years. Available online: https://climate.esa.int/en/projects/permafrost/about/ (accessed on 11 September 2020).
- Westermann, S.; Strozzi, T.; Wiesmann, A.; Aalstad, K.; Fiddes, J.; Kääb, A.; Obu, J.; Seifert, F.M.; Grosse, G.; Heim, B.; et al. Circumpolar mapping of permafrost temperature and thaw depth in the ESA Permafrost CCI project. In Proceedings of the AGU Fall Meeting 2018, Washington, DC, USA, 10–14 December 2018; AGU: Washington, DC, USA, 2018. [Google Scholar]
- Duncan, B.N.; Ott, L.E.; Abshire, J.B.; Brucker, L.; Carroll, M.L.; Carton, J.; Comiso, J.C.; Dinnat, E.P.; Forbes, B.C.; Gonsamo, A.; et al. Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone. Rev. Geophys. 2020, 58, e2019RG000652. [Google Scholar] [CrossRef]
- Zwieback, S.; Liu, X.; Antonova, S.; Heim, B.; Bartsch, A.; Boike, J.; Hajnsek, I. A statistical test of phase closure to detect influences on DInSAR deformation estimates besides displacements and decorrelation noise: Two case studies in high-latitude regions. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5588–5601. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Lanckman, J.P.; Lantuit, H.; Elger, K.; Dmitry, S.; William, C.; Vladimir, R. The new database of the Global Terrestrial Network for Permafrost (GTN-P). Earth Syst. Sci. Data 2015, 7, 245–259. [Google Scholar] [CrossRef] [Green Version]
- International Permafrost Association; Arctic Portal; Alfred-Wegener-Institut. About GTN-P. Available online: https://gtnp.arcticportal.org/about-the-gtnp (accessed on 16 November 2020).
- Vonder Mühll, D.; Noetzli, J.; Roer, I. PERMOS—A comprehensive monitoring network of mountain permafrost in the Swiss Alps. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June–3 July 2008; pp. 1869–1874. [Google Scholar]
- PERMOS. PERMOS-Swiss Permafrost Monitoring Network. Available online: http://www.permos.ch/ (accessed on 16 November 2020).
- Mair, V.; Zischg, A.P.; Lang, K.; Tonidandel, D.; Krainer, K.; Kellerer-Pirklbauer, A.; Deline, P.; Schoeneich, P.; Cremonese, E.; Pogliotti, P.; et al. PermaNET, Permafrost Long-Term Monitoring Network; International Research Society INTERPRAEVENT: Klagenfurt, Austria, 2011; pp. 1–28. [Google Scholar]
- PermaNet Alpine Space. The PermaNET Project. Available online: http://www.permanet-alpinespace.eu/project.html (accessed on 16 November 2020).
- Permafrost Carbon Network. Permafrost Carbon Network. Available online: http://www.permafrostcarbon.org/index.html (accessed on 28 October 2020).
- ArcticNet. ArcticNet Annual Report 2019/2020. Available online: https://arcticnet.ulaval.ca//pdf/media/arcticnet-ra-19-20-ang.pdf (accessed on 28 October 2020).
- ArcticNet. ArcticNET-about Us. Available online: https://arcticnet.ulaval.ca/vision-and-mission/about-us (accessed on 16 November 2020).
- NOAA Earth System Research Laboratories. Cooperative Air Sampling Network. Available online: https://www.esrl.noaa.gov/gmd/ccgg/flask.html (accessed on 28 October 2020).
- PAGE21. PAGE21-Changing Permafrost in the Arctic and Its Global Effects in the 21st Century. Available online: https://www.page21.eu/ (accessed on 28 October 2020).
- Shiklomanov, N.; Nelson, F.; Streletskiy, D.; Hinkel, K.; Brown, J. The circumpolar active layer monitoring (CALM) program: Data collection, management, and dissemination strategies. In Proceedings of the Ninth International Conference on Permafrost, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, 29 June–3 July 2008; Volume 29, pp. 1647–1652. [Google Scholar]
- International Permafrost Association. Circumpolar Active Layer Monitoring Network (CALM). Available online: https://ipa.arcticportal.org/products/gtn-p/calm (accessed on 16 November 2020).
- International Permafrost Association. Thermal State of Permafrost (TSP). Available online: https://ipa.arcticportal.org/products/gtn-p/tsp (accessed on 16 November 2020).
- Hayman, G.; Bartsch, A.; Prigent, C.; Aires, F.; Buchwitz, M.; Burrows, J.; Schneising, O.; Blyth, E.; Clark, D.; O’Connor, F.; et al. Wetland extent and methane dynamics: An overview of the ESA ALANIS-methane project. In Proceedings of the ESA-iLEAPS-EGU Earth Observation for Land-Atmosphere Interaction Science Conference, Frascati, Italy, 3–5 November 2010. [Google Scholar]
- Marconcini, M.; Fernandez-Prieto, D.; Pinnock, S.; Hayman, G.; Helbert, J.; de Leeuw, G. ALANIS: A Joint ESA-Ileaps Atmosphere-Land Interaction Study over Boreal Eurasia. iLEAPS Newsl. 2010, 10, 28–33. [Google Scholar]
- Heim, B.; Bartsch, A.; Elger, K.; Lantuit, H.; Boike, J.; Muster, S.; Langer, M.; Duguay, C.; Hachem, S.; Soliman, A.; et al. ESA DUE Permafrost: An Earth observation (EO) permafrost monitoring system. EARSeL eProc. 2011, 10, 73–82. [Google Scholar]
- European Space Agency. Permafrost-Information System on Permafrost. Available online: http://due.esrin.esa.int/page_project116.php (accessed on 16 November 2020).
- Bartsch, A.; Grosse, G.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C.; Seifert, F.M.; Obu, J.; Goler, R. GlobPermafrost—How space-based earth observation supports understanding of permafrost. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 9–13. [Google Scholar]
- European Space Agency. GlobPermafrost- A Service for Global Permafrost Monitoring. Available online: http://due.esrin.esa.int/page_project161.php (accessed on 16 November 2020).
- Miller, C.; Griffith, P.; Goetz, S.; Hoy, E.; Pinto, N.; McCubbin, I.; Thorpe, A.; Hofton, M.; Hodkinson, D.; Hansen, C.; et al. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environ. Res. Lett. 2019, 14, 080201. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). Earth Expeditions: ABoVE. Available online: https://www.nasa.gov/content/earth-expeditions-above (accessed on 16 November 2020).
- Allison, I.; Barry, R.G.; Goodison, B.E. Climate and Cryosphere (CliC) Project Science and Co-Ordination Plan: Version 1; Joint Planning Staff for WCRP; World Meteorological Organization: Geneva, Switzerland, 2001; Volume 114. [Google Scholar]
- Climate and Cryosphere (CliC). About CliC. Available online: http://www.climate-cryosphere.org/about (accessed on 16 November 2020).
- Wullschleger, S.; Hinzman, L.; Wilson, C. Planning the Next Generation of Arctic Ecosystem Experiments. Eos Trans. Am. Geophys. Union 2011, 90. [Google Scholar] [CrossRef]
- Wullschleger, S.D. Support for Next-Generation Ecosystem Experiments (NGEE Arctic) Field Campaign Report; United States; DOE Office of Science Atmospheric Radiation Measurement (ARM) Program: Washington, DC, USA, 2019. [Google Scholar]
- Study of Environmental Change (SEARCH). Study of Environmental Arctic Change: Plans for Implementation During the International Polar Year and Beyond. 2005. Available online: https://www.arcus.org/files/publication/23146/siw_report_final.pdf (accessed on 28 October 2020).
- SEARCH. SEARCH-Vision and Mission. Available online: https://www.searcharcticscience.org/vision (accessed on 16 November 2020).
- Antonova, S.; Beck, I.; Marx, S.; Anders, K.; Boike, J.; Höfle, B. PermaSAR: Entwicklung einer Methode zur Detektion von Subsidenz in Permafrostgebieten mit D-InSAR: Schlussbericht. 2019. Available online: https://www.tib.eu/en/suchen/id/TIBKAT:167848864X/ (accessed on 13 January 2021).
- University of Oslo-Department of Geosciences. SatPerm-Satellite-Based Permafrost Modeling across a Range of Scales. Available online: https://www.mn.uio.no/geo/english/research/projects/satperm/ (accessed on 28 October 2020).
- Central Institute for Meteorology and Geodynamics Section Climate Change Impacts. COLD Yamal-COmbining Remote Sensing and Field Studies for Assessment of Landform Dynamics and Permafrost State on Yamal. Available online: http://cold.zgis.net/ (accessed on 28 October 2020).
- Lantuit, H. Nunataryuk-Permafrost Thaw and the changing Arctic coast, science for socioeconomic adaptation. In Proceedings of the 5th YES Congress, Berlin, Germany, 9–13 September 2019. [Google Scholar]
- NUNATARYUK. NUNATARYUK—The Project. Available online: https://nunataryuk.org/about (accessed on 16 November 2020).
- Alfred-Wegener-Institute. Modular Observation Solutions for Earth Systems—MOSES. Available online: https://www.awi.de/en/science/geosciences/permafrost-research/projects/moses.html (accessed on 26 February 2021).
- Alfred-Wegener-Institute. PETA-CARB: Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool. Available online: https://www.awi.de/en/science/junior-groups/peta-carb.html (accessed on 26 February 2021).
- Schwamborn, G.; Wetterich, S. Russian-German cooperation CARBOPERM: Field campaigns to Bol’shoy Lyakhovsky Island in 2014. Berichte zur Polar-und Meeresforschung/Rep. Polar Mar. Res. 2015, 686, 1–100. [Google Scholar]
- KoPf. KoPf–Carbon in Permafrost. Available online: http://www.kopf-permafrost.de/index.php?id=36 (accessed on 26 February 2021).
- Alfred-Wegener-Institute. Changing Arctic Carbon Cycle in the cOastal Ocean Near-Shore-CACOON. Available online: https://www.awi.de/forschung/geowissenschaften/permafrostforschung/projekte/cacoon.html (accessed on 26 February 2021).
- Zhang, T.; Barry, R.G.; Armstrong, R.L. Application of satellite remote sensing techniques to frozen ground studies. Polar Geogr. 2004, 28, 163–196. [Google Scholar] [CrossRef]
- Kääb, A.; Huggel, C.; Fischer, L.; Guex, S.; Paul, F.; Roer, I.; Salzmann, N.; Schlaefli, S.; Schmutz, K.; Schneider, D.; et al. Remote sensing of glacier- and permafrost-related hazards in high mountains: An overview. Nat. Hazards Earth Syst. Sci. 2005, 5, 527–554. [Google Scholar] [CrossRef]
- Kääb, A. Remote sensing of permafrost-related problems and hazards. Permafr. Periglac. Process. 2008, 19, 107–136. [Google Scholar] [CrossRef]
- National Research Council. Opportunities to Use Remote Sensing in Understanding Permafrost and Related Ecological Characteristics: Report of a Workshop; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Arenson, L.U.; Kääb, A.; O’Sullivan, A. Detection and analysis of ground deformation in permafrost environments. Permafr. Periglac. Process. 2016, 27, 339–351. [Google Scholar] [CrossRef]
- André, C.; Ottlé, C.; Royer, A.; Maignan, F. Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data. Remote Sens. Environ. 2015, 162, 1–10. [Google Scholar] [CrossRef]
- Ulrich, M.; Grosse, G.; Strauss, J.; Schirrmeister, L. Quantifying wedge-ice volumes in Yedoma and thermokarst basin deposits. Permafr. Periglac. Process. 2014, 25, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Godin, E.; Osinski, G.R.; Harrison, T.N.; Pontefract, A.; Zanetti, M. Geomorphology of Gullies at Thomas Lee Inlet, Devon Island, Canadian High Arctic. Permafr. Periglac. Process. 2019, 30, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Boyle, S.A.; Kennedy, C.M.; Torres, J.; Colman, K.; Pérez-Estigarribia, P.E.; Noé, U. High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS ONE 2014, 9, e86908. [Google Scholar] [CrossRef]
- Runge, A.; Grosse, G. Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions. Remote Sens. 2019, 11, 1730. [Google Scholar] [CrossRef] [Green Version]
- Clarivate Analytics. Web of Science. Available online: https://apps.webofknowledge.com/ (accessed on 13 September 2020).
- Gallerman, T.; Haas, U.; Teipel, U.; von Poschinger, A.; Wagner, B.; Mahr, M.; Bäse, F. Permafrost Messstation am Zugspitzgipfel: Ergebnisse und Modellberechnungen; Bayerisches Landesamt für Umwelt: Bavaria, Germany, 2017. [Google Scholar]
- Oelke, C.; Zhang, T.; Serreze, M.C.; Armstrong, R.L. Regional-scale modeling of soil freeze/thaw over the Arctic drainage basin. J. Geophys. Res. Atmos. 2003, 108, 4314. [Google Scholar] [CrossRef]
- Oelke, C.; Zhang, T. A model study of circum-Arctic soil temperatures. Permafr. Periglac. Process. 2004, 15, 103–121. [Google Scholar] [CrossRef]
- Euskirchen, E.; McGUIRE, A.D.; Kicklighter, D.W.; Zhuang, Q.; Clein, J.S.; Dargaville, R.; Dye, D.; Kimball, J.S.; McDonald, K.C.; Melillo, J.M.; et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob. Chang. Biol. 2006, 12, 731–750. [Google Scholar] [CrossRef] [Green Version]
- Epstein, H.E.; Raynolds, M.K.; Walker, D.A.; Bhatt, U.S.; Tucker, C.J.; Pinzon, J.E. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environ. Res. Lett. 2012, 7, 015506. [Google Scholar] [CrossRef]
- Soliman, A.; Duguay, C.; Saunders, W.; Hachem, S. Pan-arctic land surface temperature from MODIS and AATSR: Product development and intercomparison. Remote Sens. 2012, 4, 3833–3856. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.D.; Kimball, J.S.; Jones, L.A.; Schroeder, R.; McDonald, K.C. Satellite Microwave remote sensing of contrasting surface water inundation changes within the Arctic–Boreal Region. Remote Sens. Environ. 2012, 127, 223–236. [Google Scholar] [CrossRef]
- Fichot, C.G.; Kaiser, K.; Hooker, S.B.; Amon, R.M.; Babin, M.; Bélanger, S.; Walker, S.A.; Benner, R. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kimball, J.S.; Robinson, D.; Derksen, C. New satellite climate data records indicate strong coupling between recent frozen season changes and snow cover over high northern latitudes. Environ. Res. Lett. 2015, 10, 084004. [Google Scholar] [CrossRef] [Green Version]
- Paltan, H.; Dash, J.; Edwards, M. A refined mapping of Arctic lakes using Landsat imagery. Int. J. Remote Sens. 2015, 36, 5970–5982. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Kimball, J.S.; Rawlins, M.A.; Moghaddam, M.; Euskirchen, E.S. The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics. Biogeosciences 2015, 12, 5811–5829. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, A.; Pointner, G.; Leibman, M.O.; Dvornikov, Y.A.; Khomutov, A.V.; Trofaier, A.M. Circumpolar mapping of ground-fast lake ice. Front. Earth Sci. 2017, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Muster, S.; Roth, K.; Langer, M.; Lange, S.; Cresto Aleina, F.; Bartsch, A.; Morgenstern, A.; Grosse, G.; Jones, B.; Sannel, A.B.K.; et al. PeRL: A circum-Arctic permafrost region pond and lake database. Earth Syst. Sci. Data 2017, 9, 317–348. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; McGuire, A.D.; Lawrence, D.; Burke, E.; Chen, G.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; et al. Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. J. Geophys. Res. Biogeosci. 2017, 122, 430–446. [Google Scholar] [CrossRef]
- Kroisleitner, C.; Bartsch, A.; Bergstedt, H. Circumpolar patterns of potential mean annual ground temperature based on surface state obtained from microwave satellite data. Cryosphere 2018, 12, 2349–2370. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Z.; Zhuang, Q. Quantifying the effects of snowpack on soil thermal and carbon dynamics of the Arctic terrestrial ecosystems. J. Geophys. Res. Biogeosci. 2018, 123, 1197–1212. [Google Scholar] [CrossRef]
- Suzuki, K.; Matsuo, K.; Yamazaki, D.; Ichii, K.; Iijima, Y.; Papa, F.; Yanagi, Y.; Hiyama, T. Hydrological variability and changes in the Arctic circumpolar tundra and the three largest pan-Arctic river basins from 2002 to 2016. Remote Sens. 2018, 10, 402. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Liu, Q.; Liu, G.; Li, H.; Huang, C. Accuracy Evaluation and Consistency Analysis of Four Global Land Cover Products in the Arctic Region. Remote Sens. 2019, 11, 1396. [Google Scholar] [CrossRef] [Green Version]
- Raynolds, M.K.; Walker, D.A.; Balser, A.; Bay, C.; Campbell, M.; Cherosov, M.M.; Daniëls, F.J.; Eidesen, P.B.; Ermokhina, K.A.; Frost, G.V.; et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 2019, 232, 111297. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Vieira, G.; Abramov, A.; Balks, M.R.; Bartsch, A.; Hrbáček, F.; Kääb, A.; Ramos, M. Pan-Antarctic map of near-surface permafrost temperatures at 1 km 2 scale. Cryosphere 2020, 14, 497–519. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, V.; Paulik, C.; Bartsch, A.; Wagner, W.; Kidd, R.; Park, S.E.; Elger, K.; Boike, J. ASCAT Surface State Flag (SSF): Extracting information on surface freeze/thaw conditions from backscatter data using an empirical threshold-analysis algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2566–2582. [Google Scholar] [CrossRef]
- Forkel, M.; Migliavacca, M.; Thonicke, K.; Reichstein, M.; Schaphoff, S.; Weber, U.; Carvalhais, N. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob. Chang. Biol. 2015, 21, 3414–3435. [Google Scholar] [CrossRef]
- Hu, T.; Zhao, T.; Zhao, K.; Shi, J. A continuous global record of near-surface soil freeze/thaw status from AMSR-E and AMSR2 data. Int. J. Remote Sens. 2019, 40, 6993–7016. [Google Scholar] [CrossRef]
- Frost, G.V.; Christopherson, T.; Jorgenson, M.T.; Liljedahl, A.K.; Macander, M.J.; Walker, D.A.; Wells, A.F. Regional patterns and asynchronous onset of ice-wedge degradation since the Mid-20th Century in Arctic Alaska. Remote Sens. 2018, 10, 1312. [Google Scholar] [CrossRef] [Green Version]
- Engram, M.; Arp, C.D.; Jones, B.M.; Ajadi, O.A.; Meyer, F.J. Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-borne SAR imagery. Remote Sens. Environ. 2018, 209, 660–676. [Google Scholar] [CrossRef]
- Schaefer, K.; Liu, L.; Parsekian, A.; Jafarov, E.; Chen, A.; Zhang, T.; Gusmeroli, A.; Panda, S.; Zebker, H.A.; Schaefer, T. Remotely sensed active layer thickness (ReSALT) at Barrow, Alaska using interferometric synthetic aperture radar. Remote Sens. 2015, 7, 3735–3759. [Google Scholar] [CrossRef] [Green Version]
- Lyons, E.A.; Sheng, Y.; Smith, L.C.; Li, J.; Hinkel, K.M.; Lenters, J.D.; Wang, J. Quantifying sources of error in multitemporal multisensor lake mapping. Int. J. Remote Sens. 2013, 34, 7887–7905. [Google Scholar] [CrossRef]
- Hinkel, K.; Eisner, W.; Kim, C. Detection of tundra trail damage near Barrow, Alaska using remote imagery. Geomorphology 2017, 293, 360–367. [Google Scholar] [CrossRef]
- Frohn, R.C.; Hinkel, K.M.; Eisner, W.R. Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska. Remote Sens. Environ. 2005, 97, 116–126. [Google Scholar] [CrossRef]
- Kupilik, M.; Witmer, F.D.; MacLeod, E.A.; Wang, C.; Ravens, T. Gaussian Process Regression for Arctic Coastal Erosion Forecasting. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1256–1264. [Google Scholar] [CrossRef]
- Iwahana, G.; Uchida, M.; Liu, L.; Gong, W.; Meyer, F.J.; Guritz, R.; Yamanokuchi, T.; Hinzman, L. InSAR detection and field evidence for thermokarst after a tundra wildfire, using ALOS-PALSAR. Remote Sens. 2016, 8, 218. [Google Scholar] [CrossRef] [Green Version]
- Hachem, S.; Duguay, C.; Allard, M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. Cryosphere 2012, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Raynolds, M.K.; Walker, D.A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 2016, 11, 085004. [Google Scholar] [CrossRef] [Green Version]
- Marchand, N.; Royer, A.; Krinner, G.; Roy, A.; Langlois, A.; Vargel, C. Snow-Covered Soil Temperature Retrieval in Canadian Arctic Permafrost Areas, Using a Land Surface Scheme Informed with Satellite Remote Sensing Data. Remote Sens. 2018, 10, 1703. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B.M.; Zhang, T.; Parsekian, A.; Zebker, H.A. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. Cryosphere 2014, 8, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Nitze, I.; Grosse, G.; Jones, B.M.; Romanovsky, V.E.; Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Tape, K.D.; Jones, B.M.; Arp, C.D.; Nitze, I.; Grosse, G. Tundra be dammed: Beaver colonization of the Arctic. Glob. Chang. Biol. 2018, 24, 4478–4488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangodagamage, C.; Rowland, J.C.; Hubbard, S.S.; Brumby, S.P.; Liljedahl, A.K.; Wainwright, H.; Wilson, C.J.; Altmann, G.L.; Dafflon, B.; Peterson, J.; et al. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets. Water Resour. Res. 2014, 50, 6339–6357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, M.J.; Nitze, I.; Grosse, G.; Martin, P.; McGuire, A.D. Reduced arctic tundra productivity linked with landform and climate change interactions. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Muster, S.; Riley, W.J.; Roth, K.; Langer, M.; Cresto Aleina, F.; Koven, C.D.; Lange, S.; Bartsch, A.; Grosse, G.; Wilson, C.J.; et al. Size distributions of Arctic waterbodies reveal consistent relations in their statistical moments in space and time. Front. Earth Sci. 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Piliouras, A.; Rowland, J.C. Arctic river delta morphologic variability and implications for riverine fluxes to the coast. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005250. [Google Scholar] [CrossRef]
- Högström, E.; Heim, B.; Bartsch, A.; Bergstedt, H.; Pointner, G. Evaluation of a MetOp ASCAT-Derived Surface Soil Moisture Product in Tundra Environments. J. Geophys. Res. Earth Surf. 2018, 123, 3190–3205. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.; Chen, A.; Gusmeroli, A.; Zebker, H.; Zhang, T. Remote sensing measurements of thermokarst subsidence using InSAR. J. Geophys. Res. Earth Surf. 2015, 120, 1935–1948. [Google Scholar] [CrossRef] [Green Version]
- Andresen, C.G.; Lougheed, V.L. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013). J. Geophys. Res. Biogeosci. 2015, 120, 466–479. [Google Scholar] [CrossRef]
- Balser, A.W.; Jones, J.B.; Gens, R. Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. J. Geophys. Res. Earth Surf. 2014, 119, 1106–1120. [Google Scholar] [CrossRef]
- Tape, K.D.; Verbyla, D.; Welker, J.M. Twentieth century erosion in Arctic Alaska foothills: The influence of shrubs, runoff, and permafrost. J. Geophys. Res. Biogeosci. 2011, 116, G04024. [Google Scholar] [CrossRef] [Green Version]
- Ping, C.L.; Michaelson, G.J.; Guo, L.; Jorgenson, M.T.; Kanevskiy, M.; Shur, Y.; Dou, F.; Liang, J. Soil carbon and material fluxes across the eroding Alaska Beaufort Sea coastline. J. Geophys. Res. Biogeosci. 2011, 116, G02004. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Wahr, J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. J. Geophys. Res. Earth Surf. 2010, 115, F03023. [Google Scholar] [CrossRef]
- Kim, E.; England, A. A yearlong comparison of plot-scale and satellite footprint-scale 19 and 37 GHz brightness of the Alaskan North Slope. J. Geophys. Res. Atmos. 2003, 108, 4388. [Google Scholar] [CrossRef] [Green Version]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Regmi, P.; Grosse, G.; Jones, M.C.; Jones, B.M.; Anthony, K.W. Characterizing post-drainage succession in thermokarst lake basins on the Seward Peninsula, Alaska with TerraSAR-X backscatter and Landsat-based NDVI data. Remote Sens. 2012, 4, 3741–3765. [Google Scholar] [CrossRef] [Green Version]
- Iwahana, G.; Harada, K.; Uchida, M.; Tsuyuzaki, S.; Saito, K.; Narita, K.; Kushida, K.; Hinzman, L.D. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska. J. Geophys. Res. Earth Surf. 2016, 121, 1697–1715. [Google Scholar] [CrossRef]
- Jones, M.C.; Grosse, G.; Jones, B.M.; Walter Anthony, K. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 2012, 117, G00M07. [Google Scholar] [CrossRef]
- Whitley, M.A.; Frost, G.V.; Jorgenson, M.T.; Macander, M.J.; Maio, C.V.; Winder, S.G. Assessment of LiDAR and spectral techniques for high-resolution mapping of sporadic permafrost on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 2018, 10, 258. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, M.T.; Frost, G.V.; Dissing, D. Drivers of landscape changes in coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska. Remote Sens. 2018, 10, 1280. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, R.J.; Schaefer, K.; Zebker, H.A.; Parsekian, A.; Liu, L.; Chen, J.; Natali, S.; Ludwig, S.; Schaefer, S.R. Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the remotely sensed active layer thickness (ReSALT) algorithm. Environ. Res. Lett. 2019, 14, 035007. [Google Scholar] [CrossRef]
- Brenning, A. Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection. Remote Sens. Environ. 2009, 113, 239–247. [Google Scholar] [CrossRef]
- Evans, S.G.; Ge, S.; Voss, C.I.; Molotch, N.P. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds. Water Resour. Res. 2018, 54, 1599–1615. [Google Scholar] [CrossRef]
- Zhang, T.; Armstrong, R.; Smith, J. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation. J. Geophys. Res. Atmos. 2003, 108, 8860. [Google Scholar] [CrossRef] [Green Version]
- Natural Earth. Natural Earth I with Shaded Relief and Water. Available online: https://www.naturalearthdata.com/downloads/10m-raster-data/10m-natural-earth-1/ (accessed on 28 August 2020).
- Nill, L.; Ullmann, T.; Kneisel, C.; Sobiech-Wolf, J.; Baumhauer, R. Assessing Spatiotemporal Variations of Landsat Land Surface Temperature and Multispectral Indices in the Arctic Mackenzie Delta Region between 1985 and 2018. Remote Sens. 2019, 11, 2329. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.; Burn, C.R.; King, D.J.; Smith, S. Estimating the extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories. Permafr. Periglac. Process. 2009, 20, 141–153. [Google Scholar] [CrossRef]
- Zwieback, S.; Kokelj, S.V.; Günther, F.; Boike, J.; Grosse, G.; Hajnsek, I. Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale. Cryosphere 2018, 12, 549–564. [Google Scholar] [CrossRef] [Green Version]
- Samsonov, S.V.; Lantz, T.C.; Kokelj, S.V.; Zhang, Y. Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar. Cryosphere 2016, 10, 799–810. [Google Scholar] [CrossRef] [Green Version]
- Olthof, I.; Fraser, R.H.; Schmitt, C. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sens. Environ. 2015, 168, 194–204. [Google Scholar] [CrossRef]
- Muskett, R.R.; Romanovsky, V.E. Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environ. Res. Lett. 2009, 4, 045009. [Google Scholar] [CrossRef]
- Brooker, A.; Fraser, R.H.; Olthof, I.; Kokelj, S.V.; Lacelle, D. Mapping the activity and evolution of retrogressive thaw slumps by tasselled cap trend analysis of a Landsat satellite image stack. Permafr. Periglac. Process. 2014, 25, 243–256. [Google Scholar] [CrossRef]
- Fraser, R.H.; Olthof, I.; Kokelj, S.V.; Lantz, T.C.; Lacelle, D.; Brooker, A.; Wolfe, S.; Schwarz, S. Detecting landscape changes in high latitude environments using landsat trend analysis: 1. Visualization. Remote Sens. 2014, 6, 11533–11557. [Google Scholar] [CrossRef] [Green Version]
- Kokelj, S.; Tunnicliffe, J.; Lacelle, D.; Lantz, T.; Chin, K.; Fraser, R. Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Glob. Planet. Chang. 2015, 129, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Kohnert, K.; Juhls, B.; Muster, S.; Antonova, S.; Serafimovich, A.; Metzger, S.; Hartmann, J.; Sachs, T. Toward understanding the contribution of waterbodies to the methane emissions of a permafrost landscape on a regional scale—A case study from the Mackenzie delta, Canada. Glob. Chang. Biol. 2018, 24, 3976–3989. [Google Scholar] [CrossRef]
- Vesakoski, J.M.; Nylén, T.; Arheimer, B.; Gustafsson, D.; Isberg, K.; Holopainen, M.; Hyyppä, J.; Alho, P. Arctic Mackenzie Delta channel planform evolution during 1983–2013 utilising Landsat data and hydrological time series. Hydrol. Process. 2017, 31, 3979–3995. [Google Scholar] [CrossRef]
- Beighley, R.; Eggert, K.; Wilson, C.; Rowland, J.; Lee, H. A hydrologic routing model suitable for climate-scale simulations of arctic rivers: Application to the Mackenzie River Basin. Hydrol. Process. 2015, 29, 2751–2768. [Google Scholar] [CrossRef]
- Zwieback, S.; Westermann, S.; Langer, M.; Boike, J.; Marsh, P.; Berg, A. Improving permafrost modeling by assimilating remotely sensed soil moisture. Water Resour. Res. 2019, 55, 1814–1832. [Google Scholar] [CrossRef]
- Fouest, V.L.; Matsuoka, A.; Manizza, M.; Shernetsky, M.; Tremblay, B.; Babin, M. Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling. Biogeosciences 2018, 15, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Doxaran, D.; Devred, E.; Babin, M. A 50% increase in the mass of terrestrial particles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic Ocean) over the last 10 years. Biogeosciences 2015, 12, 3551–3565. [Google Scholar] [CrossRef] [Green Version]
- Doxaran, D.; Ehn, J.; Bélanger, S.; Matsuoka, A.; Hooker, S.; Babin, M. Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing. Biogeosciences 2012, 9, 3213–3229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Olthof, I.; Fraser, R.; Wolfe, S.A. A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections. Cryosphere 2014, 8, 2177–2194. [Google Scholar] [CrossRef] [Green Version]
- Chasmer, L.; Hopkinson, C.; Veness, T.; Quinton, W.; Baltzer, J. A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost. Remote Sens. Environ. 2014, 143, 73–84. [Google Scholar] [CrossRef]
- Chasmer, L.; Quinton, W.; Hopkinson, C.; Petrone, R.; Whittington, P. Vegetation canopy and radiation controls on permafrost plateau evolution within the discontinuous permafrost zone, Northwest Territories, Canada. Permafr. Periglac. Process. 2011, 22, 199–213. [Google Scholar] [CrossRef]
- Carpino, O.A.; Berg, A.A.; Quinton, W.L.; Adams, J.R. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 2018, 13, 084018. [Google Scholar] [CrossRef]
- Quinton, W.; Hayashi, M.; Chasmer, L. Permafrost-thaw-induced land-cover change in the Canadian subarctic: Implications for water resources. Hydrol. Process. 2011, 25, 152–158. [Google Scholar] [CrossRef]
- Chasmer, L.; Hopkinson, C. Threshold loss of discontinuous permafrost and landscape evolution. Glob. Chang. Biol. 2017, 23, 2672–2686. [Google Scholar] [CrossRef]
- Helbig, M.; Wischnewski, K.; Kljun, N.; Chasmer, L.E.; Quinton, W.L.; Detto, M.; Sonnentag, O. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Glob. Chang. Biol. 2016, 22, 4048–4066. [Google Scholar] [CrossRef] [Green Version]
- Connon, R.F.; Quinton, W.L.; Craig, J.R.; Hayashi, M. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 2014, 28, 4163–4178. [Google Scholar] [CrossRef]
- Quinton, W.; Hayashi, M.; Pietroniro, A. Connectivity and storage functions of channel fens and flat bogs in northern basins. Hydrol. Process. 2003, 17, 3665–3684. [Google Scholar] [CrossRef]
- Abis, B.; Brovkin, V. Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences 2017, 14, 511–527. [Google Scholar] [CrossRef] [Green Version]
- Morse, P.; Wolfe, S. Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada. J. Geophys. Res. Earth Surf. 2015, 120, 1670–1686. [Google Scholar] [CrossRef] [Green Version]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Obu, J.; Lantuit, H.; Myers-Smith, I.; Heim, B.; Wolter, J.; Fritz, M. Effect of terrain characteristics on soil organic carbon and total nitrogen stocks in soils of Herschel Island, Western Canadian Arctic. Permafr. Periglac. Process. 2017, 28, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Lantuit, H.; Pollard, W. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 2008, 95, 84–102. [Google Scholar] [CrossRef]
- Ramage, J.L.; Irrgang, A.M.; Morgenstern, A.; Lantuit, H. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean. Biogeosciences 2018, 15, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Coch, C.; Ramage, J.; Lamoureux, S.; Meyer, H.; Knoblauch, C.; Lantuit, H. Spatial variability of dissolved organic carbon, solutes, and suspended sediment in disturbed Low Arctic coastal watersheds. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005505. [Google Scholar] [CrossRef]
- Irrgang, A.M.; Lantuit, H.; Manson, G.K.; Günther, F.; Grosse, G.; Overduin, P.P. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 2018, 123, 779–800. [Google Scholar] [CrossRef] [Green Version]
- Ramage, J.L.; Irrgang, A.M.; Herzschuh, U.; Morgenstern, A.; Couture, N.; Lantuit, H. Terrain controls on the occurrence of coastal retrogressive thaw slumps along the Yukon Coast, Canada. J. Geophys. Res. Earth Surf. 2017, 122, 1619–1634. [Google Scholar] [CrossRef]
- Wang, L.; Marzahn, P.; Bernier, M.; Jacome, A.; Poulin, J.; Ludwig, R. Comparison of TerraSAR-X and ALOS PALSAR differential interferometry with multisource DEMs for monitoring ground displacement in a discontinuous permafrost region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4074–4093. [Google Scholar] [CrossRef]
- Freitas, P.; Vieira, G.; Canário, J.; Folhas, D.; Vincent, W.F. Identification of a Threshold Minimum Area for Reflectance Retrieval from Thermokarst Lakes and Ponds Using Full-Pixel Data from Sentinel-2. Remote Sens. 2019, 11, 657. [Google Scholar] [CrossRef] [Green Version]
- Beck, I.; Ludwig, R.; Bernier, M.; Lévesque, E.; Boike, J. Assessing permafrost degradation and land cover changes (1986–2009) using remote sensing data over Umiujaq, sub-arctic Québec. Permafr. Periglac. Process. 2015, 26, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Marzahn, P.; Bernier, M.; Ludwig, R. Mapping permafrost landscape features using object-based image classification of multi-temporal SAR images. ISPRS J. Photogramm. Remote Sens. 2018, 141, 10–29. [Google Scholar] [CrossRef]
- Watanabe, S.; Laurion, I.; Chokmani, K.; Pienitz, R.; Vincent, W.F. Optical diversity of thaw ponds in discontinuous permafrost: A model system for water color analysis. J. Geophys. Res. Biogeosci. 2011, 116, G02003. [Google Scholar] [CrossRef]
- Morgenstern, A.; Grosse, G.; Günther, F.; Fedorova, I.; Schirrmeister, L. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosphere Discuss. 2011, 5, 1495–1545. [Google Scholar]
- Antonova, S.; Kääb, A.; Heim, B.; Langer, M.; Boike, J. Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta, Siberia. Remote Sens. Environ. 2016, 182, 169–191. [Google Scholar] [CrossRef]
- Langer, M.; Westermann, S.; Boike, J. Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia-implications for MODIS LST based permafrost monitoring. Remote Sens. Environ. 2010, 114, 2059–2069. [Google Scholar] [CrossRef]
- Langer, M.; Westermann, S.; Heikenfeld, M.; Dorn, W.; Boike, J. Satellite-based modeling of permafrost temperatures in a tundra lowland landscape. Remote Sens. Environ. 2013, 135, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Nitze, I.; Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 2016, 181, 27–41. [Google Scholar] [CrossRef]
- Chen, J.; Günther, F.; Grosse, G.; Liu, L.; Lin, H. Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta. Remote Sens. 2018, 10, 1152. [Google Scholar] [CrossRef] [Green Version]
- Stettner, S.; Beamish, A.L.; Bartsch, A.; Heim, B.; Grosse, G.; Roth, A.; Lantuit, H. Monitoring inter-and intra-seasonal dynamics of rapidly degrading ice-rich permafrost riverbanks in the Lena Delta with TerraSAR-X time series. Remote Sens. 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Reschke, J.; Bartsch, A.; Schlaffer, S.; Schepaschenko, D. Capability of C-band SAR for operational wetland monitoring at high latitudes. Remote Sens. 2012, 4, 2923–2943. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, A.; Ulrich, M.; Günther, F.; Roessler, S.; Fedorova, I.V.; Rudaya, N.A.; Wetterich, S.; Boike, J.; Schirrmeister, L. Evolution of thermokarst in East Siberian ice-rich permafrost: A case study. Geomorphology 2013, 201, 363–379. [Google Scholar] [CrossRef]
- Grosse, G.; Schirrmeister, L.; Siegert, C.; Kunitsky, V.V.; Slagoda, E.A.; Andreev, A.A.; Dereviagyn, A.Y. Geological and geomorphological evolution of a sedimentary periglacial landscape in Northeast Siberia during the Late Quaternary. Geomorphology 2007, 86, 25–51. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Peter, M.; Langer, M.; Schwamborn, G.; Schirrmeister, L.; Etzelmüller, B.; Boike, J. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia. Cryosphere 2017, 11, 1441–1463. [Google Scholar] [CrossRef] [Green Version]
- Grosse, G.; Schirrmeister, L.; Kunitsky, V.V.; Hubberten, H.W. The use of CORONA images in remote sensing of periglacial geomorphology: An illustration from the NE Siberian coast. Permafr. Periglac. Process. 2005, 16, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Juhls, B.; Overduin, P.P.; Hölemann, J.; Hieronymi, M.; Matsuoka, A.; Heim, B.; Fischer, J. Dissolved organic matter at the fluvial–marine transition in the Laptev Sea using in situ data and ocean colour remote sensing. Biogeosciences 2019, 16, 2693–2713. [Google Scholar] [CrossRef] [Green Version]
- Mikola, J.; Virtanen, T.; Linkosalmi, M.; Vähä, E.; Nyman, J.; Postanogova, O.; Räsänen, A.; Kotze, D.J.; Laurila, T.; Juutinen, S.; et al. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra–coupling field observations with remote sensing data. Biogeosciences 2018, 15, 2781–2801. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, M.; Grosse, G.; Strauss, J.; Günther, F.; Grigoriev, M.; Maximov, G.M.; Hugelius, G. Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia. Biogeosciences 2018, 15, 953–971. [Google Scholar] [CrossRef] [Green Version]
- Heim, B.; Abramova, E.; Doerffer, R.; Günther, F.; Hölemann, J.; Kraberg, A.; Lantuit, H.; Loginova, A.; Martynov, F.; Overduin, P.P.; et al. Ocean colour remote sensing in the southern Laptev Sea: Evaluation and applications. Biogeosciences 2014, 11, 4191–4210. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.; Leibman, M.; Epstein, H.; Forbes, B.; Bhatt, U.; Raynolds, M.; Comiso, J.; Gubarkov, A.; Khomutov, A.; Jia, G.; et al. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: Interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environ. Res. Lett. 2009, 4, 045004. [Google Scholar] [CrossRef]
- Widhalm, B.; Bartsch, A.; Leibman, M.; Khomutov, A. Active-layer thickness estimation from X-band SAR backscatter intensity. Cryosphere 2017, 11, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Dvornikov, Y.; Leibman, M.; Heim, B.; Bartsch, A.; Herzschuh, U.; Skorospekhova, T.; Fedorova, I.; Khomutov, A.; Widhalm, B.; Gubarkov, A.; et al. Terrestrial CDOM in lakes of Yamal peninsula: Connection to lake and lake catchment properties. Remote Sens. 2018, 10, 167. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, A.; Leibman, M.; Strozzi, T.; Khomutov, A.; Widhalm, B.; Babkina, E.; Mullanurov, D.; Ermokhina, K.; Kroisleitner, C.; Bergstedt, H. Seasonal progression of ground displacement identified with satellite radar interferometry and the impact of unusually warm conditions on permafrost at the Yamal Peninsula in 2016. Remote Sens. 2019, 11, 1865. [Google Scholar] [CrossRef] [Green Version]
- Kizyakov, A.; Khomutov, A.; Zimin, M.; Khairullin, R.; Babkina, E.; Dvornikov, Y.; Leibman, M. Microrelief associated with gas emission craters: Remote-sensing and field-based study. Remote Sens. 2018, 10, 677. [Google Scholar] [CrossRef] [Green Version]
- Trofaier, A.; Bartsch, A.; Rees, W.; Leibman, M. Assessment of spring floods and surface water extent over the Yamalo-Nenets Autonomous District. Environ. Res. Lett. 2013, 8, 045026. [Google Scholar] [CrossRef] [Green Version]
- Frost, G.V.; Epstein, H.E.; Walker, D.A. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 2014, 9, 025004. [Google Scholar] [CrossRef] [Green Version]
- Frost, G.V.; Epstein, H.E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob. Chang. Biol. 2014, 20, 1264–1277. [Google Scholar] [CrossRef]
- Forbes, B.C.; Fauria, M.M.; Zetterberg, P. Russian Arctic warming and ‘greening’are closely tracked by tundra shrub willows. Glob. Chang. Biol. 2010, 16, 1542–1554. [Google Scholar] [CrossRef]
- Flessa, H.; Rodionov, A.; Guggenberger, G.; Fuchs, H.; Magdon, P.; Shibistova, O.; Zrazhevskaya, G.; Mikheyeva, N.; Kasansky, O.A.; Blodau, C. Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Glob. Chang. Biol. 2008, 14, 2040–2056. [Google Scholar] [CrossRef]
- Bohn, T.J.; Melton, J.R.; Ito, A.; Kleinen, T.; Spahni, R.; Stocker, B.; Zhang, B.; Zhu, X.; Schroeder, R.; Glagolev, M.V.; et al. WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia. Biogeosciences 2015, 12, 3321–3349. [Google Scholar] [CrossRef] [Green Version]
- Rawlins, M.A.; Mcguire, A.D.; Kimball, J.S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; et al. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia. Biogeosciences 2015, 12, 4385–4405. [Google Scholar] [CrossRef] [Green Version]
- Sannel, A.; Kuhry, P. Warming-induced destabilization of peat plateau/thermokarst lake complexes. J. Geophys. Res. Biogeosci. 2011, 116, G03035. [Google Scholar] [CrossRef]
- Sakai, T.; Matsunaga, T.; Maksyutov, S.; Gotovtsev, S.; Gagarin, L.; Hiyama, T.; Yamaguchi, Y. Climate-Induced Extreme Hydrologic Events in the Arctic. Remote Sens. 2016, 8, 971. [Google Scholar] [CrossRef]
- Broderick, D.E.; Frey, K.E.; Rogan, J.; Alexander, H.D.; Zimov, N.S. Estimating upper soil horizon carbon stocks in a permafrost watershed of Northeast Siberia by integrating field measurements with Landsat-5 TM and WorldView-2 satellite data. Gisci. Remote Sens. 2015, 52, 131–157. [Google Scholar] [CrossRef]
- Siewert, M.B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Maximov, T.C.; Hugelius, G. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J. Geophys. Res. Biogeosci. 2015, 120, 1973–1994. [Google Scholar] [CrossRef] [Green Version]
- Loranty, M.M.; Natali, S.M.; Berner, L.T.; Goetz, S.J.; Holmes, R.M.; Davydov, S.P.; Zimov, N.S.; Zimov, S.A. Siberian tundra ecosystem vegetation and carbon stocks four decades after wildfire. J. Geophys. Res. Biogeosci. 2014, 119, 2144–2154. [Google Scholar] [CrossRef]
- Griffin, C.G.; Frey, K.E.; Rogan, J.; Holmes, R.M. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. J. Geophys. Res. Biogeosci. 2011, 116, G03018. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Bartsch, A.; Sabel, D.; Wagner, W.; Naeimi, V.; Yamaguchi, Y. Monitoring freeze/thaw cycles using ENVISAT ASAR Global Mode. Remote Sens. Environ. 2011, 115, 3457–3467. [Google Scholar] [CrossRef]
- Dupeyrat, L.; Hurault, B.; Costard, F.; Marmo, C.; Gautier, E. Satellite image analysis and frozen cylinder experiments on thermal erosion of periglacial fluvial islands. Permafr. Periglac. Process. 2018, 29, 100–111. [Google Scholar] [CrossRef]
- Séjourné, A.; Costard, F.; Fedorov, A.; Gargani, J.; Skorve, J.; Massé, M.; Mège, D. Evolution of the banks of thermokarst lakes in Central Yakutia (Central Siberia) due to retrogressive thaw slump activity controlled by insolation. Geomorphology 2015, 241, 31–40. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Zhou, W.; Hong, T.; Wang, G. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sens. Environ. 2013, 138, 10–18. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, H. Vegetation changes along the Qinghai–Tibet Plateau engineering corridor since 2000 induced by climate change and human activities. Remote Sens. 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, Z.; Paloscia, S.; Zhang, H.; Wu, F.; Wu, Q. Permafrost Soil Moisture Monitoring Using Multi-Temporal TerraSAR-X Data in Beiluhe of Northern Tibet, China. Remote Sens. 2018, 10, 1577. [Google Scholar] [CrossRef] [Green Version]
- Niu, F.; Yin, G.; Luo, J.; Lin, Z.; Liu, M. Permafrost distribution along the Qinghai–Tibet Engineering Corridor, China using high-resolution statistical mapping and modeling integrated with remote sensing and GIS. Remote Sens. 2018, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.; Zheng, H.; Niu, F.; Luo, J.; Lin, Z.; Liu, M. Numerical mapping and modeling permafrost thermal dynamics across the Qinghai–Tibet engineering corridor, China integrated with remote sensing. Remote Sens. 2018, 10, 2069. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Yin, G.; Niu, F.; Lin, Z.; Liu, M. High spatial resolution modeling of climate change impacts on permafrost thermal conditions for the Beiluhe Basin, Qinghai–Tibet Plateau. Remote Sens. 2019, 11, 1294. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Kim, J.W.; Shum, C.; Lu, Z.; Ding, X.; Zhang, L.; Erkan, K.; Kuo, C.Y.; Shang, K.; Tseng, K.H.; et al. Characterization of active layer thickening rate over the northern Qinghai–Tibetan plateau permafrost region using ALOS interferometric synthetic aperture radar data, 2007–2009. Remote Sens. 2017, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, C.; Zhang, H.; Tang, Y.; Liu, X. Analysis of permafrost region coherence variation in the Qinghai–Tibet Plateau with a high-resolution TerraSAR-X image. Remote Sens. 2018, 10, 298. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Zhou, W.; Tian, B.; Chen, F.; Li, Z.; Li, G. Quantification of Temporal Decorrelation in X-, C-, and L-Band Interferometry for the Permafrost Region of the Qinghai–Tibet Plateau. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 2285–2289. [Google Scholar] [CrossRef]
- Xie, C.; Li, Z.; Xu, J.; Li, X. Analysis of deformation over permafrost regions of Qinghai–Tibet plateau based on permanent scatterers. Int. J. Remote Sens. 2010, 31, 1995–2008. [Google Scholar] [CrossRef]
- Tian, B.; Li, Z.; Tang, P.; Zou, P.; Zhang, M.; Niu, F. Use of intensity and coherence of X-band SAR data to map thermokarst lakes on the Northern Tibetan Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3164–3176. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, M.; Liu, X.; Wang, C.; Zhang, H.; Tang, Y.; Zhang, B. Deformation Feature Analysis of Qinghai–Tibet Railway Using TerraSAR-X and Sentinel-1A Time-Series Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5199–5212. [Google Scholar] [CrossRef]
- Tian, B.; Li, Z.; Zhang, M.; Huang, L.; Qiu, Y.; Li, Z.; Tang, P. Mapping thermokarst lakes on the Qinghai–Tibet Plateau using nonlocal active contours in Chinese GaoFen-2 multispectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1687–1700. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, H.; Zhang, B.; Tang, Y.; Wu, Q. Active layer thickness retrieval of Qinghai–Tibet permafrost using the TerraSAR-X InSAR technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4403–4413. [Google Scholar] [CrossRef]
- Huang, L.; Luo, J.; Lin, Z.; Niu, F.; Liu, L. Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sens. Environ. 2020, 237, 111534. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Wu, T.; Wu, X.; Pang, Q.; Wang, Z. Modeling ground surface temperature by means of remote sensing data in high-altitude areas: Test in the central Tibetan Plateau with application of moderate-resolution imaging spectroradiometer Terra/Aqua land surface temperature and ground-based infrared radiometer. J. Appl. Remote Sens. 2014, 8, 083516. [Google Scholar]
- Chang, L.; Hanssen, R.F. Detection of permafrost sensitivity of the Qinghai–Tibet railway using satellite radar interferometry. Int. J. Remote Sens. 2015, 36, 691–700. [Google Scholar] [CrossRef]
- Westermann, S.; Langer, M.; Boike, J. Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway. Remote Sens. Environ. 2012, 118, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Langer, M.; Boike, J. Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard—Implications for MODIS LST based permafrost monitoring. Remote Sens. Environ. 2011, 115, 908–922. [Google Scholar] [CrossRef]
- Rouyet, L.; Lauknes, T.R.; Christiansen, H.H.; Strand, S.M.; Larsen, Y. Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR. Remote Sens. Environ. 2019, 231, 111236. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Malnes, E.; Christiansen, H. Freeze/thaw conditions at periglacial landforms in Kapp Linné, Svalbard, investigated using field observations, in situ, and radar satellite monitoring. Geomorphology 2017, 293, 433–447. [Google Scholar] [CrossRef]
- Bernhardt, H.; Reiss, D.; Hiesinger, H.; Hauber, E.; Johnsson, A. Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard). Geomorphology 2017, 296, 132–141. [Google Scholar] [CrossRef]
- Kasprzak, M.; Łopuch, M.; Głowacki, T.; Milczarek, W. Evolution of Near-Shore Outwash Fans and Permafrost Spreading Under Their Surface: A Case Study from Svalbard. Remote Sens. 2020, 12, 482. [Google Scholar] [CrossRef] [Green Version]
- Woelders, L.; Lenaerts, J.T.; Hagemans, K.; Akkerman, K.; van Hoof, T.B.; Hoek, W.Z. Recent climate warming drives ecological change in a remote high-Arctic lake. Sci. Rep. 2018, 8, 1–8. [Google Scholar]
- Bertone, A.; Zucca, F.; Marin, C.; Notarnicola, C.; Cuozzo, G.; Krainer, K.; Mair, V.; Riccardi, P.; Callegari, M.; Seppi, R. An unsupervised method to detect rock glacier activity by using Sentinel-1 SAR interferometric coherence: A regional-scale study in the eastern European Alps. Remote Sens. 2019, 11, 1711. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S.; Hoelzle, M. Statistical modelling of mountain permafrost distribution: Local calibration and incorporation of remotely sensed data. Permafr. Periglac. Process. 2001, 12, 69–77. [Google Scholar] [CrossRef]
- Strozzi, T.; Kääb, A.; Frauenfelder, R. Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry. Int. J. Remote Sens. 2004, 25, 2919–2931. [Google Scholar] [CrossRef]
- Kenyi, L.W.; Kaufmann, V. Estimation of rock glacier surface deformation using SAR interferometry data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1512–1515. [Google Scholar] [CrossRef]
- Ravanel, L.; Magnin, F.; Deline, P. Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Sci. Total Environ. 2017, 609, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Strozzi, T.; Delaloye, R.; Kääb, A.; Ambrosi, C.; Perruchoud, E.; Wegmüller, U. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J. Geophys. Res. Earth Surf. 2010, 115, F01014. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, H.Ø.; Lauknes, T.R.; Larsen, Y.; Corner, G.D.; Bergh, S.G.; Dehls, J.; Kierulf, H.P. Visualizing and interpreting surface displacement patterns on unstable slopes using multi-geometry satellite SAR interferometry (2D InSAR). Remote Sens. Environ. 2017, 191, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Jagdhuber, T.; Stockamp, J.; Hajnsek, I.; Ludwig, R. Identification of soil freezing and thawing states using SAR polarimetry at C-band. Remote Sens. 2014, 6, 2008–2023. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Persson, A.; Olefeldt, D.; Frolking, S.; Salas, W.; Hagen, S.; Crill, P.; Li, C. High resolution mapping of peatland hydroperiod at a high-latitude Swedish mire. Remote Sens. 2012, 4, 1974–1994. [Google Scholar] [CrossRef] [Green Version]
- Gisnås, K.; Etzelmüller, B.; Farbrot, H.; Schuler, T.; Westermann, S. CryoGRID 1.0: Permafrost distribution in Norway estimated by a spatial numerical model. Permafr. Periglac. Process. 2013, 24, 2–19. [Google Scholar] [CrossRef] [Green Version]
- Etzelmüller, B.; Ødegård, R.S.; Berthling, I.; Sollid, J.L. Terrain parameters and remote sensing data in the analysis of permafrost distribution and periglacial processes: Principles and examples from southern Norway. Permafr. Periglac. Process. 2001, 12, 79–92. [Google Scholar] [CrossRef]
- Westermann, S.; Elberling, B.; Højlund Pedersen, S.; Stendel, M.; Hansen, B.; Liston, G. Future permafrost conditions along environmental gradients in Zackenberg, Greenland. Cryosphere 2015, 9, 719–735. [Google Scholar] [CrossRef] [Green Version]
- Westergaard-Nielsen, A.; Karami, M.; Hansen, B.U.; Westermann, S.; Elberling, B. Contrasting temperature trends across the ice-free part of Greenland. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Finger Higgens, R.; Chipman, J.; Lutz, D.; Culler, L.; Virginia, R.; Ogden, L. Changing lake dynamics indicate a drier Arctic in Western Greenland. J. Geophys. Res. Biogeosci. 2019, 124, 870–883. [Google Scholar] [CrossRef]
- Villarroel, C.D.; Tamburini Beliveau, G.; Forte, A.P.; Monserrat, O.; Morvillo, M. DInSAR for a Regional inventory of active rock glaciers in the dry andes mountains of argentina and chile with sentinel-1 data. Remote Sens. 2018, 10, 1588. [Google Scholar] [CrossRef] [Green Version]
- Nagy, B.; Ignéczi, Á.; Kovács, J.; Szalai, Z.; Mari, L. Shallow ground temperature measurements on the highest volcano on Earth, Mt. Ojos del Salado, Arid Andes, Chile. Permafr. Periglac. Process. 2019, 30, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Monnier, S.; Kinnard, C.; Surazakov, A.; Bossy, W. Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30°08′ S., 69°55′ W.). Geomorphology 2014, 207, 126–140. [Google Scholar] [CrossRef]
- Janke, J.R.; Ng, S.; Bellisario, A. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile. Geomorphology 2017, 296, 142–152. [Google Scholar] [CrossRef]
- Brenning, A.; Peña, M.; Long, S.; Soliman, A. Thermal remote sensing of ice-debris landforms using ASTER: An example from the Chilean Andes. Cryosphere 2012, 6, 367. [Google Scholar] [CrossRef] [Green Version]
- Batbaatar, J.; Gillespie, A.R.; Sletten, R.S.; Mushkin, A.; Amit, R.; Liaudat, D.T.; Liu, L.; Petrie, G. Toward the Detection of Permafrost Using Land-Surface Temperature Mapping. Remote Sens. 2020, 12, 695. [Google Scholar] [CrossRef] [Green Version]
- Mink, S.; López-Martínez, J.; Maestro, A.; Garrote, J.; Ortega, J.A.; Serrano, E.; Durán, J.J.; Schmid, T. Insights into deglaciation of the largest ice-free area in the South Shetland Islands (Antarctica) from quantitative analysis of the drainage system. Geomorphology 2014, 225, 4–24. [Google Scholar] [CrossRef]
- López-Martínez, J.; Serrano, E.; Schmid, T.; Mink, S.; Linés, C. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology 2012, 155, 62–79. [Google Scholar] [CrossRef]
- Moura, P.A.; Francelino, M.R.; Schaefer, C.E.G.; Simas, F.N.; de Mendonça, B.A. Distribution and characterization of soils and landform relationships in Byers Peninsula, Livingston Island, Maritime Antarctica. Geomorphology 2012, 155, 45–54. [Google Scholar] [CrossRef]
- Vieira, G.; Mora, C.; Pina, P.; Schaefer, C.E. A proxy for snow cover and winter ground surface cooling: Mapping Usnea sp. communities using high resolution remote sensing imagery (maritime Antarctica). Geomorphology 2014, 225, 69–75. [Google Scholar] [CrossRef]
- Miranda, V.; Pina, P.; Heleno, S.; Vieira, G.; Mora, C.; Schaefer, C.E. Monitoring recent changes of vegetation in Fildes Peninsula (King George Island, Antarctica) through satellite imagery guided by UAV surveys. Sci. Total Environ. 2020, 704, 135295. [Google Scholar] [CrossRef] [PubMed]
- Bockheim, J.G. Distribution, properties and origin of viscous-flow features in the McMurdo Dry Valleys, Antarctica. Geomorphology 2014, 204, 114–122. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Cihlar, J. Mapping evapotranspiration based on remote sensing: An application to Canada’s landmass. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Liu, X.; Zhao, H.; Shao, R.; Wang, G. Evaluation of the rescaled complementary principle in the estimation of evaporation on the Tibetan Plateau. Sci. Total Environ. 2020, 699, 134367. [Google Scholar] [CrossRef] [PubMed]
- Hammerling, D.M.; Kawa, S.R.; Schaefer, K.; Doney, S.; Michalak, A.M. Detectability of CO2 flux signals by a space-based lidar mission. J. Geophys. Res. Atmos. 2015, 120, 1794–1807. [Google Scholar] [CrossRef] [Green Version]
- Crowell, S.M.; Randolph Kawa, S.; Browell, E.V.; Hammerling, D.M.; Moore, B.; Schaefer, K.; Doney, S.C. On the ability of space-based passive and active remote sensing observations of CO2 to detect flux perturbations to the carbon cycle. J. Geophys. Res. Atmos. 2018, 123, 1460–1477. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- Dlugokencky, E.J.; Bruhwiler, L.; White, J.; Emmons, L.; Novelli, P.C.; Montzka, S.A.; Masarie, K.A.; Lang, P.M.; Crotwell, A.; Miller, J.B.; et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 2009, 36, L18803. [Google Scholar] [CrossRef] [Green Version]
- Elder, C.D.; Thompson, D.R.; Thorpe, A.K.; Hanke, P.; Walter Anthony, K.M.; Miller, C.E. Airborne mapping reveals emergent power law of arctic methane emissions. Geophys. Res. Lett. 2020, 47, e2019GL085707. [Google Scholar] [CrossRef]
- European Space Agency. Arctic Methane and Permafrost Challenge (AMPC). Available online: https://eo4society.esa.int/communities/scientists/arctic-methane-and-permafrost/ (accessed on 28 November 2020).
- European Space Agency. A NASA and ESA Collaborative Community Initiative on Arctic Methane and Permafrost. 2020. Available online: https://eo4society.esa.int/2020/09/01/a-nasa-and-esa-collaborative-community-initiative-on-arctic-methane-and-permafrost/ (accessed on 28 November 2020).
- Veefkind, J.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.; De Haan, J.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Griffin, D.; Zhao, X.; McLinden, C.A.; Boersma, F.; Bourassa, A.; Dammers, E.; Degenstein, D.; Eskes, H.; Fehr, L.; Fioletov, V.; et al. High-resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands. Geophys. Res. Lett. 2019, 46, 1049–1060. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Landgraf, J.; Detmers, R.; Borsdorff, T.; Aan de Brugh, J.; Aben, I.; Butz, A.; Hasekamp, O. Toward global mapping of methane with TROPOMI: First results and intersatellite comparison to GOSAT. Geophys. Res. Lett. 2018, 45, 3682–3689. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; Schneider, A.; Wu, L.; Hase, F.; Kivi, R.; Wunch, D.; Pollard, D.F.; et al. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J.P.; Borsdorff, T.; Deutscher, N.M.; Feist, D.G.; Griffith, D.W.; Hase, F.; et al. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmos. Meas. Tech. 2019, 12, 6771–6802. [Google Scholar] [CrossRef] [Green Version]
- Varon, D.; McKeever, J.; Jervis, D.; Maasakkers, J.; Pandey, S.; Houweling, S.; Aben, I.; Scarpelli, T.; Jacob, D. Satellite discovery of anomalously large methane point sources from oil/gas production. Geophys. Res. Lett. 2019, 46, 13507–13516. [Google Scholar] [CrossRef] [Green Version]
- Ehret, G.; Bousquet, P.; Pierangelo, C.; Alpers, M.; Millet, B.; Abshire, J.B.; Bovensmann, H.; Burrows, J.P.; Chevallier, F.; Ciais, P.; et al. MERLIN: A French-German space lidar mission dedicated to atmospheric methane. Remote Sens. 2017, 9, 1052. [Google Scholar] [CrossRef] [Green Version]
- Pierangelo, C.; Millet, B.; Esteve, F.; Alpers, M.; Ehret, G.; Flamant, P.; Berthier, S.; Gibert, F.; Chomette, O.; Edouart, D.; et al. Merlin (methane remote sensing Lidar mission): An overview. In Proceedings of the 27th International Laser Radar Conference (ILRC), New York, NY, USA, 5–10 July 2015; EPJ Web of Conferences: Les Ulis, France, 2016; Volume 119, p. 26001. [Google Scholar]
- Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.; Deniel, C. MERLIN: A space-based methane monitor. In Proceedings of the SPIE, Lidar Remote Sensing for Environmental Monitoring XII, San Diego, CA, USA, 21–22 August 2011; Volume 8159, pp. 815–908. [Google Scholar]
- German Aerospace Centre (DLR). MERLIN-Die Deutsch-Französische Klimamission. Available online: https://www.dlr.de/rd/en/desktopdefault.aspx/tabid-2440/3586_read-31672/ (accessed on 20 February 2021).
- Yao, F.; Wang, J.; Yang, K.; Wang, C.; Walter, B.A.; Crétaux, J.F. Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environ. Res. Lett. 2018, 13, 064011. [Google Scholar] [CrossRef]
- Necsoiu, M.; Dinwiddie, C.L.; Walter, G.R.; Larsen, A.; Stothoff, S.A. Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska. Environ. Res. Lett. 2013, 8, 025007. [Google Scholar] [CrossRef] [Green Version]
- Carroll, M.L.; Loboda, T.V. The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra. Environ. Res. Lett. 2018, 13, 045009. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Yu, S.; Yang, D.; Zhang, L. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Glob. Planet. Chang. 2009, 67, 209–217. [Google Scholar] [CrossRef]
- Turner, K.W.; Wolfe, B.B.; Edwards, T.W.; Lantz, T.C.; Hall, R.I.; Larocque, G. Controls on water balance of shallow thermokarst lakes and their relations with catchment characteristics: A multi-year, landscape-scale assessment based on water isotope tracers and remote sensing in Old Crow Flats, Yukon (Canada). Glob. Chang. Biol. 2014, 20, 1585–1603. [Google Scholar] [CrossRef]
- Duan, L.; Man, X.; Kurylyk, B.L.; Cai, T.; Li, Q. Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in northeastern China. Hydrol. Process. 2017, 31, 1938–1951. [Google Scholar] [CrossRef]
- Jepsen, S.M.; Walvoord, M.A.; Voss, C.I.; Rover, J. Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: Case study of Yukon Flats, Alaska. Hydrol. Process. 2016, 30, 1782–1795. [Google Scholar] [CrossRef]
- Wanchang, Z.; Ogawa, K.; Besheng, Y.; Yamaguchi, Y. A monthly stream flow model for estimating the potential changes of river runoff on the projected global warming. Hydrol. Process. 2000, 14, 1851–1868. [Google Scholar] [CrossRef]
- Gao, L.; Liao, J.; Shen, G. Monitoring lake-level changes in the Qinghai–Tibetan Plateau using radar altimeter data (2002–2012). J. Appl. Remote Sens. 2013, 7, 073470. [Google Scholar] [CrossRef]
- Lantz, T.; Turner, K. Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon. J. Geophys. Res. Biogeosci. 2015, 120, 513–524. [Google Scholar] [CrossRef]
- Mętrak, M.; Szwarczewski, P.; Bińka, K.; Rojan, E.; Karasiński, J.; Górecki, G.; Suska-Malawska, M. Late Holocene development of Lake Rangkul (Eastern Pamir, Tajikistan) and its response to regional climatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 521, 99–113. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Hugelius, G.; Kuhry, P. Thermokarst lake morphometry and erosion features in two peat plateau areas of northeast European Russia. Permafr. Periglac. Process. 2013, 24, 75–81. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Frohn, R.; Nelson, F.; Eisner, W.; Beck, R. Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafr. Periglac. Process. 2005, 16, 327–341. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote Sens. 2014, 6, 621–636. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, J.R.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of climate change on Tibetan lakes: Patterns and processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Muster, S.; Heim, B.; Abnizova, A.; Boike, J. Water body distributions across scales: A remote sensing based comparison of three arctic tundra wetlands. Remote Sens. 2013, 5, 1498–1523. [Google Scholar] [CrossRef] [Green Version]
- Lara, M.J.; Chipman, M.L.; Hu, F.S. Automated detection of thermoerosion in permafrost ecosystems using temporally dense Landsat image stacks. Remote Sens. Environ. 2019, 221, 462–473. [Google Scholar] [CrossRef]
- Zakharova, E.A.; Kouraev, A.V.; Stephane, G.; Franck, G.; Desyatkin, R.V.; Desyatkin, A.R. Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: Importance for agriculture and human life. Sci. Total Environ. 2018, 615, 1290–1304. [Google Scholar] [CrossRef]
- Günther, F.; Overduin, P.P.; Yakshina, I.A.; Opel, T.; Baranskaya, A.V.; Grigoriev, M.N. Observing Muostakh disappear: Permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 2015, 9, 151–178. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, M.; Matthes, H.; Schirrmeister, L.; Schütze, J.; Park, H.; Iijima, Y.; Fedorov, A.N. Differences in behavior and distribution of permafrost-related lakes in Central Yakutia and their response to climatic drivers. Water Resour. Res. 2017, 53, 1167–1188. [Google Scholar] [CrossRef] [Green Version]
- Surdu, C.M.; Duguay, C.R.; Fernández Prieto, D. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations. Cryosphere 2016, 10, 941–960. [Google Scholar] [CrossRef] [Green Version]
- Klinge, M.; Dulamsuren, C.; Erasmi, S.; Karger, D.N.; Hauck, M. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia. Biogeosciences 2018, 15, 1319–1333. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.K.W.; Pollard, W.H.; Jones, B.M. Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environ. Res. Lett. 2019, 14, 055006. [Google Scholar] [CrossRef]
- Yi, S.; Zhou, Z.; Ren, S.; Xu, M.; Qin, Y.; Chen, S.; Ye, B. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau. Environ. Res. Lett. 2011, 6, 045403. [Google Scholar] [CrossRef]
- Yu, Q.; Epstein, H.E.; Engstrom, R.; Shiklomanov, N.; Strelestskiy, D. Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions. Environ. Res. Lett. 2015, 10, 124020. [Google Scholar] [CrossRef] [Green Version]
- Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia. Environ. Res. Lett. 2012, 7, 044021. [Google Scholar] [CrossRef]
- Lu, X.; Zhuang, Q. Areal changes of land ecosystems in the Alaskan Yukon River Basin from 1984 to 2008. Environ. Res. Lett. 2011, 6, 034012. [Google Scholar] [CrossRef]
- Bartsch, A.; Balzter, H.; George, C. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environ. Res. Lett. 2009, 4, 045021. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Guo, J.; Han, B.; Sun, Q.; Liu, L. The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau. Geomorphology 2009, 108, 182–190. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; English, J.; Chamberland, J.; Alasset, P.J. Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: A case study from Mayo, Yukon Territory, Canada. GIScience Remote Sens. 2019, 56, 485–510. [Google Scholar] [CrossRef]
- Boike, J.; Grau, T.; Heim, B.; Günther, F.; Langer, M.; Muster, S.; Gouttevin, I.; Lange, S. Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: Wetting, drying, and fires. Glob. Planet. Chang. 2016, 139, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Pastick, N.J.; Jorgenson, M.T.; Goetz, S.J.; Jones, B.M.; Wylie, B.K.; Minsley, B.J.; Genet, H.; Knight, J.F.; Swanson, D.K.; Jorgenson, J.C. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Chang. Biol. 2019, 25, 1171–1189. [Google Scholar] [CrossRef]
- Lara, M.J.; Genet, H.; McGuire, A.D.; Euskirchen, E.S.; Zhang, Y.; Brown, D.R.; Jorgenson, M.T.; Romanovsky, V.; Breen, A.; Bolton, W.R. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Glob. Chang. Biol. 2016, 22, 816–829. [Google Scholar] [CrossRef]
- Yamazaki, T.; Ohta, T.; Suzuki, R.; Ohata, T. Flux variation in a Siberian taiga forest near Yakutsk estimated by a one-dimensional model with routine data, 1986–2000. Hydrol. Process. Int. J. 2007, 21, 2009–2015. [Google Scholar] [CrossRef]
- Chimitdorzhiev, T.N.; Dagurov, P.N.; Bykov, M.E.; Dmitriev, A.V.; Kirbizhekova, I.I. Comparison of ALOS PALSAR interferometry and field geodetic leveling for marshy soil thaw/freeze monitoring, case study from the Baikal lake region, Russia. J. Appl. Remote Sens. 2016, 10, 016006. [Google Scholar] [CrossRef]
- Herzschuh, U.; Pestryakova, L.A.; Savelieva, L.A.; Heinecke, L.; Böhmer, T.; Biskaborn, B.K.; Andreev, A.; Ramisch, A.; Shinneman, A.L.; Birks, H.J.B. Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity. Nat. Commun. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jin, H.; He, R.; Huang, Y.; Wang, H.; Luo, D.; Jin, X.; Lü, L.; Wang, L.; Li, W.; et al. Effects of forest fires on the permafrost environment in the northern Da Xing’anling (Hinggan) mountains, Northeast China. Permafr. Periglac. Process. 2019, 30, 163–177. [Google Scholar] [CrossRef]
- Holloway, J.E.; Lamoureux, S.F.; Montross, S.N.; Lafrenière, M.J. Climate and terrain characteristics linked to mud ejection occurrence in the Canadian High Arctic. Permafr. Periglac. Process. 2016, 27, 204–218. [Google Scholar] [CrossRef] [Green Version]
- Eshqi Molan, Y.; Kim, J.W.; Lu, Z.; Wylie, B.; Zhu, Z. Modeling wildfire-induced permafrost deformation in an alaskan boreal forest using InSAR observations. Remote Sens. 2018, 10, 405. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, J.C.; Jorgenson, M.T.; Boldenow, M.L.; Orndahl, K.M. Landscape change detected over a half century in the Arctic National Wildlife Refuge using high-resolution aerial imagery. Remote Sens. 2018, 10, 1305. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wang, Q.; Xiao, Q.; Batkhishig, O.; Watanabe, M. Diverse responses of remotely sensed grassland phenology to interannual climate variability over frozen ground regions in Mongolia. Remote Sens. 2015, 7, 360–377. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Lan, H.; Li, L.; Wu, Y.; Li, Q. Characteristics of surface deformation detected by X-band SAR Interferometry over Sichuan-Tibet grid connection project area, China. Remote Sens. 2015, 7, 12265–12281. [Google Scholar] [CrossRef] [Green Version]
- Kizyakov, A.; Zimin, M.; Sonyushkin, A.; Dvornikov, Y.; Khomutov, A.; Leibman, M. Comparison of gas emission crater geomorphodynamics on Yamal and Gydan Peninsulas (Russia), based on repeat very-high-resolution stereopairs. Remote Sens. 2017, 9, 1023. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Liao, M.; Wang, T.; Zhang, L.; Shan, W.; Wang, C. Expressway deformation mapping using high-resolution TerraSAR-X images. Remote Sens. Lett. 2014, 5, 194–203. [Google Scholar] [CrossRef]
- Necsoiu, M.; Onaca, A.; Wigginton, S.; Urdea, P. Rock glacier dynamics in Southern Carpathian Mountains from high-resolution optical and multi-temporal SAR satellite imagery. Remote Sens. Environ. 2016, 177, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Darrow, M.M.; Meyer, F.J.; Daanen, R.P. Reconstructing movement history of frozen debris lobes in northern Alaska using satellite radar interferometry. Remote Sens. Environ. 2019, 221, 722–740. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.W.; Feng, G.C.; Wang, Q.J.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Dini, B.; Daout, S.; Manconi, A.; Loew, S. Classification of slope processes based on multitemporal DInSAR analyses in the Himalaya of NW Bhutan. Remote Sens. Environ. 2019, 233, 111408. [Google Scholar] [CrossRef]
- Juszak, I.; Erb, A.M.; Maximov, T.C.; Schaepman-Strub, G. Arctic shrub effects on NDVI, summer albedo and soil shading. Remote Sens. Environ. 2014, 153, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, M.; Grosse, G.; Chabrillat, S.; Schirrmeister, L. Spectral characterization of periglacial surfaces and geomorphological units in the Arctic Lena Delta using field spectrometry and remote sensing. Remote Sens. Environ. 2009, 113, 1220–1235. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Kang, S.; Chen, X.; Wu, H.; Wang, X.; Su, Z. Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ. 2018, 639, 1220–1232. [Google Scholar] [CrossRef]
- Nagai, H.; Fujita, K.; Nuimura, T.; Sakai, A. Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya. Cryosphere 2013, 7, 1303–1314. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Kimball, J.S.; Chen, R.H.; Moghaddam, M.; Miller, C.E. Sensitivity of active-layer freezing process to snow cover in Arctic Alaska. Cryosphere 2019, 13, 197–218. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, L.; Zhao, L.; Wu, T.; Li, Z.; Liu, G. Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry. Cryosphere 2017, 11, 997–1014. [Google Scholar] [CrossRef] [Green Version]
- Belshe, E.; Schuur, E.; Grosse, G. Quantification of upland thermokarst features with high resolution remote sensing. Environ. Res. Lett. 2013, 8, 035016. [Google Scholar] [CrossRef] [Green Version]
- Veremeeva, A.; Gubin, S. Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene. Permafr. Periglac. Process. 2009, 20, 399–406. [Google Scholar] [CrossRef]
- Davidson, S.J.; Santos, M.J.; Sloan, V.L.; Watts, J.D.; Phoenix, G.K.; Oechel, W.C.; Zona, D. Mapping Arctic tundra vegetation communities using field spectroscopy and multispectral satellite data in North Alaska, USA. Remote Sens. 2016, 8, 978. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Il’ya, A.P. Climate-induced larch growth response within the central Siberian permafrost zone. Environ. Res. Lett. 2015, 10, 125009. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Jorgenson, M.T.; Kielland, K.; Verbyla, D.L.; Prakash, A.; Koch, J.C. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing. Remote Sens. 2016, 8, 654. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lu, H.; Leung, L.R.; Yang, K.; Li, H.; Wang, W.; Han, M.; Chen, Y. Improving land surface temperature simulation in CoLM over the Tibetan Plateau through fractional vegetation cover derived from a remotely sensed clumping index and model-simulated leaf area index. J. Geophys. Res. Atmos. 2019, 124, 2620–2642. [Google Scholar] [CrossRef]
- Hachem, S.; Allard, M.; Duguay, C. Using the MODIS land surface temperature product for mapping permafrost: An application to Northern Quebec and Labrador, Canada. Permafr. Periglac. Process. 2009, 20, 407–416. [Google Scholar] [CrossRef]
- Klein, K.P.; Lantuit, H.; Heim, B.; Fell, F.; Doxaran, D.; Irrgang, A.M. Long-term high-resolution sediment and sea surface temperature spatial patterns in Arctic nearshore waters retrieved using 30-year landsat archive imagery. Remote Sens. 2019, 11, 2791. [Google Scholar] [CrossRef] [Green Version]
- Muster, S.; Langer, M.; Abnizova, A.; Young, K.L.; Boike, J. Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes. Remote Sens. Environ. 2015, 168, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Li, X.; Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W.; Riseborough, D.W. Permafrost monitoring and detection of climate change. Permafr. Periglac. Process. 1996, 7, 301–309. [Google Scholar] [CrossRef]
- Westermann, S.; Østby, T.; Gisnås, K.; Schuler, T.; Etzelmüller, B. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. Cryosphere 2015, 9, 1303–1319. [Google Scholar] [CrossRef] [Green Version]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Haq, M.A.; Baral, P. Study of permafrost distribution in Sikkim Himalayas using Sentinel-2 satellite images and logistic regression modelling. Geomorphology 2019, 333, 123–136. [Google Scholar] [CrossRef]
- Panda, S.; Prakash, A.; Jorgenson, M.; Solie, D. Near-surface permafrost distribution mapping using logistic regression and remote sensing in Interior Alaska. GIScience Remote Sens. 2012, 49, 346–363. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Klinge, M.; Degener, J.; Khishigjargal, M.; Chenlemuge, T.; Bat-Enerel, B.; Yeruult, Y.; Saindovdon, D.; Ganbaatar, K.; Tsogtbaatar, J.; et al. Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe. Glob. Chang. Biol. 2016, 22, 830–844. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Kang, S.; Wang, X.; Pepin, N.; Wu, H. Understanding changes in the water budget driven by climate change in cryospheric-dominated watershed of the northeast Tibetan Plateau, China. Hydrol. Process. 2019, 33, 1040–1058. [Google Scholar] [CrossRef] [Green Version]
- Ou, C.; Leblon, B.; Zhang, Y.; LaRocque, A.; Webster, K.; McLaughlin, J. Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat images in northern Ontario, Canada: Part 1–model calibration. Int. J. Remote Sens. 2016, 37, 2727–2750. [Google Scholar] [CrossRef]
- Ou, C.; LaRocque, A.; Leblon, B.; Zhang, Y.; Webster, K.; McLaughlin, J. Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat-2 images in Northern Ontario, Canada: Part 2–regional mapping. Int. J. Remote Sens. 2016, 37, 2751–2779. [Google Scholar] [CrossRef]
- Bibi, S.; Wang, L.; Li, X.; Zhang, X.; Chen, D. Response of groundwater storage and recharge in the Qaidam Basin (Tibetan Plateau) to climate variations from 2002 to 2016. J. Geophys. Res. Atmos. 2019, 124, 9918–9934. [Google Scholar] [CrossRef]
- Landerer, F.W.; Dickey, J.O.; Güntner, A. Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J. Geophys. Res. Atmos. 2010, 115, D23115. [Google Scholar] [CrossRef] [Green Version]
- Pastick, N.J.; Jorgenson, M.T.; Wylie, B.K.; Rose, J.R.; Rigge, M.; Walvoord, M.A. Spatial variability and landscape controls of near-surface permafrost within the Alaskan Yukon River basin. J. Geophys. Res. Biogeosci. 2014, 119, 1244–1265. [Google Scholar] [CrossRef]
- Kremer, M.; Lewkowicz, A.G.; Bonnaventure, P.P.; Sawada, M.C. Utility of classification and regression tree analyses and vegetation in mountain permafrost models, Yukon, Canada. Permafr. Periglac. Process. 2011, 22, 163–178. [Google Scholar] [CrossRef]
- Hugelius, G.; Kuhry, P.; Tarnocai, C.; Virtanen, T. Soil organic carbon pools in a periglacial landscape: A case study from the central Canadian Arctic. Permafr. Periglac. Process. 2010, 21, 16–29. [Google Scholar] [CrossRef]
- Panda, S.K.; Prakash, A.; Solie, D.N.; Romanovsky, V.E.; Jorgenson, M.T. Remote sensing and field-based mapping of permafrost distribution along the Alaska Highway corridor, interior Alaska. Permafr. Periglac. Process. 2010, 21, 271–281. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, T.; Wu, Q.; Sheng, Y.; Zhao, L.; Zou, D. Permafrost zonation index map and statistics over the Qinghai–Tibet Plateau based on field evidence. Permafr. Periglac. Process. 2019, 30, 178–194. [Google Scholar] [CrossRef]
- Etzelmüller, B.; Heggem, E.S.F.; Sharkhuu, N.; Frauenfelder, R.; Kääb, A.; Goulden, C. Mountain permafrost distribution modelling using a multi-criteria approach in the Hövsgöl area, northern Mongolia. Permafr. Periglac. Process. 2006, 17, 91–104. [Google Scholar] [CrossRef]
- Bai, X.; Yang, J.; Tao, B.; Ren, W. Spatio-Temporal Variations of Soil Active Layer Thickness in Chinese Boreal Forests from 2000 to 2015. Remote Sens. 2018, 10, 1225. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Niu, F.; Yang, C.; Che, T.; Lin, Z.; Luo, J. Permafrost presence/absence mapping of the Qinghai–Tibet Plateau based on multi-source remote sensing data. Remote Sens. 2018, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.H.; Kokelj, S.V.; Lantz, T.C.; McFarlane-Winchester, M.; Olthof, I.; Lacelle, D. Climate sensitivity of high Arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sens. 2018, 10, 954. [Google Scholar] [CrossRef] [Green Version]
- Muskett, R.R.; Romanovsky, V.E. Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements. Remote Sens. 2011, 3, 378–397. [Google Scholar] [CrossRef] [Green Version]
- Gagarin, L.; Wu, Q.; Melnikov, A.; Volgusheva, N.; Tananaev, N.; Jin, H.; Zhang, Z.; Zhizhin, V. Morphometric Analysis of Groundwater Icings: Intercomparison of Estimation Techniques. Remote Sens. 2020, 12, 692. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Yang, Y.; Yang, D.; Dafflon, B.; Lei, H.; Yang, H. Satellite-based simulation of soil freezing/thawing processes in the northeast Tibetan Plateau. Remote Sens. Environ. 2019, 231, 111269. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, L.; Cui, H.; Wang, G.; Yang, J.; Liu, X.; Su, X. Evaluation and analysis of SMAP, AMSR2 and MEaSUREs freeze/thaw products in China. Remote Sens. Environ. 2020, 242, 111734. [Google Scholar] [CrossRef]
- Yin, G.; Niu, F.; Lin, Z.; Luo, J.; Liu, M. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai–Tibet Plateau, China. Sci. Total Environ. 2017, 581, 472–485. [Google Scholar] [CrossRef]
- Yi, Y.; Kimball, J.S.; Chen, R.H.; Moghaddam, M.; Reichle, R.H.; Mishra, U.; Zona, D.; Oechel, W.C. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska. Cryosphere 2018, 12, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Bernard-Grand’Maison, C.; Pollard, W. An estimate of ice wedge volume for a High Arctic polar desert environment, Fosheim Peninsula, Ellesmere Island. Cryosphere 2018, 12, 3589–3604. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Baughman, C.A.; Romanovsky, V.E.; Parsekian, A.D.; Babcock, E.L.; Stephani, E.; Jones, M.C.; Grosse, G.; Berg, E.E. Presence of rapidly degrading permafrost plateaus in south-central Alaska. Cryosphere 2016, 10, 2673–2692. [Google Scholar] [CrossRef] [Green Version]
- Riseborough, D.; Shiklomanov, N.; Etzelmüller, B.; Gruber, S.; Marchenko, S. Recent advances in permafrost modelling. Permafr. Periglac. Process. 2008, 19, 137–156. [Google Scholar] [CrossRef]
- Pastick, N.J.; Jorgenson, M.T.; Wylie, B.K.; Minsley, B.J.; Ji, L.; Walvoord, M.A.; Smith, B.D.; Abraham, J.D.; Rose, J.R. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats Ecoregion, Central Alaska. Permafr. Periglac. Process. 2013, 24, 184–199. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jin, R.; Pan, X.; Zhang, T.; Guo, J. Changes in the near-surface soil freeze–thaw cycle on the Qinghai–Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 33–42. [Google Scholar] [CrossRef]
- Roy, A.; Royer, A.; Derksen, C.; Brucker, L.; Langlois, A.; Mialon, A.; Kerr, Y.H. Evaluation of spaceborne L-band radiometer measurements for terrestrial freeze/thaw retrievals in Canada. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4442–4459. [Google Scholar] [CrossRef]
- Fuchs, M.; Lenz, J.; Jock, S.; Nitze, I.; Jones, B.M.; Strauss, J.; Günther, F.; Grosse, G. Organic carbon and nitrogen stocks along a thermokarst lake sequence in Arctic Alaska. J. Geophys. Res. Biogeosci. 2019, 124, 1230–1247. [Google Scholar] [CrossRef]
- Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.M. Organic carbon and total nitrogen stocks in soils of the Lena River Delta. Biogeosciences 2013, 10, 3507–3524. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency. Sentinel-2 Mission Details. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2 (accessed on 1 September 2020).
- European Space Agency. Copernicus: Sentinel-1-The SAR Imaging Constellation for Land and Ocean Services. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-1 (accessed on 1 September 2020).
- NOAA Earth System Research Laboratories. NOAA Cooperative Global Air Sampling Network-Greenhouse Gases. Available online: https://www.esrl.noaa.gov/gmd/obop/mlo/programs/esrl/ccg/ccg.html (accessed on 28 October 2020).
- Dietz, A.J.; Kuenzer, C.; Dech, S. Global SnowPack: A new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sens. Lett. 2015, 6, 844–853. [Google Scholar] [CrossRef]
- Metsämäki, S.; Pulliainen, J.; Salminen, M.; Luojus, K.; Wiesmann, A.; Solberg, R.; Böttcher, K.; Hiltunen, M.; Ripper, E. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sens. Environ. 2015, 156, 96–108. [Google Scholar] [CrossRef]
- Larue, F.; Royer, A.; De Sève, D.; Langlois, A.; Roy, A.; Brucker, L. Validation of GlobSnow-2 snow water equivalent over Eastern Canada. Remote Sens. Environ. 2017, 194, 264–277. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Dietz, A.J.; Kuenzer, C. Global WaterPack–A 250 m resolution dataset revealing the daily dynamics of global inland water bodies. Remote Sens. Environ. 2017, 198, 345–362. [Google Scholar] [CrossRef]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Walker, D.A.; Raynolds, M.K.; Daniëls, F.J.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 2005, 16, 267–282. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Takaku, J.; Tadono, T.; Tsutsui, K.; Ichikawa, M. Validation of “AW3D” global DSM generated from Alos Prism. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Morin, P.; Porter, C.; Cloutier, M.; Howat, I.; Noh, M.J.; Willis, M.; Bates, B.; Willamson, C.; Peterman, K. ArcticDEM; a publically available, high resolution elevation model of the Arctic. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17–22 April 2016; p. EPSC2016-8396. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Hugelius, G.; Bockheim, J.G.; Camill, P.; Elberling, B.; Grosse, G.; Harden, J.W.; Johnson, K.; Jorgenson, T.; Koven, C.; Kuhry, P.; et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data (Online) 2013, 5, 393–402. [Google Scholar] [CrossRef] [Green Version]
- FAO; IIASA; ISRIC; ISSCAS; JRC. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria. 2012. Available online: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4 (accessed on 11 September 2020).
- FAO; IIASA; ISRIC; ISSCAS; JRC. Harmonized World Soil Database v 1.2. 2020. Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 11 September 2020).
- Dorigo, W.; Gruber, A.; De Jeu, R.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.S.; Glassy, J.M.; Du, J. An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing. Earth Syst. Sci. Data 2017, 9, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Hinkel, K.M.; Nelson, F. The circumpolar active layer monitoring (CALM) program: Research designs and initial results. Polar Geogr. 2000, 24, 166–258. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Z.; Ma, W.; Yi, S.; Zhuang, Y. PIC v1. 3: Comprehensive R package for computing permafrost indices with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau. Geosci. Model Dev. 2018, 11, 2475–2491. [Google Scholar] [CrossRef] [Green Version]
- Haas, A.; Grosse, G.; Heim, B.; Schäfer-Neth, C.; Laboor, S.; Nitze, I.; Bartsch, A.; Seifert, F.M. PerSYS–Permafrost Information System Web-GIS: Visualization of permafrost-related Remote Sensing products for ESA GlobPermafrost. In Proceedings of the 2nd Asian Conference On Permafrost, Hokkaido University, Sapporo, Japan, 2–6 July 2017. [Google Scholar]
- Diepenbroek, M.; Grobe, H.; Reinke, M.; Schindler, U.; Schlitzer, R.; Sieger, R.; Wefer, G. PANGAEA—An information system for environmental sciences. Comput. Geosci. 2002, 28, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- National Snow and Ice Data Center (NSIDC). National Snow and Ice Data Center. 2020. Available online: https://nsidc.org/ (accessed on 25 September 2020).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Nyland, K.E.; Gunn, G.E.; Shiklomanov, N.I.; Engstrom, R.N.; Streletskiy, D.A. Land cover change in the lower Yenisei River using dense stacking of landsat imagery in Google Earth Engine. Remote Sens. 2018, 10, 1226. [Google Scholar] [CrossRef] [Green Version]
- Langford, Z.L.; Kumar, J.; Hoffman, F.M.; Breen, A.L.; Iversen, C.M. Arctic vegetation mapping using unsupervised training datasets and convolutional neural networks. Remote Sens. 2019, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liljedahl, A.K.; Kanevskiy, M.; Epstein, H.E.; Jones, B.M.; Jorgenson, M.T.; Kent, K. Transferability of the Deep Learning Mask R-CNN Model for Automated Mapping of Ice-Wedge Polygons in High-Resolution Satellite and UAV Images. Remote Sens. 2020, 12, 1085. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Witharana, C.; Liljedahl, A.K.; Kanevskiy, M. Deep convolutional neural networks for automated characterization of arctic ice-wedge polygons in very high spatial resolution aerial imagery. Remote Sens. 2018, 10, 1487. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, A.; Pointner, G.; Ingeman-Nielsen, T.; Lu, W. Towards Circumpolar Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2. Remote Sens. 2020, 12, 2368. [Google Scholar] [CrossRef]
- Brothers, L.L.; Hart, P.E.; Ruppel, C.D. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf. Geophys. Res. Lett. 2012, 39, L15501. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.E. Marine transgression, shoreline emergence: Evidence in seabed and terrestrial ground temperatures of changing relative sea levels, Arctic Canada. J. Geophys. Res. Solid Earth 1991, 96, 6893–6909. [Google Scholar] [CrossRef]
- Rachold, V.; Bolshiyanov, D.Y.; Grigoriev, M.N.; Hubberten, H.W.; Junker, R.; Kunitsky, V.V.; Merker, F.; Overduin, P.; Schneider, W. Nearshore Arctic subsea permafrost in transition. Eos Trans. Am. Geophys. Union 2007, 88, 149–150. [Google Scholar] [CrossRef] [Green Version]
- Angelopoulos, M.; Overduin, P.P.; Miesner, F.; Grigoriev, M.N.; Vasiliev, A.A. Recent advances in the study of Arctic submarine permafrost. Permafr. Periglac. Process. 2020, 31, 442–453. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Beck, P.S.; et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 2020, 10, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Kokelj, S.V.; Jorgenson, M. Advances in thermokarst research. Permafr. Periglac. Process. 2013, 24, 108–119. [Google Scholar] [CrossRef]
Name | Objective | Runtime |
---|---|---|
Global Terrestrial Network for Permafrost (GTN-P) [95,96] | Organization and management of permafrost data. | since 1998 |
Swiss Permafrost Monitoring Network (PERMOS) [97,98] | Documentation of the state and changes of mountain permafrost in the Swiss Alps. | since 2000 |
PermaNET–Permafrost Long-Term Monitoring Network [99,100] | Alpine-wide permafrost monitoring. | 2007–2013 |
Permafrost Carbon Network [101] | Quantifying the role of permafrost on future climate change. | since 2011 |
ArcticNet [102,103] | Studying the impacts of climate change in the Canadian North. | since 2003 |
Cooperative Global Air Sampling Network [104] | International effort in gathering regular discrete air flask samples. | since 1967 |
PAGE21 [105] | Studying the vulnerability of permafrost environments and feedback mechanisms associated with rising greenhouse gas emissions. | 2011–2015 |
Circumpolar Active Layer Monitoring (CALM) [106,107] | Observing the response of near-surface permafrost and the active layer to climate change over long (multi-decadal) time scales. | since 1991 |
Thermal State of Permafrost (TSP) [28,108] | Database for assessing the changes in temperatures and distribution of permafrost. | since 2007 |
ESA Atmosphere-Land Interactions Study (ALANIS) [109,110] | Interaction and contribution of boreal Eurasia to greenhouse gas concentration. | 2010–2012 |
ESA Data User Element (DUE) Permafrost [111,112] | Establishment of a satellite based systematic permafrost monitoring program. | 2009–2012 |
ESA GlobPermafrost [113,114] | Development, validation and implementation of permafrost related products by integrating Earth observation data. | 2016–2019 |
ESA CCI Permafrost [91,92] | Development of permafrost maps as Essential Climate Variables (ECV) products via satellite measurements. | 2018–2021 |
Arctic-Boreal Vulnerability Experiment (ABoVE) [115,116] | Major field campaign in Alaska and western Canada to help understand and predict ecosystem responses of climate change in Boreal regions and the Arctic. | since 2015 |
Climate and Cryosphere (CliC) [117,118] | Improve our understanding of the cryosphere and its interactions with the global climate system as well as to strengthen the utilization of cryospheric observations for climate change detection. | since 2001 |
Next-Generation Ecosystem Experiments (NGEE) Arctic [119,120] | Improving our predictive understanding of carbon-rich Arctic system feedbacks and processes to the climate. | 2012–2022 |
Study of Environmental Arctic Change (SEARCH) [121,122] | Understanding the impact of degrading permafrost and shrinking land/sea ice on the Arctic and global systems. | since 2001 |
PermaSAR [123] | Development of methodologies to detect subsidence through remote sensing analysis in permafrost regions. | 2015–2019 |
SatPerm-Satellite-based Permafrost Modeling across a Range of Scales [124] | Investigating the feasibility of satellite data sets as input for permafrost modeling. | 2015–2018 |
COmbining remote sensing and field studies for assessment of Landform Dynamics and permafrost state on Yamal (COLD Yamal) [125] | Development of methodologies for monitoring permafrost and related land surface features on the Yamal peninsula. | 2013–2016 |
Horizon 2020 Nunataryuk [126,127] | Analysing the impacts of thawing subsea and coastal permafrost and developing mitigation strategies for the Arctic coastal population. | 2017–2022 |
Modular Observation Solutions for Earth Systems (MOSES) [128] | A joint observing system that primarily targets four events: hydrological extreme events, ocean eddies, heat waves and the thawing of permafrost. | 2017–2021 |
PETA-CARB [129] | Quantification of the distribution, amount and vulnerability of deep carbon stocks in permafrost deposits. | 2013–2018 |
CARBOPERM [130] | Investigations in the formation, turnover and the release of organic carbon stored in northern Siberian permafrost landscapes. | 2013–2016 |
KoPf [131] | Joint research project dedicated to examine carbon dynamics in permafrost-affected northeastern Siberian landscapes via mathematical models and field observations. | 2017–2020 |
Changing Arctic Carbon cycle in the cOastal Ocean Near-shore (CACOON) [132] | Quantifying the effects of thawing terrestrial permafrost and changing freshwater exports of organic matter to Arctic coastal waters. | 2018–2021 |
Author | Year | Title |
---|---|---|
Zhang et al. [133] | 2004 | Application of Satellite Remote Sensing Techniques to Frozen Ground Studies |
Kääb et al. [134] | 2005 | Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview |
Kääb [135] | 2008 | Remote sensing of permafrost-related problems and hazards |
National Research Council [136] | 2014 | Opportunities to use remote sensing in understanding permafrost and related ecological characteristics: Report of a workshop |
Arenson et al. [137] | 2016 | Detection and analysis of ground deformation in permafrost environments |
Jorgenson and Grosse [76] | 2016 | Remote Sensing of Landscape Change in Permafrost Regions |
Bartsch et al. [22] | 2016 | Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges |
Trofaier et al. [23] | 2017 | Progress in space-borne studies of permafrost for climate science: Towards a multi-ECV approach |
Duncan et al. [93] | 2020 | Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone |
Journal Name | Number of Reviewed Articles | Impact Factor 2019 | Impact Factor 5 Year |
---|---|---|---|
Remote Sensing | 60 | 4.5 | 5 |
Remote Sensing of Environment | 34 | 9.1 | 9.6 |
Permafrost and Periglacial Processes | 29 | 2.7 | 2.7 |
Environmental Research Letters | 28 | 6.1 | 6.7 |
The Cryosphere | 21 | 4.7 | 4.9 |
Geomorphology | 17 | 3.8 | 3.9 |
Journal of Geophysical Research: Biogeosciences | 15 | 3.4 | 4.2 |
Biogeosciences | 14 | 3.5 | 4.2 |
Global Change Biology | 14 | 8.6 | 9.8 |
Journal of Geophysical Research: Earth Surface | 10 | 3.6 | 4 |
Hydrological Processes | 10 | 3.3 | 3.6 |
International Journal of Remote Sensing | 8 | 3 | 2.7 |
Journal of Geophysical Research: Atmospheres | 8 | 3.8 | 4.3 |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 7 | 3.8 | 3.9 |
Science of the Total Environment | 7 | 6.6 | 6.4 |
Scientific Reports | 6 | 4 | 4.6 |
IEEE Transactions on Geoscience and Remote Sensing | 5 | 5.9 | 6 |
Water Resources Research | 5 | 4.3 | 5 |
Nature Communications | 4 | 12.1 | 13.6 |
Nature Geoscience | 3 | 13.6 | 16.1 |
Journal of Applied Remote Sensing | 3 | 1.4 | 1.3 |
GIScience & Remote Sensing | 3 | 6 | 4.2 |
Global and Planetary Change | 3 | 4.4 | 5.1 |
Remote Sensing Letters | 2 | 2.3 | 2.4 |
International Journal of Applied Earth Observation and Geoinformation | 2 | 4.7 | 5.4 |
Frontiers in Earth Science | 2 | 2.7 | NA |
ISPRS Journal of Photogrammetry and Remote Sensing | 2 | 7.3 | 8.6 |
IEEE Geoscience and Remote Sensing Letters | 1 | 3.8 | 3.7 |
Earth System Science Data | 1 | 9.2 | 9.6 |
Palaeogeography, Palaeoclimatology, Palaeoecology | 1 | 2.8 | 3 |
Total | 325 |
Name | Spatial Resolution | Temporal Resolution | Reference |
---|---|---|---|
Greenhouse Gases | |||
Cooperative Global Air Sampling Network | in-situ observations | since 1967 (varies) | [104] |
Snow Cover and Snow Water Equivalent | |||
Global Snow Pack | 500 m | since 2000 (daily) | Dietz et al. [450] |
ESA GlobSnow SWE | 20 km | since 1979 (daily) | Metsämäki et al. [451] |
ESA GlobSnow SE | 1 km | since 1995 (daily) | Larue et al. [452] |
Surface Water | |||
Global WaterPack | 250 m | since 2003 (daily) | Klein et al. [454] |
Global Surface Water | 30 m | since 1984 (monthly) | Pekel et al. [453] |
Permafrost Region Pond and Lake (PeRL) database | <5 m | 2002–2013 | Muster et al. [156] |
Coastal Dynamics | |||
Arctic Coastal Dynamics Database | varies | 2012 | Lantuit et al. [73] |
Land Cover | |||
ESA CCI land cover | 300 m | 1992–2015 (annual) | Plummer et al. [455] |
MODIS land cover | 500 m | since 2001 (annual) | Friedl et al. [456] |
GlobeLand30 | 30 m | 2000, 2010 | Jun et al. [457] |
GLC2000 | 1 km | 2000 | Bartholome and Belward [458] |
Circumpolar Arctic Vegetation Map (CAVM) Raster Version | 1 km | 2003 | Raynolds et al. [162] |
Trends of land surface change from Landsat | 30 m | 1999–2014 | Nitze et al. [179] |
Digital Elevation and Surface Models | |||
ArcticDEM | 2 m | 2016 | Morin et al. [462] |
SRTM | 30 m | 2000 | Farr et al. [460] |
ALOS DSM | 30 m | 2006–2011 | Takaku et al. [461] |
Soil Properties | |||
SoilGrids | 250 m | 2017 | Hengl et al. [463] |
Harmonized World Soil Database | 30 arc-seconds | 2012 | FAO et al. [465] |
Northern Circumpolar Soil Carbon Database version 2 (NCSCDv2) | 0.012 degrees | 2013 | Hugelius et al. [464] |
ESA CCI Soil Moisture | 0.25 degrees | 1978–2019 (daily) | Dorigo et al. [467] |
Freeze/Thaw Dynamics | |||
MEaSUREs Global Record of Daily Landscape Freeze/Thaw Status | 25 km | 1979–2017 (daily) | Kim et al. [468] |
Active Layer Thickness | |||
Circumpolar Active Layer Monitoring (CALM) program | in-situ observations | since 1990 (annual) | Brown et al. [469] |
Borehole Measurements | |||
Thermal State of Permafrost (TSP) program | in-situ observations | 2007–2009 | Biskaborn et al. [95] |
Permafrost Extent and Ground Temperature Maps | |||
Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2 | Scale of 1:10,000,000 | 2002 | Brown et al. [1] |
Permafrost Extent and Ground Temperature Map | 1 km | 2000–2016 | Obu et al. [415] |
Pan-Antarctic map of near-surface permafrost temperatures | 1 km | 2000–2017 | Obu et al. [163] |
Name | Description | Reference |
---|---|---|
Databases | ||
GTN-P database | Active Layer Thaw Depth & Permafrost Temperatures | Biskaborn et al. [95] |
The Permafrost Information System (PerSys) | Portal for GlobPermafrost products, related results and data sets-Including ground and surface temperature, permafrost extent, Freeze/Thaw dynamics and others | Haas et al. [471] |
PANGAEA | Data publisher and library for Earth and environmental science | Diepenbroek et al. [472] |
National Snow & Ice Data Center | Management and distribution of cryospheric data | National Snow and Ice Data Center (NSIDC) [473] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philipp, M.; Dietz, A.; Buchelt, S.; Kuenzer, C. Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review. Remote Sens. 2021, 13, 1217. https://doi.org/10.3390/rs13061217
Philipp M, Dietz A, Buchelt S, Kuenzer C. Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review. Remote Sensing. 2021; 13(6):1217. https://doi.org/10.3390/rs13061217
Chicago/Turabian StylePhilipp, Marius, Andreas Dietz, Sebastian Buchelt, and Claudia Kuenzer. 2021. "Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review" Remote Sensing 13, no. 6: 1217. https://doi.org/10.3390/rs13061217
APA StylePhilipp, M., Dietz, A., Buchelt, S., & Kuenzer, C. (2021). Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review. Remote Sensing, 13(6), 1217. https://doi.org/10.3390/rs13061217