Simulation of Dynamic Urban Expansion under Ecological Constraints Using a Long Short Term Memory Network Model and Cellular Automata
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. LSTM-CA Model
3.2. Partitioning of Ecological Suitability
3.2.1. Identification of Ecological Sources
3.2.2. Identification of Resistance Surfaces
3.2.3. Minimum Cumulative Resistance Model
4. Results
4.1. Spatiotemporal Pattern Evolution of Urban Expansion in Lanzhou
4.2. Verification of Urban Expansion Simulation Model
4.3. Partitioning of Ecological Suitability
4.4. Simulation and Prediction of Dynamic Urban Expansion to 2030
5. Discussion
5.1. LSTM-CA: A Reliable Coupled Model for Urban Expansion Simulation
5.2. Necessity of Ecological Constraints on Urban Expansion
5.3. Limitations and Future Work Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dataset | Format | Resolution | Time | Data Source |
---|---|---|---|---|
Land use/cover | Vector (Polygon) | 30 m | 2000, 2010, 2020 | Global Geographic Information Product Platform (http://www.globallandcover.com) (accessed on 15 November 2020) |
Nighttime light | Vector (Polygon) | 130 m | 2018 | Application Platform of High-resolution Earth Observation System for Hubei Province, China (http://59.175.109.173:8888) (accessed on 16 November 2020) |
Faults | Vector (Polyline) | “Gansu Hydrogeological Map” (Gansu Bureau of Geology and Mineral Hydrogeology engineering Geological Exploration Institute) (http://www.gssgy.com) (accessed on 15 November 2019) | ||
DEM | Raster | 30 m | 2015 | USGS Earth Explorer (https://earthexplorer.usgs.gov) (accessed on 26 December 2019) |
Slope | Raster | 30 m | 2015 | USGS Earth Explorer (https://earthexplorer.usgs.gov) (accessed on 26 December 2019) |
NDVI | Raster | 30 m | 2015 | MODIS (https://modis.gsfc.nasa.gov) (accessed on 20 December 2020) |
Settlements | Vector (Point) | 2019 | Crawled POI data Official website of Gold Maps (https://lbs.amap.com) (accessed on 14 December 2020) | |
Roads | Vector (Polygon) | 2020 | Open Street Map (https://webmap.cn) (accessed on 13 December 2020) | |
Temperature | Raster | 2015 | China Meteorological Data Service Centre (http://data.cma.cn) (accessed on 14 November 2020) | |
Precipitation | Raster | 2015 | China Meteorological Data Service Centre (http://data.cma.cn) (accessed on 2 November 2019) | |
Natural protected areas | Vector (Polygon) | 2015 | Portal website of Gansu Forestry and Grass Bureau and its administrative departments (http://lycy.gansu.gov.cn) (accessed on 25 December 2019) | |
Population density | Excel | 2017 | Data Center for Resources and Environmental Sciencesof the Chinese Academy of Sciences (http://www.resdc.cn) (accessed on 28 December 2019) | |
GDP | Excel | 2017 | Data Center for Resources and Environmental Sciencesof the Chinese Academy of Sciences (http://www.resdc.cn) (accessed on 28 December 2019) | |
Vegetation type | Raster | 1 km | 2001 | Data Center for Resources and Environmental Sciencesof the Chinese Academy of Sciences (http://www.resdc.cn) (accessed on 28 December 2019) |
Surface evapotranspiration | Raster | 1 km | 2014 | MOD16 (https://modis.gsfc.nasa.gov) (accessed on 20 December 2019) |
Airports | Vector (Point) | 2019 | Crawled POI data Official website of Gold Maps (https://lbs.amap.com) (accessed on 14 December 2020) | |
NPP | Raster | 2010 | Data Center for Resources and Environmental Sciencesof the Chinese Academy of Sciences (http://www.resdc.cn) (accessed on 28 December 2019) |
References
- Li, S.; Bing, Z.; Jin, G. Spatially explicit mapping of soil conservation service in monetary units due to land use/cover change for the three Gorges reservoir area, China. Remote. Sens. 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Wang, L.; Huang, X.; Gong, W.; Xia, X. Greening in rural areas increases the surface urban Heat island intensity. Geophys. Res. Lett. 2019, 46, 2204–2212. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban For. Urban Green. 2015, 14, 39–47. [Google Scholar] [CrossRef]
- Zhao, M.; Cai, H.; Qiao, Z.; Xu, X. Influence of urban expansion on the urban heat island effect in Shanghai. Int. J. Geogr. Inf. Sci. 2016, 30, 2421–2441. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China. Ecol. Indic. 2020, 119, 106841. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Huang, H.; Ma, S. Simulating urban growth boundaries using a patch-based cellular automaton with economic and ecological constraints. Int. J. Geogr. Inf. Sci. 2018, 33, 55–80. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total. Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Ling, H.; Yan, J.; Xu, H.; Guo, B.; Zhang, Q. Estimates of shifts in ecosystem service values due to changes in key factors in the Manas River basin, northwest China. Sci. Total. Environ. 2019, 659, 177–187. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; He, C.; Tu, M. Climate change will constrain the rapid urban expansion in drylands: A scenario analysis with the zoned Land Use Scenario Dynamics-urban model. Sci. Total Environ. 2019, 651, 2772–2786. [Google Scholar] [CrossRef]
- Huber, L.; Rüdisser, J.; Meisch, C.; Stotten, R.; Leitinger, G.; Tappeiner, U. Agent-based modelling of water balance in a social-ecological system: A multidisciplinary approach for mountain catchments. Sci. Total Environ. 2021, 755, 142962. [Google Scholar] [CrossRef]
- Xu, T.; Gao, J.; Coco, G.; Wang, S. Urban expansion in Auckland, New Zealand: A GIS simulation via an intelligent self-adapting multiscale agent-based model. Int. J. Geogr. Inf. Sci. 2020, 34, 2136–2159. [Google Scholar] [CrossRef]
- Bununu, Y.A. Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion. Int. J. Urban Sci. 2016, 21, 217–237. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Yao, Y.; Hong, Y.; Jinbao, Z. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques. Int. J. Geogr. Inf. Sci. 2018, 32, 2076–2097. [Google Scholar] [CrossRef]
- Choung, Y.-J.; Kim, J.-M. Study of the relationship between urban expansion and pm10 concentration using multi-temporal spatial datasets and the machine learning technique: Case study for Daegu, South Korea. Appl. Sci. 2019, 9, 1098. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Luo, X.; Tong, X.; Hu, Z.; Wu, G. Improving urban land cover/use mapping by integrating a hybrid convolutional neural network and an automatic training sample expanding strategy. Remote. Sens. 2020, 12, 2292. [Google Scholar] [CrossRef]
- Eldan, R.; Shamir, O. The power of depth for feedforward neural networks. arXiv 2015, arXiv:1512.03965. [Google Scholar]
- Golowich, N.; Rakhlin, A.; Shamir, O. Size-independent sample complexity of neural networks. Inf. Inference A J. IMA 2020, 9, 473–504. [Google Scholar] [CrossRef]
- Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L. The expressive power of neural networks: A view from the width. arXiv 2017, arXiv:1709.02540. [Google Scholar]
- Qi, J.; Du, J.; Siniscalchi, S.M.; Ma, X.; Lee, C.-H. Analyzing upper bounds on mean absolute errors for deep neural network-based vector-to-vector regression. IEEE Trans. Signal Process. 2020, 68, 3411–3422. [Google Scholar] [CrossRef]
- Zhai, Y.; Yao, Y.; Guan, Q.; Liang, X.; Li, X.; Pan, Y.; Yue, H.; Yuan, Z.; Zhou, J. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int. J. Geogr. Inf. Sci. 2020, 34, 1475–1499. [Google Scholar] [CrossRef]
- Cao, C.; Dragićević, S.; Li, S. Short-term forecasting of land use change using recurrent neural network models. Sustainability 2019, 11, 5376. [Google Scholar] [CrossRef] [Green Version]
- Morchid, M.; Int Speech Commun, A. Internal memory gate for recurrent neural networks with application to spoken language understanding. In Proceedings of the 18th Annual Conference of the International Speech Communication Association, Stockholm, Sweden, 20–24 August 2017; pp. 3316–3319. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Kolter, J.Z.; Koltun, V. Trellis networks for sequence modeling. arXiv 2018, arXiv:1810.06682. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Y.; Liu, L.; Wang, D.; Yu, G. Attention based hierarchical LSTM network for context-aware microblog sentiment classification. World Wide Web. 2019, 22, 59–81. [Google Scholar] [CrossRef]
- Hua, Y.; Mou, L.; Zhu, X.X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification. ISPRS J. Photogramm. Remote. Sens. 2019, 149, 188–199. [Google Scholar] [CrossRef]
- Xue, Z.; Xue, Y. Multi long-short term memory models for short term traffic flow prediction. IEICE Trans. Inf. Syst. 2018, E101.D, 3272–3275. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Sun, X.-K. Volcanic ash cloud diffusion from remote sensing image using LSTM-CA method. IEEE Access 2020, 8, 54681–54690. [Google Scholar] [CrossRef]
- Thapa, R.B.; Murayama, Y. Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landsc. Urban Plan. 2012, 105, 140–148. [Google Scholar] [CrossRef]
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total. Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Gaaff, A.; Reinhard, S. Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning. Ecol. Econ. 2012, 73, 66–74. [Google Scholar] [CrossRef]
- Peng, W.; Pivato, A.; Lavagnolo, M.C.; Raga, R. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate. Waste Manag. 2018, 74, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Chen, L.; Lian, L.; Li, Y.; Zhao, L.; Zhou, S.; Mao, X.; Huang, T.; Gao, H.; et al. WRF-Chem simulations of ozone pollution and control strategy in petrochemical industrialized and heavily polluted Lanzhou City, Northwestern China. Sci. Total Environ. 2020, 737, 139835. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Du, Z.; Yin, D.; Yang, J.; Dong, L.; Li, P. Size-resolved carbonaceous aerosols at near surface level and the hilltop in a typical valley city, China. Atmospheric Pollut. Res. 2020, 11, 129–140. [Google Scholar] [CrossRef]
- Juang, C.H.; Dijkstra, T.; Wasowski, J.; Meng, X. Loess geohazards research in China: Advances and challenges for mega engineering projects. Eng. Geol. 2019, 251, 1–10. [Google Scholar] [CrossRef]
- He, S.; Wang, X.; Dong, J.; Wei, B.; Duan, H.; Jiao, J.; Xie, Y. Three-dimensional urban expansion analysis of Valley-type cities: A case study of Chengguan district, Lanzhou, China. Sustainability 2019, 11, 5663. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Chu, X.; Li, Z.; Jia, S.; Wang, G. Incorporating ecosystem services into agricultural management based on land use/cover change in Northeastern China. Technol. Forecast. Soc. Chang. 2019, 144, 401–411. [Google Scholar] [CrossRef]
- Sundermeyer, M.; Schlueter, R.; Ney, H. LSTM Neural Networks for Language Modeling. In Proceedings of the INTERSPEECH 2012 13th Annual Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012; pp. 194–197. [Google Scholar]
- Petrosillo, I.; Zaccarelli, N.; Semeraro, T.; Zurlini, G. The effectiveness of different conservation policies on the security of natural capital. Landsc. Urban Plan. 2009, 89, 49–56. [Google Scholar] [CrossRef]
- Posner, S.; Verutes, G.; Koh, I.; Denu, D.; Ricketts, T. Global use of ecosystem service models. Ecosyst. Serv. 2016, 17, 131–141. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Kremen, C.; Merenlender, A.M. Landscapes that work for biodiversity and people. Science 2018, 362, eaau6020. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Devi, M.; Deshmukh, B. Integrated remote sensing and geographic information system based rusle modelling for estimation of soil loss in western Himalaya, India. Water Resour. Manag. 2014, 28, 3307–3317. [Google Scholar] [CrossRef]
- Harrison, P.A. Ecosystem services and biodiversity conservation: An introduction to the RUBICODE project. Biodivers. Conserv. 2010, 19, 2767–2772. [Google Scholar] [CrossRef]
- Krishnaswamy, J.; Bawa, K.S.; Ganeshaiah, K.; Kiran, M. Quantifying and mapping biodiversity and ecosystem services: Utility of a multi-season NDVI based Mahalanobis distance surrogate. Remote Sens. Environ. 2009, 113, 857–867. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Velázquez, J.; Gutiérrez, J.; Hernando, A.; García-Abril, A. Evaluating landscape connectivity in fragmented habitats: Cantabrian capercaillie (Tetrao urogallus cantabricus) in northern Spain. For. Ecol. Manag. 2017, 389, 59–67. [Google Scholar] [CrossRef]
- Zhong, S.-Y.; Wu, Q.; Li, Y.; Cheng, J.-P. Reconstruction of urban land space based on minimum cumulative resistance model: A case study of Xintang Town, Guangzhou City. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2012, 23, 3173–3179. [Google Scholar]
- Li, G.; Sun, S.; Fang, C. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’Aari, Z.H. Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio. Int. J. Appl. Earth Obs. Geoinformation 2017, 59, 65–78. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Zhang, Y.; Huang, M. Tele-connecting China’s future urban growth to impacts on ecosystem services under the shared socioeconomic pathways. Sci. Total Environ. 2019, 652, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Zhang, Q.; Joshi, P.; Sutton, P.C.; Keesstra, S.; Roy, P.; Pilla, F.; Basu, B.; Wang, Y.; Jha, S.; et al. Examining effects of climate change and land use dynamic on biophysical and economic values of ecosystem services of a natural reserve region. J. Clean. Prod. 2020, 257, 120424. [Google Scholar] [CrossRef]
Threat Source | Weight | Sensitivity | Maximum Influence Distance (km) | Attenuation Type | |||||
---|---|---|---|---|---|---|---|---|---|
Cultivated | Forest | Grass | Shrubland | Wetland | Water | ||||
Build-up | 1 | 0.4 | 0.75 | 0.45 | 0.65 | 0.8 | 0.8 | 10 | Exponential |
Human activity intensity | 1 | 0.75 | 0.75 | 0.5 | 0.65 | 0.8 | 0.8 | 10 | Exponential |
Highway | 0.8 | 0.8 | 0.65 | 0.3 | 0.55 | 0.7 | 0.65 | 3 | linear |
Railway | 1 | 0.5 | 0.55 | 0.2 | 0.45 | 0.6 | 0.55 | 5 | linear |
Main road | 1 | 0.7 | 0.58 | 0.6 | 0.6 | 0.6 | 0.55 | 5 | linear |
Land Use Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | |
Cultivated | 5224.50 | 39.92 | 5258.99 | 40.19 | 4820.34 | 36.84 |
Forest | 156.55 | 1.2 | 122.69 | 0.94 | 361.69 | 2.76 |
Grass | 7187.99 | 54.93 | 7223.70 | 55.2 | 7032.21 | 53.74 |
Shrubland | 175.20 | 1.34 | 174.81 | 1.34 | 11.46 | 0.09 |
Wetland | 1.20 | 0.01 | 0.60 | 0 | 0.52 | 0 |
Water | 42.89 | 0.33 | 38.58 | 0.29 | 43.27 | 0.33 |
Build-up | 229.27 | 1.75 | 198.22 | 1.51 | 757.76 | 5.79 |
Unused | 68.70 | 0.52 | 68.71 | 0.53 | 59.06 | 0.45 |
Model | OA | Kappa | FOM | PA | UA | LOSST | LOSSV |
---|---|---|---|---|---|---|---|
RNN-CA | 0.8326 | 0.7827 | 0.2605 | 0.3846 | 0.5063 | 0.0265 | 0.0261 |
ANN-CA | 0.8837 | 0.8268 | 0.3899 | 0.5358 | 0.6582 | 0.0198 | 0.0186 |
LSTM-CA | 0.9101 | 0.8662 | 0.4439 | 0.6122 | 0.7325 | 0.0153 | 0.0142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Xiao, B.; Li, Y.; Wang, X.; Bie, Q.; Jiao, J. Simulation of Dynamic Urban Expansion under Ecological Constraints Using a Long Short Term Memory Network Model and Cellular Automata. Remote Sens. 2021, 13, 1499. https://doi.org/10.3390/rs13081499
Liu J, Xiao B, Li Y, Wang X, Bie Q, Jiao J. Simulation of Dynamic Urban Expansion under Ecological Constraints Using a Long Short Term Memory Network Model and Cellular Automata. Remote Sensing. 2021; 13(8):1499. https://doi.org/10.3390/rs13081499
Chicago/Turabian StyleLiu, Jiamin, Bin Xiao, Yueshi Li, Xiaoyun Wang, Qiang Bie, and Jizong Jiao. 2021. "Simulation of Dynamic Urban Expansion under Ecological Constraints Using a Long Short Term Memory Network Model and Cellular Automata" Remote Sensing 13, no. 8: 1499. https://doi.org/10.3390/rs13081499
APA StyleLiu, J., Xiao, B., Li, Y., Wang, X., Bie, Q., & Jiao, J. (2021). Simulation of Dynamic Urban Expansion under Ecological Constraints Using a Long Short Term Memory Network Model and Cellular Automata. Remote Sensing, 13(8), 1499. https://doi.org/10.3390/rs13081499