Toward More Integrated Utilizations of Geostationary Satellite Data for Disaster Management and Risk Mitigation
Abstract
:1. Introduction
2. Toward Effective Utilization of Third-Generation GEO Data
2.1. Visualization
2.1.1. Red, Green, and Blue (RGB) Full-Color Composite
2.1.2. Visualization through the Web-Interface
2.2. Baseline Dataset and Dataset Infrastructure
2.3. Target Phenomena in the Atmosphere
2.3.1. Clouds and Precipitation
2.3.2. Dust Events and Aerosols
2.3.3. Volcanic Plumes and Lightning Activity
2.4. Target Phenomena for the Terrestrial Environment
2.4.1. Vegetation Activity and Forest Fires
2.4.2. Land Surface Temperature (LST), Heat Islands, and Heatwaves
2.4.3. Landslides and Flooded Area Monitoring
3. Possible Further Collaboration between GEOs and LEOs—Case Study
4. Closing Remarks and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kidder, S.Q.; Vonder Haar, T.H. Satellite Meteorology, an Introduction; Academic Press, Inc.: San Diego, CA, USA, 1995; p. 466. [Google Scholar]
- Suomi, V.E.; Parent, R. A color view of Planet Earth. Bull. Am. Meteorol. Soc. 1968, 49, 74–75. [Google Scholar] [CrossRef] [Green Version]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Kodaira, N.; Murayama, N.; Yamashita, H.; Kohno, T. On the Geostationary Meteorological Satellite. GMS (Himawari). Tenki 1978, 25, 245–268. (In Japanese) [Google Scholar]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9 Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Menzel, W.P.; Purdom, J.F.W. Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Am. Meteorol. Soc. 1994, 75, 757–782. [Google Scholar] [CrossRef] [Green Version]
- Puschell, J.J.; Lowe, H.A.; Jeter, J.W.; Kus, S.M.; Hurt, W.T.; Gilman, D.; Rogers, D.L.; Hoelter, R.L.; Ravella, R. Japanese Advanced Meteorological Imager: A next-generation GEO imager for MTSAT-1R. In Earth Observing Systems VII, Proceedings of the International Symposium on Optical Science and Technology, Seattle, WA, USA, 7–11 July 2002; SPIE: Bellingham, WA, USA, 2002; Volume 4814. [Google Scholar] [CrossRef]
- Inoue, T. A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res. 1987, 92, 3991–4000. [Google Scholar] [CrossRef]
- Ohsawa, T.; Ueda, H.; Hayashi, T.; Watanabe, A.; Matsumoto, J. Diurnal variations of convective activity and rainfall in Tropical Asia. J. Meteorol. Soc. Jpn. 2001, 79, 333–352. [Google Scholar] [CrossRef] [Green Version]
- Hirose, H.; Yamamoto, M.K.; Shige, S.; Higuchi, A.; Mega, T.; Ushio, T.; Hamada, A. A rain potential map with high temporal and spatial resolutions retrieved from five geostationary meteorological satellites. SOLA 2016, 12, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Aminou, D.M.; Lamarre, D.; Stark, H.; Braembussche, P.V.D.; Blythe, P.; Fowler, G.; Gigli, S.; Stuhlmann, R.; Rota, S. Meteosat Third Generation (MTG) status of space segment definition. In Sensors, Systems, and Next-Generation Satellites XIII, Proceedings of the SPIE Remote Sensing, Berlin, Germany, 31 August–3 September 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7474, p. 747406. [Google Scholar] [CrossRef]
- Miller, S.D.; Schmit, T.L.; Seaman, C.J.; Lindsey, D.T.; Gunshor, M.M.; Kohrs, R.A.; Sumida, Y.; Hillger, D. A sight for sore eyes: The return of true color to geostationary satellites. Bull. Am. Meteorol. Soc. 2016, 97, 1803–1816. [Google Scholar] [CrossRef]
- Bah, M.K.; Gunshor, M.M.; Schmit, T.J. Generation of GOES-16 true color imagery without a green band. Earth Space Sci. 2018, 5, 549–558. [Google Scholar] [CrossRef]
- Murata, H.; Saitoh, K.; Sumida, Y. True color imagery rendering for Himawari-8 with a color reproduction approach based on the CIE XYZ color system. J. Meteorol. Soc. Jpn. 2018, 96B, 211–238. [Google Scholar] [CrossRef] [Green Version]
- Broomhall, M.A.; Majewski, L.J.; Villani, V.O.; Grant, I.F.; Miller, S.D. Correcting Himawari-8 Advanced Himawari Imager data for the production of vivid true-color imagery. J. Atmos. Ocean. Technol. 2019, 36, 427–442. [Google Scholar] [CrossRef]
- Miller, S.D.; Lindsey, D.T.; Seaman, C.J.; Solbrig, J.E. GeoColor: A blending technique for satellite imagery. J. Atmos. Ocean. Technol. 2020, 37, 429–448. [Google Scholar] [CrossRef]
- EUMETSAT. Complication of RGB Recipies, How to Create the Standard RGB Images from METEOSAT/SEVIRI and MetOp/AVHRR and VIIRS Data? Available online: http://www.eumetrain.org/RGBguide/recipes/RGB_recipes.pdf (accessed on 4 March 2021).
- JMA. RGB Training Library. Available online: http://www.jma.go.jp/jma/jma-eng/satellite/RGB_TL.html (accessed on 4 March 2021).
- COMET MetEd. Multispectral Satellite Applications: RGB Products Explained. Available online: https://www.meted.ucar.edu/training_module.php?id=568&tab=01#.YEDIhuZUtR5 (accessed on 4 March 2021).
- Murata, K.T.; Pavarangkoon, P.; Higuchi, A.; Toyoshima, K.; Yamamoto, K.; Muranaga, K.; Nagaya, Y.; Izumikawa, Y.; Kimura, E.; Mizuhara, T. A web-based real-time and full-resolution data visualization for Himawari-8 satellite sensed images. Earth Sci. Inform. 2018, 11, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Pavarangkoon, P.; Murata, K.T.; Yamamoto, K.; Muranaga, K.; Higuchi, A.; Mizuhara, T.; Kagebayashi, Y.; Charnsripinyo, C.; Nupairoj, N.; Ikeda, T.; et al. Development of international mirroring system for real-time web of meteorological satellite data. Earth Sci. Inform. 2020, 13, 1461–1476. [Google Scholar] [CrossRef]
- NICT Science Cloud Team. Himawari Real-Time Web. Available online: https://himawari8.nict.go.jp/ (accessed on 5 March 2021).
- JAXA Himawari Monitor. Available online: https://www.eorc.jaxa.jp/ptree/ (accessed on 5 March 2021).
- JMA Himawari Monitor. Available online: https://www.jma.go.jp/bosai/map.html#contents=himawari&lang=en (accessed on 5 March 2021).
- NOAA. GOES Image Viewer. Available online: https://www.star.nesdis.noaa.gov/GOES/index.php (accessed on 5 March 2021).
- JMA. Dissemination and Distribution. Available online: https://www.jma.go.jp/jma/jma-eng/satellite/dissemination.html (accessed on 11 March 2021).
- NOAA. Data Access for GOES-R Series Satellites. Available online: https://www.ncdc.noaa.gov/data-access/satellite-data/goes-r-series-satellites (accessed on 11 March 2021).
- EUMETSAT. How to Access Our Data. Available online: https://www.eumetsat.int/access-our-data (accessed on 11 March 2021).
- Japan Meteorological Business Support Center (JMBSC) Service. Available online: http://www.jmbsc.or.jp/en/index-e.html (accessed on 11 March 2021).
- NOAA. GOES-R Series Satellite Data in the NOAA Big Data Project. Available online: https://www.ncdc.noaa.gov/data-access/satellite-data/satellite-data-noaa-big-data-project (accessed on 11 March 2021).
- AWS Public Sector Blog Team. Accessing NOAA’s GOES-R Series Satellite Weather Imagery Data on AWS. 2017. Available online: https://aws.amazon.com/jp/blogs/publicsector/accessing-noaas-goes-r-series-satellite-weather-imagery-data-on-aws/ (accessed on 11 March 2021).
- JMA Meteorological Satellite Center. Sample Data and Sample Source Code. Available online: https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_sample.html (accessed on 11 March 2021).
- Space Science and Engineering Center, University of Wisconsin-Madison. Community Satellite Processing Package for Geostationary Data (CSPP Geo). Available online: http://cimss.ssec.wisc.edu/csppgeo/ (accessed on 11 March 2021).
- Okuyama, A.; Andou, A.; Date, K.; Hoasaka, K.; Mori, N.; Murata, H.; Tabata, T.; Takahashi, M.; Yoshino, R.; Bessho, K. Preliminary validation of Himawari-8/AHI navigation and calibration. In Earth Observing Systems XX, Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 9–13 August 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9607, p. 96072E. [Google Scholar] [CrossRef]
- Tan, B.; Dellomo, J.; Wolfe, R.; Reth, A. GOES-16 ABI navigation assessment. In Earth Observing Systems XXIII, Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 19–23 August 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10764, p. 107640G. [Google Scholar] [CrossRef]
- Takenaka, H.; Sakashita, T.; Higuchi, A.; Nakajima, T. Geolocation correction for geostationary satellite observations by a phase-only correlation method using a visible channel. Remote Sens. 2020, 12, 2472. [Google Scholar] [CrossRef]
- Foroosh, H.; Zerubia, J.; Berthod, M. Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 2002, 11, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, S.; Hashimoto, H.; Takenaka, H.; Higuchi, A.; Kalluri, S.; Nemani, R. An introduction to the Geostationary–NASA Earth Exchange (GeoNEX) products: 1. Top-of-Atmosphere reflectance and brightness temperature. Remote Sens. 2020, 12, 1267. [Google Scholar] [CrossRef] [Green Version]
- Center for Environmental Remote Sensing, Chiba University. Release Note of “Himawari 8” Gridded Data for Full-Disk (FD) Observation Mode. Available online: http://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/ (accessed on 11 March 2021).
- Yamamoto, Y.; Ichii, K.; Higuchi, A.; Takenaka, H. Geolocation accuracy assessment of Himawari-8/AHI imagery for application to terrestrial monitoring. Remote Sens. 2020, 12, 1372. [Google Scholar] [CrossRef]
- Liu, Z.; Ostrenga, D.; Teng, W.; Kempler, S. Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Am. Meteorol. Soc. 2012, 93, 1317–1325. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Shie, C.-L.; Li, A.; Meyer, D. NASA global satellite and model data products and services for tropical meteorology and climatology. Remote Sens. 2020, 12, 2821. [Google Scholar] [CrossRef]
- Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; et al. Globally gridded satellite (GridSat) observations for climate studies. Bull. Am. Meteorol. Soc. 2011, 92, 893–907. [Google Scholar] [CrossRef]
- Knapp, K.R.; Wilkins, S. Gridded Satellite (GridSat) GOES and CONUS data. Earth Syst. Sci. Data 2018, 10, 1417–1425. [Google Scholar] [CrossRef] [Green Version]
- Nitta, T.; Sekine, S. Diurnal variation of convective activity over the Tropical Western Pacific. J. Meteorol. Soc. Jpn. 1994, 72, 627–641. [Google Scholar] [CrossRef] [Green Version]
- Fujinami, H.; Yasunari, T. The seasonal and intraseasonal variability of diurnal cloud activity over the Tibetan Plateau. J. Meteorol. Soc. Jpn. 2001, 79, 1207–1227. [Google Scholar] [CrossRef] [Green Version]
- Kurosaki, Y.; Kimura, F. Relationship between topography and daytime cloud activity around Tibetan Plateau. J. Meteorol. Soc. Jpn. 2002, 80, 1339–1355. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Higuchi, A.; Nakamura, K. Small-scale cloud activity over the Maritime Continent and the Western Pacific as revealed by satellite data. Mon. Weather Rev. 2006, 134, 1581–1599. [Google Scholar] [CrossRef]
- Inoue, T.; Vila, D.; Rajendran, K.; Hamada, A.; Wu, X.; Machado, L.A.T. Life cycle of deep convective systems over the Eastern Tropical Pacific observed by TRMM and GOES-W. J. Meteorol. Soc. Jpn. 2009, 87A, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Imaoka, K.; Nakamura, K. Statistical analysis of the life cycle of isolated tropical cold cloud systems using MTSAT-1R and TRMM data. Mon. Weather Rev. 2012, 140, 3552–3572. [Google Scholar] [CrossRef]
- Senf, F.; Deneke, H. Satellite-based characterization of convective growth and glaciation and its relationship to precipitation formation over central Europe. J. Appl. Meteorol. Climatol. 2017, 56, 1827–1845. [Google Scholar] [CrossRef]
- Hamada, A.; Takayabu, Y.N. Convective cloud top vertical velocity estimated from geostationary satellite rapid-scan measurements. Geophys. Res. Lett. 2016, 43, 5435–5441. [Google Scholar] [CrossRef] [Green Version]
- Gallucci, D.; De Natale, M.P.; Cimini, D.; Di Paola, F.; Gentile, S.; Geraldi, E.; Larosa, S.; Nilo, S.T.; Ricciardelli, E.; Viggiano, M.; et al. Convective initiation proxies for nowcasting precipitation severity using the MSG-SEVIRI rapid scan. Remote Sens. 2020, 12, 2562. [Google Scholar] [CrossRef]
- Nakajima, T.Y.; Nakajima, T. Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci. 1995, 52, 4043–4059. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.Y.; Nakajima, T.; Nakajima, M.; Fukushima, H.; Kuji, M.; Uchiyama, A.; Kishino, M. Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations. Appl. Opt. 1998, 37, 3149–3163. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.Y.; Suzuki, K.; Stephens, G.L. Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet size. J. Atmos. Sci. 2010, 67, 1884–1896. [Google Scholar] [CrossRef]
- Iwabuchi, H.; Saito, M.; Tokoro, Y.; Putri, N.S.; Sekiguchi, M. Retrieval of radiative and microphysical properties of cloud from multispectral infrared measurements. Prog. Earth Planet. Sci. 2016, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Iwabuchi, H.; Putri, N.S.; Saito, M.; Tokoro, Y.; Sekiguchi, M.; Yang, P.; Baum, B.A. Cloud property retrieval from multiband infrared measurements by Himawari-8. J. Meteorol. Soc. Jpn. 2018, 96B, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Putri, N.S.; Iwabuchi, H.; Hayasaka, T. Evolution of mesoscale convective system properties as derived from Himawari-8 high resolution data analyses. J. Meteorol. Soc. Jpn. 2018, 96B, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Khatri, P.; Hayasaka, T.; Iwabuchi, H.; Takamura, T.; Irie, H.; Nakajima, T.Y. Validation of MODIS and AHI observed water cloud properties using surface radiation data. J. Meteorol. Soc. Jpn. 2018, 96B, 151–172. [Google Scholar] [CrossRef] [Green Version]
- Letu, H.; Yang, K.; Nakajima, T.Y.; Ishimoto, H.; Nagao, T.M.; Riedi, J.; Baran, A.J.; Ma, R.; Wang, T.; Shang, H.; et al. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ. 2020, 239, 111583. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The CloudSat Mission and the A-TRAIN: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; L’Ecuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bull. Am. Meteorol. Soc. 2018, 99, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.Y.; Suzuki, K.; Stephens, G.L. Droplet growth in warm water clouds observed by the A-Train. Part II: A Multi-sensor view. J. Atmos. Sci. 2010, 67, 1897–1907. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakajima, T.Y.; Stephens, G.L. Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci. 2010, 67, 3019–3032. [Google Scholar] [CrossRef]
- Nagao, T.M.; Suzuki, K. Identifying particle growth processes in marine low clouds using spatial variances of imager-derived cloud parameters. Geophys. Res. Lett. 2020, 47, e2020GL087121. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, F.; Takano, T.; Takamura, T. Isolated cumulonimbus initiation observed by 95-GHz FM-CW radar, X-band radar, and photogrammetry in the Kanto Region, Japan. SOLA 2011, 7, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Morotomi, K.; Shimamura, S.; Kobayashi, F.; Takamura, T.; Takano, T.; Higuchi, A.; Iwashita, H. Evolution of a tornado and debris ball associated with Super Typhoon Hagibis 2019 observed by X-band Phased Array Weather Radar in Japan. Geophys. Res. Lett. 2020, 47, e2020GL091061. [Google Scholar] [CrossRef]
- Nakajima, T.Y.; Ishida, H.; Nagao, T.M.; Hori, M.; Letu, H.; Higuchi, R.; Tamaru, N.; Imoto, N.; Yamazaki, A. Theoretical basis of the algorithms and early phase results of the GCOM-C (Shikisai) SGLI cloud products. Prog. Earth Planet. Sci. 2019, 6, 52. [Google Scholar] [CrossRef]
- Schiffer, R.A.; Rossow, W.B. The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Am. Meteorol. Soc. 1983, 64, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Purbantoro, B.; Aminuddin, J.; Manago, N.; Toyoshima, K.; Lagrosas, N.; Sumantyo, J.; Kuze, H. Comparison of cloud type classification with split window algorithm based on different infrared band combinations of Himawari-8 satellite. Adv. Remote Sens. 2018, 7, 218–234. [Google Scholar] [CrossRef] [Green Version]
- Honda, T.; Miyoshi, T.; Lien, G.; Nishizawa, S.; Yoshida, R.; Adachi, S.A.; Terasaki, K.; Okamoto, K.; Tomita, H.; Bessho, K. Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Weather Rev. 2018, 146, 213–229. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Stensrud, D.J. Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Weather Rev. 2018, 146, 3363–3381. [Google Scholar] [CrossRef]
- Okamoto, K.; Sawada, Y.; Kunii, M. Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Q. J. Roy. Meteorol. Soc. 2019, 145, 745–766. [Google Scholar] [CrossRef]
- Chen, B.; Chen, B.; Lin, H.; Elsberry, R.L. Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks. Weather Forecast. 2019, 34, 447–465. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, W.; Wang, X. Machine learning in tropical cyclone forecast modeling: A review. Atmosphere 2020, 11, 676. [Google Scholar] [CrossRef]
- Hirose, H.; Shige, S.; Yamamoto, M.K.; Higuchi, A. High temporal rainfall estimations from Himawari-8 multiband observations using the random-forest machine-learning method. J. Meteorol. Soc. Jpn. 2019, 97, 689–710. [Google Scholar] [CrossRef] [Green Version]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauß, T. Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests. J Appl. Meteorol. Climatol. 2014, 53, 2457–2480. [Google Scholar] [CrossRef] [Green Version]
- Hamada, A.; Takayabu, Y.; Liu, C.; Zipser, E.J. Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun. 2015, 6, 6213. [Google Scholar] [CrossRef]
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N.; et al. Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era. In Satellite Precipitation Measurement; Springer: Berlin/Heidelberg, Germany, 2020; pp. 355–373. [Google Scholar]
- Kurosaki, Y.; Mikami, M. Recent frequent dust events and their relation to surface wind in East Asia. Geophys. Res. Lett. 2003, 30, 1736. [Google Scholar] [CrossRef]
- Legrand, M.; Bertrand, J.J.; Desbois, M.; Menenger, L.; Fouquart, Y. The potential of infrared satellite data for the retrieval of Saharan-dust optical depth over Africa. J. Appl. Meteorol. Climatol. 1989, 28, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, S.A. Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Marchese, F.; Sannazzaro, F.; Falconieri, A.; Filizzola, C.; Pergola, N.; Tramutoli, V. An enhanced satellite-based algorithm for detecting and tracking dust outbreaks by means of SEVIRI data. Remote Sens. 2017, 9, 537. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Bankert, R.L.; Solbrig, J.E.; Forsythe, J.M.; Noh, Y.-J. A dynamic enhancement with background reduction algorithm: Overview and application to satellite-based dust storm detection. J. Geophys. Res. Atmos. 2017, 122, 12938–12959. [Google Scholar] [CrossRef]
- Minamoto, Y.; Nakamura, K.; Wang, M.; Kawai, K.; Ohara, K.; Noda, J.; Davaanyam, E.; Sugimoto, N.; Kai, K. Large-scale dust event in East Asia in May 2017: Dust emission and transport from multiple source regions. SOLA 2018, 14, 33–38. [Google Scholar] [CrossRef] [Green Version]
- She, L.; Xue, Y.; Yang, X.; Guang, J.; Li, Y.; Che, Y.; Fan, C.; Xie, Y. Dust detection and intensity estimation using Himawari-8/AHI observation. Remote Sens. 2018, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Berndt, E.; Elmer, N.; Schultz, L.; Molthan, A. A methodology to determine recipe adjustments for multispectral composites derived from next-generation advanced satellite imagers. J. Atmos. Ocean. Technol. 2018, 35, 643–664. [Google Scholar] [CrossRef]
- Jee, J.B.; Lee, K.T.; Lee, K.H.; Zo, I.S. Development of GK-2A AMI aerosol detection algorithm in the East-Asia region using Himawari-8 AHI data. Asia-Pac. J. Atmos. Sci. 2020, 56, 207–223. [Google Scholar] [CrossRef]
- Sowden, M.; Blake, D. Which dual-band infrared indices are optimum for identifying aerosol compositional change using Himawari-8 data? Atmos. Environ. 2020, 241, 117620. [Google Scholar] [CrossRef]
- Nakajima, T.; Tanaka, M. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Trans. 1986, 35, 13–21. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Gordon, H.R.; Nakajima, T.; Lenoble, J.; Frouin, R.; Grassl, H.; Herman, B.M.; King, M.D.; Teillet, P.M. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res. 1997, 102, 16815–16830. [Google Scholar] [CrossRef] [Green Version]
- Tanré, D.; Kaufman, Y.J.; Herman, M.; Mattoo, S. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. 1997, 102, 16971–16988. [Google Scholar] [CrossRef]
- Higurashi, A.; Nakajima, T. Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR. J. Atmos. Sci. 1999, 56, 924–941. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Gobron, N.; Pinty, B.; Widlowski, J.L.; Verstraete, M.M. Relationship between surface reflectance in the visible and mid-IR used in MODIS aerosol algorithm-Theory. Geophys. Res. Lett. 2002, 29, 2116. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J.; Tanrré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Nakajima, T. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information. J. Geophys. Res. Atmos. 2017, 122, 6347–6378. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common retrieval of aerosol properties for imaging satellite sensors. J. Meteorol. Soc. Jpn. 2018, 96B, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from Himawari-8 geostationary satellite. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3442–3455. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, M.; Wu, W.; Wang, Z.; Tao, M.; Wei, J.; Wang, Q. A simplified aerosol retrieval algorithm for Himawari-8 Advanced Himawari Imager over Beijing. Atmos. Environ. 2019, 199, 127–135. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H.; Zhang, L. Assessment of Himawari-8 AHI aerosol optical depth over land. Remote Sens. 2019, 11, 1108. [Google Scholar] [CrossRef] [Green Version]
- ABI AOD ATBD: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Suspended Matter/Aerosol Optical Depth and Aerosol Size Parameter, NOAA/NESDIS/STAR, Version 4.2. 14 February 2018. Available online: https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/docs/GOES-R_ABI_AOD_ATBD_V4.2_20180214.pdf (accessed on 5 March 2021).
- Zhang, H.; Kondragunta, S.; Laszlo, I.; Zhou, M. Improving GOES Advanced Baseline Imager (ABI) aerosol optical depth (AOD) retrievals using an empirical bias correction algorithm. Atmos. Meas. Tech. 2020, 13, 5955–5975. [Google Scholar] [CrossRef]
- Okuyama, A.; Takahashi, M.; Date, K.; Hosaka, K.; Murata, H.; Tabata, T.; Yoshino, R. Validation of Himawari-8/AHI radiometric calibration based on two years of in-orbit data. J. Meteorol. Soc. Jpn. 2018, 96B, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Yumimoto, K.; Nagao, T.M.; Kikuchi, M.; Sekiyama, T.T.; Murakami, H.; Tanaka, T.Y.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef]
- Yumimoto, K.; Tanaka, T.Y.; Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Maki, T. Assimilation and forecasting experiment for heavy Siberian wildfire smoke in May 2016 with Himawari-8 aerosol optical thickness. J. Meteorol. Soc. Jpn. 2018, 96B, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Cheng, Y.; Suzuki, K.; Goto, D.; Kikuchi, M.; Schutgens, N.A.J.; Yoshida, M.; Zhang, P.; Husi, L.; Shi, G.; et al. Hourly aerosol assimilation of Himawari-8 AOT using the four-dimensional local ensemble transform Kalman filter. J. Adv. Modeling Earth Syst. 2019, 11, 680–711. [Google Scholar] [CrossRef]
- Prata, A.J. Observations of volcanic ash clouds in the 10−12 μm window using AVHRR/2 data. Int. J. Remote Sens. 1989, 10, 751–761. [Google Scholar] [CrossRef]
- Zehner, C. (Ed.) Monitoring Volcanic Ash from Space; ESA-EUMETSAT Workshop on the 14 April to 23 May 2010 Eruption at Eyjaföll Volcano, South Iceland (ESA/SRIN 26–27 May 2010); ESA Publication STM-280; ESA Communications: Noordwijk, The Netherlands, 2010. [Google Scholar] [CrossRef] [Green Version]
- Pergola, N.; Tramutoli, V.; Marchese, F.; Scaffidi, I.; Lacava, T. Improving volcanic ash cloud detection by a robust satellite technique. Remote Sens. Environ. 2004, 90, 1–22. [Google Scholar] [CrossRef]
- Mannen, K.; Hasenaka, T.; Higuchi, A.; Kiyosugi, K.; Miyabuchi, Y. Simulations of tephra fall deposits from a bending eruption plume and the optimum model for particle release. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018902. [Google Scholar] [CrossRef]
- Ishii, K.; Hayashi, Y.; Shimbori, T. Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016. Earth Planets Space 2018, 70, 19. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, T.; Takasaki, K.; Maeno, F.; Wooster, M.J.; Yasuda, A. Himawari-8 infrared observations of the June–August Mt Raung eruption, Indonesia. Earth Planets Space 2018, 70, 89. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, T.; Yasuda, A.; Yoshizaki, Y.; Terasaki, K.; Honda, Y. Pseudo-thermal anomalies in the shortwave infrared bands of the Himawari-8 AHI and their correction for volcano thermal observation. Earth Planets Space 2018, 70, 175. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Fire danger observed from space. Surv. Geophys. 2020, 41, 1437–1459. [Google Scholar] [CrossRef]
- Takayabu, Y.N. Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain. Geophys. Res. Lett. 2006, 33, L18705. [Google Scholar] [CrossRef] [Green Version]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Albrecht, R.I.; Goodman, S.J.; Buechler, D.E.; Blakeslee, R.J.; Christian, H.J. Where are the lightning hotspots on Earth? Bull. Am. Meteorol. Soc. 2016, 97, 2051–2068. [Google Scholar] [CrossRef]
- Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125–126, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Peterson, M.; Lay, E. GLM observations of the brightest lightning in the Americas. J. Geophys. Res. Atmos. 2020, 125, e2020JD033378. [Google Scholar] [CrossRef]
- Schultz, C.J.; Andrews, V.P.; Genareau, K.D.; Naeger, A.R. Observations of lightning in relation to transitions in volcanic activity during the 3 June 2018 Fuego Eruption. Sci. Rep. 2020, 10, 18015. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J.; Vanpraet, C.L.; Sharman, M.J.; Van Ittersum, G. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980‒1984. Remote Sens. Environ. 1985, 17, 233–249. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Holben, A.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Suzuki, R.; Xu, J.; Motoya, K. Global analyses of satellite-derived vegetation index related to climatological wetness and warmth. Int. J. Climatol. 2006, 26, 425–438. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Shimabukuro, Y.E.; Ratana, P.; Saleska, S.R.; Hutyra, L.R.; Yang, W.; Nemani, R.R.; Myneni, R. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 2006, 33, L06405. [Google Scholar] [CrossRef] [Green Version]
- Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 2010, 37, L05401. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Stisen, S.; Tucker, C. Analysing NDVI for the African continent using the geostationary Meteosat Second Generation SEVIRI sensor. Remote Sens. Environ. 2006, 101, 212–229. [Google Scholar] [CrossRef]
- Fensholt, R.; Anyamba, A.; Stisen, S.; Sandholt, I.; Pak, E.; Small, J. Comparisons of compositing period length for vegetation index data from polar-orbiting and geostationary satellites for the cloud-prone region of West Africa. Photogramm. Eng. Remote Sens. 2007, 73, 297–309. [Google Scholar] [CrossRef]
- Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S.R.; Tucker, C.J.; Small, J.; Pak, E.; Rasmussen, M.O.; Sandholt, I.; Shisanya, C. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to polar operational environmental satellite data for land surface monitoring in Africa. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 721–729. [Google Scholar] [CrossRef]
- Sobrino, J.S.; Julien, Y.; Soria, G. Phenology estimation from Meteosat Second Generation data. IEEE J. Sel. Top. Appl. Earth Obs. 2013, 6, 1653–1659. [Google Scholar] [CrossRef]
- EUMETSAT: Daily Leaf Area Index—MSG. Available online: https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:LAI-SEVIRI?query=LAI&s=simple (accessed on 22 March 2021).
- Miura, T.; Nagai, S.; Takeuchi, M.; Ichii, K.; Yoshioka, H. Improved characterisation of vegetation and land surface seasonal dynamics in central Japan with Himawari-8 hypertemporal data. Sci. Rep. 2019, 9, 15692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, K.I.; Dietze, M.C. Improving the monitoring of deciduous broadleaf phenology using the Geostationary Operational Environmental Satellite (GOES) 16 and 17. Biogeosciences 2021, 18, 1971–1985. [Google Scholar] [CrossRef]
- Hashimoto, H.; Wang, W.; Dungan, J.; Li, S.; Michaelis, A.; Takenaka, H.; Higuchi, A.; Myneni, R.; Nemani, R. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 2021, 12, 684. [Google Scholar] [CrossRef] [PubMed]
- Lyapustin, A.; Martonchik, J.; Wang, Y.; Laszlo, I.; Korkin, S. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. 2011, 116, D03210. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of phenological research using Sentinel-2 data: A review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Setzer, A.W.; Pereira, A.C., Jr.; Pereira, M.C. Satellite studies of biomass burning in Amazonia: Some practical aspects. Remote Sens. Rev. 1994, 10, 91–103. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Kendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. 1998, 103, 32215–32238. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Morisette, J.T.; Giglio, L.; Csiszar, I.; Setzer, A.; Schroeder, W.; Morton, D.; Justice, C.O. Validation of MODIS active fire detection products derived from two algorithms. Earth Interact. 2005, 9, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, W.; Matsumura, Y. Evaluation of wildfire duration time over Asia using MTSAT and MODIS. Asian J. Geoinf. 2008, 8, 13–17. [Google Scholar]
- Price, J.C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophys. Res. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 1994, 32, 243–253. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Oku, Y.; Ishikawa, H. Estimation of land surface temperature over the Tibetan Plateau using GMS data. J. Appl. Meteorol. 2004, 43, 548–561. [Google Scholar] [CrossRef]
- Atitar, M.; Sobrino, J.A. A split-window algorithm for estimating LST from Meteosat 9 data: Test and comparison with in situ data and MODIS LSTs. IEEE Geosci. Remote Sens. Lett. 2009, 6, 122–126. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ishikawa, H.; Oku, Y.; Hu, Z. An algorithm for land surface temperature retrieval using three thermal infrared bands of Himawari-8. J. Meteorol. Soc. Jpn. 2018, 96B, 59–76. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Ishikawa, H. Thermal land surface emissivity for retrieving land surface temperature from Himawari-8. J. Meteorol. Soc. Jpn. 2018, 96B, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-Y.; Suh, M.-S. Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm. Remote Sens. 2018, 10, 2013. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-Y.; Suh, M.-S. Development of a land surface temperature retrieval algorithm from GK2A/AMI. Remote Sens. 2020, 12, 3050. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Holz, R.E.; Frey, R.; Eloranta, E.W.; Maddux, B.C.; McGill, M. Cloud detection with MODIS. Part II: Validation. J. Atmos. Ocean. Technol. 2008, 25, 1073–1086. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogram. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Sun, G.; Liu, Y. The footprint of urban heat island effect in China. Sci. Rep. 2015, 5, 11160. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Ishikawa, H. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days. Urban Clim. 2020, 31, 100578. [Google Scholar] [CrossRef]
- Albright, T.P.; Pidgeon, A.M.; Rittenhouse, C.D.; Clayton, M.K.; Flather, C.H.; Culbert, P.D.; Radeloff, V.C. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens. Environ. 2011, 115, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Miura, T.; Nagai, S. Landslide detection with Himawari-8 geostationary satellite data: A case study of a torrential rain event in Kyushu, Japan. Remote Sens. 2020, 12, 1734. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Typhoon Hagibis. Available online: https://en.wikipedia.org/wiki/Typhoon_Hagibis (accessed on 23 March 2021).
- Yoshimura, K.; Sakimura, T.; Oki, T.; Kanae, S.; Seto, S. Toward flood risk prediction: A statistical approach using a 29-year river discharge simulation over Japan. Hydrol. Res. Lett. 2008, 2, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Kotsuki, S.; Takenaka, H.; Tanaka, K.; Higuchi, A.; Miyoshi, T. 1-km-resolution land surface analysis over Japan: Impact of satellite-derived solar radiation. Hydrol. Res. Lett. 2015, 9, 14–19. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO). Vision for the WMO Integrated Global Observing System in 2040, 2019 ed.; WMO-No. 1243; WMO: Geneva, Switzerland, 2020; p. 38. [Google Scholar]
H8/9 AHI | GOES ABI | MTG FCI | FY-4A AGRI | GK-2A AMI | |
---|---|---|---|---|---|
VIS | 0.47 | 0.47 | 0.44 | 0.47 | 0.46 |
0.51 | 0.51 | 0.51 | |||
0.64 | 0.64 | 0.64 | 0.65 | 0.64 | |
NIR | 0.86 | 0.86 | 0.86 | 0.83 | 0.86 |
0.91 | |||||
1.37 | 1.38 | 1.38 | 1.38 | ||
1.6 | 1.6 | 1.6 | 1.6 | 1.6 | |
2.2 | 2.2 | 2.2 | 2.2 | ||
TIR | 3.9 | 3.9 | 3.8 | 3.8 | 3.8 |
6.2 | 6.2 | 6.3 | 6.3 | 6.2 | |
6.9 | 6.9 | 7.1 | 6.9 | ||
7.3 | 7.3 | 7.3 | 7.3 | ||
8.6 | 8.4 | 8.7 | 8.5 | 8.6 | |
9.6 | 9.6 | 9.6 | 9.6 | ||
10.4 | 10.3 | 10.5 | 10.7 | 10.4 | |
11.2 | 11.2 | 11.2 | |||
12.4 | 12.3 | 12.3 | 12.0 | 12.4 | |
13.3 | 13.3 | 13.3 | 13.5 | 13.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuchi, A. Toward More Integrated Utilizations of Geostationary Satellite Data for Disaster Management and Risk Mitigation. Remote Sens. 2021, 13, 1553. https://doi.org/10.3390/rs13081553
Higuchi A. Toward More Integrated Utilizations of Geostationary Satellite Data for Disaster Management and Risk Mitigation. Remote Sensing. 2021; 13(8):1553. https://doi.org/10.3390/rs13081553
Chicago/Turabian StyleHiguchi, Atsushi. 2021. "Toward More Integrated Utilizations of Geostationary Satellite Data for Disaster Management and Risk Mitigation" Remote Sensing 13, no. 8: 1553. https://doi.org/10.3390/rs13081553
APA StyleHiguchi, A. (2021). Toward More Integrated Utilizations of Geostationary Satellite Data for Disaster Management and Risk Mitigation. Remote Sensing, 13(8), 1553. https://doi.org/10.3390/rs13081553