Dynamic Relationship Study between the Observed Seismicity and Spatiotemporal Pattern of Lineament Changes in Palghar, North Maharashtra (India)
Abstract
:1. Introduction
1.1. Earthquake Swarm in Palghar Region
1.2. Geological Settings and Geophysical Information of the Study Area
2. Datasets and Methods
2.1. Data Used
2.2. Methodology
2.2.1. Image Pre-Processing and Lineaments Extraction from Remote Sensing Data
2.2.2. Lineament Density and Satellite Image Derived Soil Moisture Analysis
2.2.3. Earthquake 2D Depth and 3D Mesh Model, and Spatial Variations Analysis Method
2.2.4. Meteorological and Geophysical Parameters Analysis Method
2.2.5. Observed Seismicity
3. Results
3.1. Regional Seismicity Analysis
3.2. Observed Lineament, Temporal Changes and Density Measurement from 2000 to 2020
3.3. Earthquake Swarm Activities and Its Association with Observed Lineaments
3.4. Observed Soil Moisture Changes from 2000–2020 Based on Landsat Scenes
3.5. Earthquake 2D Depth Model and Spatial Variations Study of Swarms Data
3.6. Observed Earthquake Swarms and Their Association with Meteorological Parameters
4. Discussion
5. Conclusions
- The earthquakes are clustered in a small area of ~6 × 15 km2 to the south of Talasari village encompassing other villages like Dapchari, Modgaon, Haladpada, Pandhartaragaon, Karanjvira, Osarvira, Ambesari, Dhundhalwadi, Shisne, and Deur.
- The majority of the earthquakes (~94%) are found to be located in a shallow depth range between 4.0 to 6.0 km.
- Earthquake swarm activities in the study area show NE–SW and NNE–SSW orientations which is consistent with orientations of lineaments as clearly define the surface strain with ongoing seismicity.
- The results further suggest that earthquake swarm activities are interlinked with the sub-surface geological lineaments with their major orientation changing after 2000, along with the post-monsoon rainfall activities.
- The beginning of swarm activities in the local region may have affected the surrounding region, thus we observed pronounced changes in LD.
- Monthly average soil moisture content (0~10 cm depth) increased which was confirmed also through satellite-derived SMI results. The activity appears to be related to the increased pore pressure in the sub-surface and subsequent crustal adjustments.
- The results of the present study confirm that earthquake swarms might have a relation with the changes in tectonic lineament that could have been triggered combined by crustal motion and monsoon rainfall in the surrounding epicentral region of the 1856 historical earthquake.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SL. No. | Year | Month | Date | Latitude (°N) | Longitude (°E) | Depth (km) | Magnitude | Location | References |
---|---|---|---|---|---|---|---|---|---|
1 | 1702 | - | - | 19.700 | 73.100 | - | 3.7 Ms | Bhima river | CGS |
2 | 1856 | 12 | 25 | 20.000 | 73.000 | - | 5.7 Ms | Near Dahanu | CGS |
3 | 1856 | 12 | 25 | 20.000 | 72.99 | - | 5.7 Ms | Panvel region | CGS |
4 | 1893 | 02 | 08 | 19.700 | 73.09 | - | 3.7 Ms | Bhima river | CGS |
5 | 1935 | 07 | 20 | 20.000 | 73.000 | - | 5.0 Ms | Near Dumas | CGS |
6 | 1935 | 07 | 20 | 20.000 | 72.999 | - | 5.0 Ms | Panvel region | CGS |
7 | 1986 | 04 | 26 | 20.636 | 73.429 | 33 | 4.3 Ms | Near Surat | CGS |
8 | 1986 | 04 | 28 | 20.712 | 73.367 | 33 | 4.3 Ms | Near Surat | CGS |
9 | 1991 | 04 | 30 | 20.879 | 73.099 | 33 | 4.4 Ms | Near Surat | CGS |
10 | 1998 | 11 | 17 | 19.490 | 73.261 | - | 2.9 Mc | Panvel region | Mohan et al., 2007; Bansal and Gupta, 1998 |
11 | 1999 | 06 | 30 | 19.981 | 72.767 | 25.8 | 3.0 Mc | Panvel region | Gupta et al., 1998; IRIS |
12 | 1999 | 11 | 09 | 20.096 | 73.165 | - | 2.6 Mc | Panvel region | Mohan et al., 2007; Bansal and Gupta, 1998 |
13 | 2000 | 01 | 01 | 20.006 | 72.916 | - | 2.8 Mc | Panvel region | Mohan et al., 2007; Bansal and Gupta, 1998 |
14 | 2000 | 04 | 07 | 19.947 | 73.062 | 18 | 2.8 Mc | Panvel region | Mohan et al., 2007; Bansal and Gupta, 1998 |
15 | 2001 | 03 | 14 | 19.526 | 72.894 | - | 3.0 Mc | Panvel region | Mohan et al., 2007; Bansal and Gupta, 1998 |
16 | 2001 | 12 | 22 | 19.807 | 72.932 | - | 3.3 Mc | Panvel region | Mohan et al., 2007; Bansal and Gupta, 1998 |
17 | 2002 | 05 | 17 | 19.817 | 72.843 | 22.5 | 2.2 Mc | Panvel region | Gupta et al., 1998; IRIS |
18 | 2002 | 10 | 1 | 19.496 | 73.024 | 8.3 | 2.7 Mc | Panvel region | Gupta et al., 1998; IRIS |
19 | 2003 | 01 | 16 | 19.487 | 73.229 | 23.0 | 2.3 Mc | Panvel region | Gupta et al., 1998; IRIS |
20 | 2003 | 05 | 12 | 18.469 | 73.035 | 20.1 | 3.3 Mc | Panvel region | Gupta et al., 1998; IRIS |
21 | 2003 | 10 | 01 | 19.526 | 73.315 | 23.2 | 2.4 Mc | Panvel region | Gupta et al., 1998; IRIS |
22 | 2005 | 10 | 15 | 20.090 | 73.127 | - | 3.3 Mc | Panvel region | Gupta et al., 1998; IRIS |
23 | 2005 | 10 | 28 | 20.002 | 73.013 | - | 3.3 Mc | Panvel region | Gupta et al., 1998; IRIS |
24 | 2005 | 10 | 28 | 20.069 | 73.185 | - | 3.3 Mc | Panvel region | Gupta et al., 1998; IRIS |
Month (2018–2020) | Rainfall (mm) | Monthly Total Earthquakes | Surface Skin Temperature (kelvin) | Soil Moisture(kg m−2) |
---|---|---|---|---|
Jan-18 | 1.45 | 297.48 | 15.31 | |
Feb-18 | 2.48 | 299.58 | 13.80 | |
Mar-18 | 0.40 | 302.26 | 12.40 | |
Apr-18 | 1.02 | 304.69 | 12.08 | |
May-18 | 1.02 | 305.86 | 11.74 | |
Jun-18 | 399.91 | 303.28 | 25.06 | |
Jul-18 | 1107.80 | 300.31 | 35.01 | |
Aug-18 | 239.90 | 299.70 | 34.23 | |
Sep-18 | 65.22 | 300.20 | 31.04 | |
Oct-18 | 8.41 | 301.55 | 25.51 | |
Nov-18 | 1.75 | 301.35 | 17.44 | |
Dec-18 | 0.22 | 298.10 | 14.66 | |
Jan-19 | 0.05 | 53 | 296.65 | 12.70 |
Feb-19 | 0.92 | 204 | 297.98 | 12.22 |
Mar-19 | 0.68 | 818 | 300.97 | 11.77 |
Apr-19 | 0.95 | 736 | 304.56 | 12.48 |
May-19 | 0.81 | 162 | 305.54 | 12.32 |
Jun-19 | 475.52 | 0 | 304.02 | 22.27 |
Jul-19 | 750.71 | 67 | 301.10 | 35.50 |
Aug-19 | 392.15 | 0 | 300.41 | 36.57 |
Sep-19 | 137.96 | 0 | 300.46 | 37.66 |
Oct-19 | 137.96 | 287 | 300.39 | 34.76 |
Nov-19 | 61.17 | 1195 | 299.38 | 29.51 |
Dec-19 | 1.51 | 2285 | 298.27 | 21.13 |
Jan-20 | 0.63 | 1723 | 296.67 | 16.56 |
Feb-20 | 0.25 | 926 | 299.08 | 14.20 |
Mar-20 | 1.35 | 1982 | 301.05 | 13.56 |
Apr-20 | 0.81 | 876 | 305.15 | 12.86 |
May-20 | 1.27 | 823 | 306.59 | 13.16 |
Jun-20 | 238.84 | 987 | 302.56 | 26.32 |
Jul-20 | 593.63 | 723 | 301.43 | 34.74 |
Aug-20 | 847.37 | 654 | 300.40 | 37.81 |
Sep-20 | 229.70 | 615 | 300.83 | 36.99 |
Oct-20 | 24.54 | 300.90 | 32.82 | |
Nov-20 | 0.63 | 298.94 | 23.86 | |
Dec-20 | 24.54 | 297.91 | 20.56 |
References
- Talwani, P. The intersection model for intraplate earthquakes. Seismol. Res. Lett. 1988, 59, 305–310. [Google Scholar] [CrossRef]
- Talwani, P.; Rajendran, K. Some seismological and geometric features of intraplate earthquakes. Tectonophysics 1991, 186, 19–41. [Google Scholar] [CrossRef]
- Seeber, L.; Ekstrom, G.; Jain, S.K.; Murthy, C.V.R.; Chandak, N.; Armbruster, J.J. The 1993 Killari earthquake in central India: A new fault in Mesozoic basalt flows? J. Geophys. Res. 1996, 101, 8543–8560. [Google Scholar] [CrossRef]
- Gupta, H.K.; Khanal, K.N.; Upadhyan, S.K.; Sarkar, D.; Rastogi, B.K.; Duda, S.J. Verification of magnitudes of Himalayan region earthquakes of 1903–1985 from Gottingen Observatory. Tectonophysics 1995, 244, 267–284. [Google Scholar] [CrossRef]
- Gupta, H.K.; Mohan, I.; Rastogi, B.K.; Rao, M.N.; Ramakrishna Rao, C.V. A quick look at the Latur earthquake of 30 September 1993. Curr. Sci. India 1993, 65, 517–520. [Google Scholar]
- Gupta, H.K.; Rao, N.P.; Rastogi, B.K.; Sarkar, D. The deadliest intraplate earthquake. Science 2001, 291, 2101–2102. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Bürgmann, R.; Nagarajan, B.; Apel, E. Intraplate deformation of the Indian subcontinent. Geophys. Res. Lett. 2008, 35, L18301. [Google Scholar] [CrossRef]
- Talwani, P. Intraplate Earthquakes; Cambridge University Press: New York, NY, USA, 2014; ISBN 9781139628921. [Google Scholar]
- Guha, S.K.; Gosavi, P.D.; Varma, M.M.; Agarwal, B.N.P.; Padale, J.G.; Marwadi, S.C. Recent Seismic Disturbances in the Koyna Hydroelectric Project; Report; Central Water and Power Research Station: Maharashtra, India, 1968. [Google Scholar]
- Gupta, H.K. The present status of reservoir induced seismicity investigations with special emphasis on Koyna earthquakes. Tectonophysics 1985, 118, 257–279. [Google Scholar] [CrossRef]
- Guha, S.K.; Gosavi, P.D.; Agarwal, B.N.P.; Padale, J.G.; Marwadi, S.C. Case histories of some artificial crustal disturbances. Eng. Geol. 1974, 8, 59–77. [Google Scholar] [CrossRef]
- Rastogi, B.K.; Chadha, R.K.; Raju, I.P. Seismicity near Bhatsa reservoir, Maharashtra, India. Phys. Earth Planet. Inter. 1986, 44, 177–199. [Google Scholar] [CrossRef]
- Rastogi, B.K.; Rao, B.R.; Rao, C.V.R. Microearthquake investigations near Sriramsagar reservoir, Andhra Pradesh, India. Phys. Earth. Planet. Inter. 1986, 4, 149. [Google Scholar] [CrossRef]
- Rastogi, B.K.; Rap, C.V.R.; Chadha, R.K.; Gupta, H.K. Precursory phenomena in the micro earthquake sequence near the Osmansagar reservoir, Hyderabad, India. Tectonophysics 1987, 138, 17–24. [Google Scholar] [CrossRef]
- Costain, J.K.; Bollinger, G.A.; Speer, J.A. Hydroseismicity: A hypothesis for the role of water in the generation of intraplate seismicity. Seismol. Res. Lett. 1987, 58, 41–64. [Google Scholar] [CrossRef]
- Rastogi, B.K.; Sarma, C.S.P.; Chadha, R.K.; Kumar, N. Current seismicity at the Koyna reservoir, Maharashtra, India (1983–84). Gerlands Beitr. Geophys. Leipzig 1990, 99, 229–237. [Google Scholar]
- Gupta, H.K. Reservoir induced Earthquakes, Development in Geotechnical Engineering 64; Elsevier: Amsterdam, The Netherlands, 1992; p. 320. [Google Scholar]
- Gupta, H.K. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Sci. Rev. 2002, 58, 279–310. [Google Scholar] [CrossRef]
- Gupta, H.K.; Rastogi, B.K.; Mohan, I.; Ramakrishna Rao, C.V.; Mishra, D.C.; Rao, G.V.; Rao, R.U.M.; Rao, M.N.; Chetty, T.R.K.; Sarkar, D.; et al. Investigations of Latur Earthquake of September 30, 1993. Geol. Surv. India Spec. Publ. 1995, 27, 17–40. [Google Scholar]
- Chadha, R.K.; Pandey, A.; Kumpel, H.J. Search for earthquake precursors in well water levels in a localized seismically active area of reservoir triggered earthquakes in India. Geophys. Res. Lett. 2003, 30, 1416. [Google Scholar] [CrossRef]
- Chadha, R.K.; Singh, C.; Shekar, M. Transient Changes in Well-Water Level in Bore Wells in Western India Due to the 2004 Mw 9.3 Sumatra Earthquake. Bull. Seismol. Soc. Am. 2008, 98, 2553–2558. [Google Scholar] [CrossRef]
- Yadav, A.; Gahalaut, K.; Purnachandra Rao, N. Role of reservoirs in sustained seismicity of Koyna-Warna region—A statistical analysis. J. Seismol. 2018, 22, 909–920. [Google Scholar] [CrossRef]
- Officers of the Geological Survey of India. A Geological Report on the Koyna Earthquake of 11th December, 1967, Satara District, Maharashtra State. Unpublished Report (GSI). 1968, p. 242. Available online: https://pdfslide.net/documents/seismotectonics-of-the-koyna-warna-area-seismotectonics-of-the-koyna-warna.html (accessed on 3 November 2021).
- Singh, D.D.; Rastogi, B.K.; Gupta, H.K. Surface wave radiation pattern and source parameters of the Koyna earthquake of Dec. 10, 1967. Bull. Seismol. Soc. Am. 1975, 65, 711–731. [Google Scholar]
- Talwani, P.; Kumarswamy, S.V.; Sawalwede, C.B. The Re-Evaluation of Seismicity Data in the Koyna-Warna Area; Report of Univ. of South Carolina; University of South Carolina: Columbia, SC, USA, 1996. [Google Scholar]
- Talwani, P. Seismotectonics of the Koyna-Warna area, India. Pure Appl. Geophy. 1997, 150, 511–550. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.S.; Singh, S.K.; Sarma, P.V.S.S.R.; Srinagesh, D.; Reddy, K.N.S.; Prakasam, K.S.; Satyanarayana, Y. What triggers Koyna region earthquakes? Preliminary results from seismic tomography digital array. Proc. Indian Acad. Sci. Earth Planet Sci. 1999, 108, 1–14. [Google Scholar]
- Pandey, A.P.; Chadha, R.K. Surface loading and triggered earthquakes in the Koyna–Warna region, western India. Phys. Earth Planet. Inter. 2003, 139, 207–223. [Google Scholar] [CrossRef]
- Gahalaut, V.K.; Kalpna Singh, S.K. Fault interaction and earthquake triggering in the Koyna Warna region, India. Geophys. Res. Lett. 2004, 31, L11614. [Google Scholar] [CrossRef]
- Pandey, O.P. Shallowing of Mafic Crust and Seismic Instability in the High Velocity Indian Shield. J. Geol. Soc. India 2009, 74, 615–624. [Google Scholar] [CrossRef]
- Rastogi, B.K.; Santosh, K.; Aggrawal, S.K. Seismicity of Gujarat. Nat. Haz. 2012, 65, 1027–1044. [Google Scholar] [CrossRef]
- Seeber, L.K. The earthquake that shook the world. New Sci. 1994, 142, 25–29. [Google Scholar]
- Singh, R.P.; Singh, U.K. Evidence of fluid in the lower crust of Deccan trap region and its possible role in the observed seismicity. Himal. Geol. 1996, 17, 105–111. [Google Scholar]
- Gupta, H.K.; Rastogi, B.K.; Mohan, I.; Rao, C.V.R.K.; Sarma, S.V.S.; Rao, R.U.M. An investigation into the Latur earthquake of September 29, 1993, in southern India. Tectonophysics 1998, 287, 299–318. [Google Scholar] [CrossRef]
- Gupta, H.K.; Srinivasan, R.; Rao, R.U.M.; Rao, G.V.; Reddy, G.K.; Roy, S.; Jafri, S.H.; Dayal, A.M.; Zachariah, J.; Parthasarathy, G. Borehole investigations in the surface rupture zone of the 1993 Latur SCR earthquake, Maharashtra, India: Overview of results. In Memoirs-Geological Society of India; Geological Society of India: Bengaluru, India, 2003; pp. 1–22. [Google Scholar]
- Reddy, C.D.; Sunil, P.S. Post-seismic crustal deformation and strain rate in Bhuj region, western India, after the 2001 January 26 earthquake. Geophys. J. Int. 2008, 172, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Mohanty, W.K.; Prakash, R.; Shukla, A.K. Crustal Heterogeneity and Seismotectonics of the National Capital Region, Delhi, India. Pure Appl. Geophys. 2013, 170, 607–616. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Pandey, O.P.; Sreedhar, B.; Sharma, M.; Tripathi, P.; Vedanti, N. First observation of microspherule from the infratrappean Gondwana sediments below Killari region of Decan LIP, Maharashtra (India) and possible implications. Geosci. Front. 2019, 10, 2281–2285. [Google Scholar] [CrossRef]
- Kannaujiya, S.; Gautam, P.K.; Champati ray, P.K.; Chauhan, P.; Roy, P.N.S.; Pal, S.K.; Taloor, A.K. Contribution of seasonal hydrological loading in the variation of seismicity and geodetic deformation in Garhwal region of Northwest Himalaya. Quatern. Int. 2020, 575–576, 62–71. [Google Scholar] [CrossRef]
- Kolvankar, V.G. Earthquake Sequence of 1991 form Valsad Region, Gujarat; Technical Report, BARC/2001/E/006; BARC: Mumbai, India, 2001. [Google Scholar]
- Srivastava, H.N.; Bhattacharya, S.N.; Rao, D.T.; Srivastava, S. Strange attractor in earthquake swarms near Valsad (Gujarat), India. Mausam 2007, 58, 543–550. [Google Scholar] [CrossRef]
- Singh, A.P.; Mishra, O.P. Seismological evidence for monsoon induced micro to moderate earthquake sequence beneath the 2011 Talala, Saurashtra earthquake, Gujarat, India. Tectonophysics 2015, 661, 38–48. [Google Scholar] [CrossRef]
- Sateesh, A.; Mahesh, P.; Singh, A.P.; Kumar, S.; Chopra, S.; Kumar, M.R. Are earthquake swarms in South Gujarat, northwestern Deccan Volcanic Province of India monsoon induced? Environ. Earth Sci. 2019, 78, 381. [Google Scholar] [CrossRef]
- Mahesh, P.; Sateesh, A.; Kamra, C.; Kumar, S.; Chopra, S.; Kumar, M.R. Earthquake swarms in Palghar district, Maharasthtra, Deccan Volcanic Province. Curr. Sci. 2020, 118, 701–704. [Google Scholar]
- Sharma, V.; Wadhawan, M.; Rana, N.; Sreejith, K.M.; Agrawal, R.; Kamra, C.; Hosalikar, K.S.; Narkhede, K.V.; Suresh, G.; Gahalaut, V.K. A long duration non-volcanic earthquake sequence in the stable continental region of India: The Palghar swarm. Tectonophysics 2020, 779, 228376. [Google Scholar] [CrossRef]
- Srinagesh, D.; Singh, D.K.; Vikas, G.; Naresh, B.; Roy, S.; Murthy, Y.V.V.B.S.N.; Raju, P.S.; Suresh, G.; Mandal, P.; Sharma, A.N.S.; et al. An appraisal of recent earthquake activity in Palghar region, Maharashtra, India. Curr. Sci. 2020, 118, 1592–1598. [Google Scholar] [CrossRef]
- Hainzl, S.; Aggarawal, S.K.; Khan, P.K.; Rastogi, B.K. Monsoon induced earthquake activity in Talala, Gujarat, India. Geophys. J. Int. 2015, 200, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Rao, D.T. Present status of seismicity of Gujarat. Vayu Mand. 1997, 27, 32–39. [Google Scholar]
- Singh, A.P.; Roy, G.I.; Kumar, S.; Kayal, J.R. Seismic source characteristics in Kachchh and Saurashtra regions of western India: B-value and fractal dimension mapping of aftershock sequences. Nat. Haz. 2013, 77, 33–49. [Google Scholar] [CrossRef]
- Mahesh, P.; Gupta, S. The role of crystallized magma and crustal fluids in intraplate seismic activity in Talala region (Saurashtra), Western India: An insight from local earthquake tomography. Tectonophysics 2016, 690, 131–141. [Google Scholar] [CrossRef]
- Bhattacharya, S.N.; Karanth, K.V.; Dattatrayam, R.S.; Sohoni, P.S. Earthquake sequence in and around Bhavnagar, Saurashtra, western India during August–December 2000 and associated tectonic features. Curr. Sci. 2004, 86, 1165–1170. [Google Scholar]
- Jayaraman, K.S. Monsoon behind Low Magnitude Earthquakes in India’s West Coast. Nature India. 3 March 2020. Available online: https://www.nature.com/articles/nindia.2020.39 (accessed on 5 May 2021).
- Singh, A.P.; Kumar, M.R.; Kumar, S.; Sateesh, A.; Mahesh, P.; Shukla, A.; Talukdar, R. Seismicity and subterranean sounds in the northwest Deccan volcanic province of India. Bull. Seismol. Soc. Am. 2017, 107, 1129–1135. [Google Scholar] [CrossRef]
- BIS. Criteria for Earthquake Resistant Design of Structures-IS 1893 (Part 1): 2002; General provision and buildings (fifth revision); Bureau of Indian Standards (BIS): New Delhi, India, 2002; p. 39. [Google Scholar]
- Sibson, R.H. Earthquakes and Lineament Infrastructure. Philos. Trans., Math. Phys. Eng. Sci. 1986, 317, 63–79. [Google Scholar]
- Joshi, A.; Patel, R.C. Modelling of active lineaments for predicting a possible earthquake scenario around Dehradun, Garhwal Himalaya, India. Tectonophysics. 1997, 283, 289–310. [Google Scholar] [CrossRef]
- Murthy, Y.S. On the correlation of seismicity with geophysical lineaments over the Indian subcontinent. Curr. Sci. 2002, 83, 760–766. [Google Scholar]
- Singh, V.P.; Singh, R.P. Changes in stress pattern around epicentral region of Bhuj earthquake of 26 January 2001. Geophys. Res. Lett. 2005, 32, L2430923. [Google Scholar] [CrossRef]
- Verraswamy, K.; Raval, U. Seismogenic significance of lineaments of the Indian subcontinent. Curr. Sci. 2007, 92, 420–421. [Google Scholar]
- Bondur, V.G.; Zverev, A.T.; Gaponova, E.V.; Zima, A.L. Space Methods of Studying the Precursor Cycle Dynamics of the Lineament System before the Preparation of Earthquakes. Izv. Atmos. Ocean. Phys. 2019, 55, 1266–1282. [Google Scholar] [CrossRef]
- Bondur, V.G.; Zverev, A.T.; Gaponova, E.V. Precursor Variability of Lineament Systems detected Using Satellite Images during Strong Earthquakes. Izv. Atmos. Ocean. Phys. 2019, 55, 1283–1291. [Google Scholar] [CrossRef]
- Cronin, V.S.; Millard, M.; Seidman, L.; Bayliss, B. The Seismo-Lineament Analysis Method (SLAM): A Reconnaissance Tool to Help Find Seismogenic Faults. Environ. Eng. Geosci. 2008, 14, 199–219. [Google Scholar] [CrossRef]
- Marple, R.T.; Hurd, J.D. Interpretation of lineaments and faults near Summerville, South Carolina, USA, using LiDAR data: Implications for the cause of the 1886 Charleston, South Carolina, earthquake. Atl. Geol. 2020, 56, 73–95. [Google Scholar] [CrossRef]
- NASA. Giovanni Portal. Meteorological and Geophysical Data Download. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 3 November 2020).
- Road and Rail Network Distribution. Geofabrik, OpenStreet Map Data. Available online: http://download.geofabrik.de/asia.html (accessed on 10 June 2020).
- U.S. Geological Survey. Geological Map of South Asia, Data Catalog. 1999. Available online: https://certmapper.cr.usgs.gov/data/we/ofr97470c/spatial/shape/geo8ag.zip (accessed on 5 February 2021).
- Bansal, B.K.; Gupta, S. A Glance through the Seismicity of Peninsular India. J. Geol. Soc. India 1998, 52, 67–80. [Google Scholar]
- Mohan, G.; Surve, G.; Tiwari, P.K. Seismic evidences of faulting beneath the Panvel flexure. Curr. Sci. 2007, 93, 991–996. [Google Scholar]
- Kailasam, L.N.; Murthy, B.G.K.; Chayanulu, A.Y.S.R. Regional gravity studies of the Deccan Trap areas of peninsular India. Curr. Sci. 1972, 41, 403–407. [Google Scholar]
- Kailasam, L.N.; Reddy, A.G.B.; Jogarao, M.V.; Sathyamurthy, K.; Murty, B.J.K. Deep electrical resistivity sounding in the Deccan Trap region. Curr. Sci. 1976, 45, 9–13. [Google Scholar]
- Kaila, K.L.; Chowdhury, K.R.; Reddy, P.R.; Krishna, V.G.; Narain, H.; Subbotin, S.I.; Sollogub, V.B.; Chekunov, A.V.; Kharetchko, G.E.; Lazarenko, M.A.; et al. Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding. J. Geol. Soc. India 1979, 20, 307–333. [Google Scholar]
- Kaila, K.L.; Reddy, P.R.; Dixit, M.M.; Lazarenko, M.A. Deep crustal structure at Koyna, Maharashtra, indicated by deep seismic sounding. J. Geol. Soc. India 1981, 22, 1–16. [Google Scholar]
- Gokaran, S.G.; Rao, C.K.; Singh, B.P.; Nayak, P.N. Magnetotelluric studies across the Kurduwadi gravity feature. Phys. Earth Planet. Inter. 1992, 72, 58–67. [Google Scholar] [CrossRef]
- Patro, P.K.; Sarma, S.V.S. Lithospheric electrical imaging of the Deccan trap covered region of western India. J. Geophys. Res. Soild Earth 2009, 114, B01102. [Google Scholar] [CrossRef]
- Pavankumar, G.; Manglik, A. Complex tectonic setting and deep crustal seismicity of the Sikkim Himalaya: An electrical resistivity perspective. Phys. Chem. Earth 2021, 124, 103077. [Google Scholar] [CrossRef]
- Roy, A.B. Seismicity in the Peninsular Indian Shield: Some geological considerations. Curr. Sci. 2006, 91, 456–463. [Google Scholar]
- USGS. Earth Explorer Archive. Landsat Imageries Download. Available online: https://earthexplorer.usgs.gov (accessed on 3 November 2020).
- Singh, R.P.; Bhoi, S.; Sahoo, A.K.; Raj, U.; Ravindranath, S. Surface manifestations after the Gujarat earthquake. Curr. Sci. 2001, 81, 164–166. [Google Scholar]
- Nath, B.; Niu, Z.; Acharjee, S. Pre-earthquake anomaly detection and assessment through lineament changes observation using multi-temporal Landsat 8-OLI imageries: Case of Gorkha and Imphal. In Multi-Purposeful Application of Geospatial Data; Rustamav, R.B., Hasanova, S., Zeynalova, M.H., Eds.; IntechOpen Ltd.: London, UK, 2018; pp. 149–171. [Google Scholar]
- Kocal, A.; Duzgun, H.S.; Karpuz, C. Discontinuity Mapping with Automatic Lineament Extraction from High Resolution Satellite Imagery. ISPRS Proceedings-XXXV. 2004. Available online: http://www.isprs.org/proceedings/XXXV/congress/comm7/papers/205.pdf (accessed on 10 February 2021).
- Nath, B.; Niu, Z.; Singh, R.P. Land Use and Land Cover Changes, and Environment and Risk Evaluation of Dujiangyan City (SW China) Using Remote Sensing and GIS Techniques. Sustainability 2018, 10, 4631. [Google Scholar] [CrossRef] [Green Version]
- Nath, B.; Niu, Z.; Mitra, A.K. Observation of short-term variations in the clay minerals ratio after the 2015 Chile great earthquake (8.3 Mw) using Landsat 8 OLI data. J. Earth Syst. Sci. 2019, 128, 117. [Google Scholar] [CrossRef] [Green Version]
- Nath, B.; Wang, Z.; Ge, Y.; Islam, K.; Singh, R.P.; Niu, Z. Land Use and Land Cover Change Modeling and Future Potential Landscape Risk Assessment Using Markov-CA Model and Analytical Hierarchy Process. ISPRS Int. J. Geo-Inf. 2020, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Sahoo, A.K.; Bhoi, S.; Kumar, M.G.; Bhuiyan, C. Ground deformation of the Gujarat earthquake of 26 January 2001. Geol. Soc. India 2001, 58, 209–214. [Google Scholar]
- Dupigny-Giroux, L.; Lewis, J.E. A moisture index for surface characterization over a semiarid area. Photogramm. Eng. Remote Sens. 1999, 65, 937–945. [Google Scholar]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Jackson, T. GPM IMERG Final Precipitation L3 1 Month 0.1-Degree x 0.1-Degree V06; Goddard Earth Sciences Data, and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. [Google Scholar]
- Gutenberg, R.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Seismicity of the Earth and Associated Phenomena, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1954. [Google Scholar]
- Wiemer, S.; Wyss, M. Minimum magnitude of completeness in earthquake catalogs: Example from Alaska, the western US and Japan. Bull. Seismol. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Woessner, J.; Wiemer, S. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and Its Uncertainty. Bull. Seismol. Soc. Am. 2005, 95, 684–698. [Google Scholar] [CrossRef]
- Brudzinski, M.R.; Kozlowska, M. Seismicity induced by hydraulic fracturing and wastewater disposal in the Appalachian Basin, USA: A review. Acta Geophys. 2019, 67, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Villa, V.; Singh, R.P. Hydraulic fracturing operation for oil and gas production and associated earthquake activities across the USA. Environ. Earth Sci. 2020, 79, 271. [Google Scholar] [CrossRef]
- Ellsworth, W.L. Injection-induced earthquakes. Science 2013, 341, 1225942. [Google Scholar] [CrossRef]
- Kim, W. Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. J. Geophys. Res. Solid Earth 2013, 118, 3506–3518. [Google Scholar] [CrossRef]
- Westwood, R.F.; Toon, S.M.; Styles, P.; Cassidy, N.J. Horizontal respect distance for hydraulic fracturing in the vicinity of existing faults in deep geological reservoirs: A review and modelling study. Geotech. Geophys. Geo-Energ. Geo-Resour. 2017, 3, 379–391. [Google Scholar] [CrossRef]
- Wilson, M.P.; Worrall, F.; Davies, R.J.; Almond, S. Fracking: How far from faults? Geomech. Geophys. Geo-Energ. Geo-Resour. 2018, 4, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Chapman, M.; Chen, X. Stress-Drop Variations of Induced Earthquakes in Oklahoma. Bull. Seismol. Soc. Am. 2018, 108, 1107–1123. [Google Scholar] [CrossRef]
- Pei, S.; Peng, Z.; Chen, X. Locations of Injection-Induced Earthquakes in Oklahoma Controlled by Crustal Structures. Geophys. Res.-Solid Earth 2018, 123, 2332–2344. [Google Scholar] [CrossRef]
- Richter, G. Stress-based, statistical modeling of the induced seismicity at the Groningen gas field, The Netherlands. Environ. Earth Sci. 2020, 79, 252. [Google Scholar] [CrossRef]
- Singh, R.P.; Sato, T.; Nyland, E. The geodynamic context of the Latur (India) earthquake of September 30, 1993. Phys. Earth Planet Int. 1995, 91, 245–251. [Google Scholar] [CrossRef]
- Singh, R.P.; Mehdi, W.; Naeimi, M.; Sahoo, A.; Kumar, R. Analysis of widespread fissures associated with groundwater depletion and extreme rainfall using multi sensor data. IAHS 2011, 343, 28–33. [Google Scholar]
- He, A.; Zhao, G.; Sun, Z.; Singh, R.P. Co-seismic multilayer water temperature and water level changes associated with Wenchuan and Tohoku-Oki earthquakes in the Chuan no. 03 well China. J. Seism. 2017, 21, 719–734. [Google Scholar] [CrossRef]
- He, A.; Fan, X.; Zhao, G.; Liu, Y.; Singh, R.P.; Hu, Y. Co-seismic Response of Water Level in the Jingle Well (China) Associated with the Gorkha Nepal (Mw 7.8) earthquake. Tectonophysics 2017, 714, 82–89. [Google Scholar] [CrossRef]
- Brodsky, E.E.; Roeloffs, E.; Woodcock, D.; Gall, I.; Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. 2003, 108, 2390. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.; Bürgmann, R.; Gaur, V.K.; Bilham, R.; Larson, K.M.; Ananda, M.B.; Jade, S.; Mukal, M.; Anupama, T.S.; Satyal, G.; et al. The motion and active deformation of India. Geophys. Res. Lett. 2001, 28, 647–650. [Google Scholar] [CrossRef] [Green Version]
- Farquharson, J.; Amelung, F. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 2020, 580, 491–495. [Google Scholar] [CrossRef]
- Heinicke, J.; Fischer, T.; Gaupp, R.; Gotze, J.; Koch, U.; Konietzky, H.; Stanek, K.-P. Hydrothermal alteration as a trigger mechanism for earthquake swarms: The Vogtland/NW Bohemia region as a case study. Geophys. J. Int. 2009, 178, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.N.; Dube, R.K. Comparison of precursory and non-precursory swarm activity in peninsular India. Tectonophysics 1996, 265, 327–339. [Google Scholar] [CrossRef]
- Naidu, G.D.; Khupat, S.; Awasthi, D.K. Deciphering the seismicity pattern from MEQ study at Indra Sagar reservoir area, Madhya Pradesh, India. J. Ind. Geophys. Union 2015, 19, 55–61. [Google Scholar]
- Rao, D.T.; Jambusaria, B.B.; Srivastava, S.; Srivastava, N.P.; Hamid, A.; Desai, B.N.; Srivastava, H.N. Earthquake swarm activity in south Gujarat. Mausam 1991, 42, 89–98. [Google Scholar] [CrossRef]
- Hainzl, S.; Kraft, T.; Wassermann, J.; Igel, H.; Schmedes, E. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 2006, 33, L19303. [Google Scholar] [CrossRef] [Green Version]
- Pimprikar, S.D.; Mylappally, D. Earthquake swarm activity around village Bamhori, Seoni District, Madhya Pradesh: A preliminary study. J. Geol. Soc. India 2003, 62, 498–502. [Google Scholar]
- Horálek, J.; Fischer, T.; Einarsson, P.; Jakobsdóttir, S.S. Earthquake Swarms. In Encyclopedia of Earthquake Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 871–885. [Google Scholar] [CrossRef]
- Horálek, J.; Fischer, T.; Boušková, A.; Michálek, J.; Hrubcová, P. The West Bohemian 2008-earthquake swarm: When, where what size and data. Stud. Geophys. Geod. 2009, 53, 351–358. [Google Scholar] [CrossRef]
- Gahalaut, K.; Gahalaut, V.K. Stress triggering of normal aftershocks due to strike slip earthquakes in compressive regime. J. Asian Earth Sci. 2008, 33, 379–382. [Google Scholar] [CrossRef]
- He, A.; Singh, R.P. Groundwater level response to the Wenchuan earthquake of May 2008. Geomat. Nat. Haz. Risk. 2019, 10, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Gahalaut, K.; Hassoup, A. Role of fluids in the earthquake occurrence around Aswan reservoir. Egypt. J. Geophys. Res. 2012, 117, B02303. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.N.; Dattatrayam, R.S. Some characteristics of recent earthquake sequences in Peninsular India. Gond. Geol. Magz. Spl. 2003, 5, 67–85. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, B.; Singh, R.P.; Gahalaut, V.K.; Singh, A.P. Dynamic Relationship Study between the Observed Seismicity and Spatiotemporal Pattern of Lineament Changes in Palghar, North Maharashtra (India). Remote Sens. 2022, 14, 135. https://doi.org/10.3390/rs14010135
Nath B, Singh RP, Gahalaut VK, Singh AP. Dynamic Relationship Study between the Observed Seismicity and Spatiotemporal Pattern of Lineament Changes in Palghar, North Maharashtra (India). Remote Sensing. 2022; 14(1):135. https://doi.org/10.3390/rs14010135
Chicago/Turabian StyleNath, Biswajit, Ramesh P. Singh, Vineet K. Gahalaut, and Ajay P. Singh. 2022. "Dynamic Relationship Study between the Observed Seismicity and Spatiotemporal Pattern of Lineament Changes in Palghar, North Maharashtra (India)" Remote Sensing 14, no. 1: 135. https://doi.org/10.3390/rs14010135
APA StyleNath, B., Singh, R. P., Gahalaut, V. K., & Singh, A. P. (2022). Dynamic Relationship Study between the Observed Seismicity and Spatiotemporal Pattern of Lineament Changes in Palghar, North Maharashtra (India). Remote Sensing, 14(1), 135. https://doi.org/10.3390/rs14010135