The Impact of Central Heating on the Urban Thermal Environment Based on Multi-Temporal Remote Sensing Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data and Data Preprocessing
2.3. Methods
2.3.1. Equivalent Heat Island Index Construction Method
2.3.2. Relative Contribution Analysis Method
2.3.3. Method Comparison
3. Results
3.1. Spatial–Temporal Characteristics of Thermal Environment
3.1.1. Change of the Equivalent Heat Island Index
3.1.2. Change of Equivalent Heat Island Area and Intensity
3.2. Relationship between Urban Heat Island and Central Heating
3.2.1. Correlation Analysis between EHIA and CHS
3.2.2. Correlation Analysis between EHII and CHS
3.2.3. Relative Contribution of Central Heating
3.3. Thermal Environment Analysis Using Existing Methods
3.3.1. Analysis Based on the Daily LST
3.3.2. Analysis Based on Mean LST
4. Discussion
4.1. Comparison with Existing Methods
4.2. Implications for Future Studies
4.3. Limitation and Uncertainty
5. Conclusions
- (1)
- The urban core area has a high intensity of equivalent heat islands for the three study areas. During the central heating season, the nighttime urban heat island area increased from 2003 to 2019. Compared with 2013, Shenyang’s equivalent heat island area increased by 22.1%, Changchun increased by 17.3%, and Harbin increased by 19.5%.
- (2)
- This increasing trend of the equivalent heat island area and the equivalent heat island intensity was highly positively correlated with the central heating supply (R is 0.89 for Shenyang, 0.93 for Changchun, and 0.86 for Harbin; p < 0.05). Additionally, the impact of central heating is more significant than that of the air temperature.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bahi, H.; Mastouri, H.; Radoine, H. Review of methods for retrieving urban heat islands. Mater. Today Proc. 2020, 27, 3004–3009. [Google Scholar] [CrossRef]
- Cai, D.; Fraedrich, K.; Guan, Y.; Guo, S.; Zhang, C. Urbanization and the thermal environment of Chinese and US-American cities. Sci. Total Environ. 2017, 589, 200–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laschewski, G.; Jendritzky, G. Effects of the thermal environment on human health: An investigation of. Clim. Res. 2002, 21, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yang, X.; Zhu, W. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res. 2014, 138, 364–377. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Wang, X.; Zhou, X.; Zhang, H.; Sodoudi, S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Sci. Total Environ. 2019, 650, 3110–3119. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development. Available online: https://www.ipcc.ch/sr15/ (accessed on 8 October 2018).
- Yang, B.; Yang, X.; Leung, L.R.; Zhong, S.; Qian, Y.; Zhao, C.; Chen, F.; Zhang, Y.; Qi, J. Modeling the Impacts of Urbanization on Summer Thermal Comfort: The Role of Urban Land Use and Anthropogenic Heat. J. Geophys. Res. Atmos. 2019, 124, 6681–6697. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Zhou, D. Spatiotemporal changes in the length and heating degree days of the heating period in Northeast China. Meteorol. Appl. 2017, 141, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Agency, I.E. District Energy Systems in China. Available online: https://www.iea.org/reports/district-energy-systems-in-china (accessed on 23 January 2018).
- Shen, X.; Liu, B. Changes in the timing, length and heating degree days of the heating season in central heating zone of China. Sci. Rep. 2016, 6, 33384. [Google Scholar] [CrossRef]
- Ju, L.; Junxia, D.; Howard, L. Progress in Urban Meteorological Experiments in Beijing. Adv. Meteorol. Sci. Technol. 2014, 1, 38–47. (In Chinese) [Google Scholar]
- Li, J.; Sun, R.; Liu, T.; Xie, W.; Chen, L. Prediction models of urban heat island based on landscape patterns and anthropogenic heat dynamics. Landsc. Ecol. 2021, 36, 1801–1815. [Google Scholar] [CrossRef]
- Kimura, F.; Takahashi, S. The effects of land-use and anthropogenic heating on the surface temperature in the Tokyo Metropolitan area: A numerical experiment. Atmos. Environ. Part B Urban Atmos. 1991, 25, 155–164. [Google Scholar] [CrossRef]
- Ichinose, T.; Shimodozono, K.; Hanaki, K. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 1999, 33, 3897–3909. [Google Scholar] [CrossRef]
- Bohnenstengel, S.I.; Hamilton, I.; Davies, M.; Belcher, S.E. Impact of anthropogenic heat emissions on London’s temperatures. Q. J. R. Meteorol. Soc. 2014, 140, 687–698. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface anthropogenic heat islands in six megacities: An assessment based on a triple-source surface energy balance model. Remote Sens. Environ. 2020, 242, 111751. [Google Scholar] [CrossRef]
- Munck, C.; Pigeon, G.; Masson, V.; Meunier, F.; Bousquet, P.; Tréméac, B.; Merchat, M.; Poeuf, P.; Marchadier, C. How much can air conditioning increase air temperatures for a city like Paris, France? Int. J. Climatol. 2013, 33, 210–227. [Google Scholar] [CrossRef]
- Ohashi, Y.; Genchi, Y.; Kondo, H.; Kikegawa, Y.; Hirano, Y. Influence of Air-Conditioning Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using an Urban Canopy Model Coupled with a Building Energy Model. J. Appl. Meteorol. Climatol. 2007, 46, 66–81. [Google Scholar] [CrossRef]
- Meng, Q.; Hu, D.; Zhang, Y.; Chen, X.; Zhang, L.; Wang, Z. Do industrial parks generate intra-heat island effects in cities? New evidence, quantitative methods, and contributing factors from a spatiotemporal analysis of top steel plants in China. Environ. Pollut. 2022, 292, 118383. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q.; Sun, Z.; Sun, Y. Spatial and temporal analysis of the mitigating effects of industrial relocation on the surface urban heat island over china. ISPRS Int. J. Geo-Inf. 2017, 6, 121. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Zhou, L.; Yao, Y.; Ma, W.; Kinney, P.L. Estimating spatial effects of anthropogenic heat emissions upon the urban thermal environment in an urban agglomeration area in East China. Sustain. Cities Soc. 2020, 57, 102046. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Wang, S. Assessing the spatiotemporal variation in anthropogenic heat and its impact on the surface thermal environment over global land areas. Sustain. Cities Soc. 2020, 63, 102488. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Wang, D.; Sheng, Y. The impact of energy consumption on the surface urban heat island in China’s 32 major cities. Remote Sens. 2017, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Doan, V.Q.; Kusaka, H.; Nguyen, T.M. Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: Numerical experiments with a regional climate model. Sustain. Cities Soc. 2019, 47, 101479. [Google Scholar] [CrossRef]
- Feng, J.M.; Wang, Y.L.; Ma, Z.G.; Liu, Y.H. Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J. Clim. 2012, 25, 7187–7203. [Google Scholar] [CrossRef]
- Bei, H.; Guangheng, N. Local climate impact of central heating in the winter based on the WRF-LUCY model. J. Tsinghua Univ. (Sci. Technol.) 2020, 60, 162–170. (In Chinese) [Google Scholar] [CrossRef]
- Yan, D.; Liu, T.; Dong, W.; Liao, X.; Luo, S.; Wu, K.; Zhu, X.; Zheng, Z.; Wen, X. Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. Dyn. Atmos. Ocean. 2020, 89, 101127. [Google Scholar] [CrossRef]
- Roșu, I.A.; Ferrarese, S.; Radinschi, I.; Ciocan, V.; Cazacu, M.M. Evaluation of different WRF parametrizations over the region of Iași with remote sensing techniques. Atmosphere 2019, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Ouyang, Y.; Zhang, J. Study On Temporal And Spatial Variation Of Winter Temperature In Northeast China. Sci. Technol. Inf. 2017, 3, 106–112. (In Chinese) [Google Scholar] [CrossRef]
- Williamson, S.N.; Hik, D.S.; Gamon, J.A.; Kavanaugh, J.L.; Flowers, G.E. Estimating temperature fields from MODIS land surface temperature and air temperature observations in a sub-arctic alpine environment. Remote Sens. 2014, 6, 946–963. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y.; Ranagalage, M. Capturing urban heat island formation in a subtropical city of China based on Landsat images: Implications for sustainable urban development. Environ. Monit. Assess. 2021, 193, 130. [Google Scholar] [CrossRef]
- Chen, T.; Sun, A.; Niu, R. Effect of land cover fractions on changes in surface urban heat islands using landsat time-series images. Int. J. Environ. Res. Public Health 2019, 16, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, F.Y.; Huang, K.T.; Lin, T.P.; Hwang, R.L. Generating hourly local weather data with high spatially resolution and the applications in bioclimatic performance. Sci. Total Environ. 2019, 653, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.W.; Ngarambe, J.; Duhirwe, P.N.; Yun, G.Y.; Santamouris, M. Using deep-learning to forecast the magnitude and characteristics of urban heat island in Seoul Korea. Sci. Rep. 2020, 10, 3359. [Google Scholar] [CrossRef] [PubMed]
- Saher, R.; Stephen, H.; Ahmad, S. Effect of land use change on summertime surface temperature, albedo, and evapotranspiration in Las Vegas Valley. Urban Clim. 2021, 39, 100966. [Google Scholar] [CrossRef]
- Trlica, A.; Hutyra, L.R.; Schaaf, C.L.; Erb, A.; Wang, J.A. Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape. Earth’s Futur. 2017, 5, 1084–1101. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Aminipouri, M.; Knudby, A. Spatio-temporal analysis of surface urban heat island (SUHI) using MODIS land surface temperature (LST) for summer 2003–2012, A case study of the Netherlands. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 3192–3193. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Yue, W.; Li, X.; Liu, Y.; Lu, D. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. J. Clean. Prod. 2020, 257, 120529. [Google Scholar] [CrossRef]
- Meng, C.; Dou, Y. Quantifying the anthropogenic footprint in Eastern China. Sci. Rep. 2016, 6, 24337. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Morris, C.J.G.; Simmonds, I. Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. Int. J. Climatol. 2000, 20, 1931–1954. [Google Scholar] [CrossRef]
- Ji, C.P.; Liu, W.D.; Xuan, C.Y. Impact of urban growth on the heat island in Beijing. Acta Geophys. Sin. 2006, 49, 69–77. [Google Scholar]
- City life of Shenyang. Available online: http://www.shenyang.gov.cn/wssy/cssh/ (accessed on 1 January 2022).
- Li, G.; She, C.; Wu, N.; Li, Z.; Wang, L. The Solution and Simulation of the Condensation Problem of the Capillary Network System in the Children’s Hospital of Shenyang in Summer. Procedia Eng. 2015, 121, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhao, Y.; Zhou, J.; Jiang, Y.; Yang, S.; Yu, Z. The relationship between diurnal temperature range and COPD hospital admissions in Changchun, China. Environ. Sci. Pollut. Res. 2018, 25, 17942–17949. [Google Scholar] [CrossRef] [PubMed]
- Government, HM Urban Overview. Available online: http://www.harbin.gov.cn/col/col23/index.html (accessed on 1 January 2022).
- Yue, X. Study on Characterisistics of Ozone Pollution and Emission Reduction Strategies in Harbin. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. (In Chinese). [Google Scholar]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Zhan, W.; Göttsche, F.M.; Liu, S.; Olesen, F.S.; Hu, W.; Dai, F. A Thermal Sampling Depth Correction Method for Land Surface Temperature Estimation From Satellite Passive Microwave Observation Over Barren Land. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4743–4756. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Göttsche, F.M.; Zhan, W.; Liu, S.; Cao, R. Correction to: A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Tang, W.; Ding, L.; Ma, J.; Zhang, X. Daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST; 2000–2020). Natl. Tibet. Plateau Data Cent. 2021. Available online: http://poles.tpdc.ac.cn/zh-hans/ (accessed on 1 January 2022).
- Wang, J.; Yan, Z.; Jones, P.D.; Xia, J. On “observation minus reanalysis” method: A view from multidecadal variability. J. Geophys. Res. Atmos. 2013, 118, 7450–7458. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yan, Z.; Feng, J. Exaggerated Effect of Urbanization in the Diurnal Temperature Range Via “Observation minus Reanalysis” and the Physical Causes. J. Geophys. Res. Atmos. 2018, 123, 7223–7237. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, G.; Yu, P.; Zhou, D. Impacts of grassland types and vegetation cover changes on surface air temperature in the regions of temperate grassland of China. Theor. Appl. Climatol. 2016, 126, 141–150. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1995, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, S. Urban vertical profiles of three most urbanized Chinese cities and the spatial coupling with horizontal urban expansion. Land Use Policy 2022, 113, 105919. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, P.; Li, X.; Niu, Q.; Wang, Y.; Cao, W.; Huang, J.; Chen, H.; Yao, X.; Yu, L.; et al. The divergent response of vegetation phenology to urbanization: A case study of Beijing city, China. Sci. Total Environ. 2022, 803, 150079. [Google Scholar] [CrossRef]
- Quan, J.; Chen, Y.; Zhan, W.; Wang, J.; Voogt, J.; Wang, M. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model. Remote Sens. Environ. 2014, 149, 33–46. [Google Scholar] [CrossRef]
- Han, X.U.; Ben, C. Remote sensing of the urban heat island and its changes in Xiamen City of SE Remote sensing of the urban heat island and its changes in Xiamen City of SE China. J. Environ. Sci. 2004, 16, 276–281. [Google Scholar]
- Ding, Y.; Gong, X.; Xing, Z.; Cai, H.; Zhou, Z.; Zhang, D.; Sun, P.; Shi, H. Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China. Agric. Water Manag. 2021, 255, 106996. [Google Scholar] [CrossRef]
- Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, X.C.; Chang, S.W.; Nguyen, T.L.; Ngo, H.H.; Kumar, G.; Banu, J.R.; Vu, M.C.; Le, H.S.; Nguyen, D.D. A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models. J. Environ. Manag. 2018, 222, 378–384. [Google Scholar] [CrossRef]
- Shao, J.; Zhou, X.; Luo, Y.; Zhang, G.; Yan, W.; Li, J.; Li, B.; Dan, L.; Fisher, J.B.; Gao, Z.; et al. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901–2005. J. Geophys. Res. Biogeosci. 2016, 121, 1372–1393. [Google Scholar] [CrossRef]
- Li, L.; Qian, J.; Ou, C.Q.; Zhou, Y.X.; Guo, C.; Guo, Y. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ. Pollut. 2014, 190, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Sónia, C.; Clara, C.; Samantha, L.; Priscila, C.G.; John, I.; Alice, N. MERIS Phytoplankton Time Series Products from the SW Iberian Peninsula (Sagres) Using Seasonal-Trend Decomposition Based on Loess. Remote Sens. 2016, 8, 449. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Guo, S.; Zou, M.; Chen, C.; Wu, L. A dengue fever predicting model based on Baidu search index data and climate data in South China. PLoS ONE 2019, 14, e0226841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat Islands in four rapidly growing african cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef]
- Yao, N.; Huang, C.; Yang, J.; van den Bosch, C.C.K.; Ma, L.; Jia, Z. Combined effects of impervious surface change and large-scale afforestation on the surface urban heat island intensity of beijing, china based on remote sensing analysis. Remote Sens. 2020, 12, 3906. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, C.; Zhou, Y.; Li, X.; Shen, S.; Song, C. A global dataset of annual urban extents (1992–2020) from harmonized nighttime lights. Earth Syst. Sci. Data 2022, 14, 517–534. [Google Scholar] [CrossRef]
- Kant, Y.; Bharath, B.D.; Mallick, J.; Atzberger, C.; Kerle, N. Satellite-based analysis of the role of land use/land cover and vegetation density on surface temperature regime of Delhi, india. J. Indian Soc. Remote Sens. 2009, 37, 201–214. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Yin, C. Research on Boundary Extraction and Spatio-temporal Evolution of Urban Built-up Area-A Case Study of Central and Eastern China. Master’s Thesis, Shandong Jianzhu University, Jinan, China, 2021. (In Chinese). [Google Scholar]
- Sun, H. Study on the evolution of urban residential space structure and its driving forces in Shenyang. Master’s Thesis, Liaoning Normal University, Dalian, China, 2019. (In Chinese). [Google Scholar]
- Zhao, Z.Q.; He, B.J.; Li, L.G.; Wang, H.B.; Darko, A. Profile and concentric zonal analysis of relationships between land use/land cover and land surface temperature: Case study of Shenyang, China. Energy Build. 2017, 155, 282–295. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Vogel, J.; Afshari, A. Comparison of urban heat island intensity estimation methods using urbanized WRF in Berlin, Germany. Atmosphere 2020, 11, 1338. [Google Scholar] [CrossRef]
- Yu, L.; Pan, Y.; Xiao, Z.; Wang, Z.; Mai, J. Case studies of impacts of anthropogenic heat emissions on heat wave events in Guangzhou. China Environ. Sci. 2020, 40, 3721–3730. (In Chinese) [Google Scholar] [CrossRef]
Year | Shenyang (10,000 GJ) | Changchun (10,000 GJ) | Harbin (10,000 GJ) |
---|---|---|---|
2003 | 3222 | 4987 | 5075 |
2004 | 4193 | 5157 | 5580 |
2005 | 6304 | 6305 | 6509 |
2006 | 6046 | 5733 | 7221 |
2007 | 7060 | 5106 | 7808 |
2008 | 7812 | 5951 | 8429 |
2009 | 9146 | 6964 | 10,488 |
2010 | 9343 | 7571 | 9941 |
2011 | 9900 | 7093 | 10,551 |
2012 | 10,654 | 6704.2 | 12,461 |
2013 | 11,108 | 8083.05 | 13,833.5 |
2014 | 11,877 | 8253.75 | 15,175.5 |
2015 | 12,712 | 9289.85 | 15,674.5 |
2016 | 13,905.05 | 9164.23 | 15,830.71 |
2017 | 15,174 | 10,220 | 16,906 |
2018 | 16,369.23 | 9718 | 17,916 |
2019 | 16,680.26 | 10,185 | 18,466.23 |
Category | Division |
---|---|
Hot | |
Medium-hot | |
Warm | |
Medium-cold | |
Cold |
EHII | Division |
---|---|
High | |
Medium-high | |
Medium | |
Medium-low |
Medium-Low | Medium | Medium-High | High | |
---|---|---|---|---|
D1 | * | * | * | 0.84 |
D2 | 0.49 | 0.73 | 0.70 | * |
D3 | 0.81 | 0.62 | 0.76 | * |
CHS | T2 | |
---|---|---|
D1 | 98.2% | 1.8% |
D2 | 98.3% | 1.7% |
D3 | 97.9% | 2.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Gu, X.; Zhan, Y.; Wang, D.; Zhang, Y.; Mumtaz, F.; Shi, S.; Liu, Q. The Impact of Central Heating on the Urban Thermal Environment Based on Multi-Temporal Remote Sensing Images. Remote Sens. 2022, 14, 2327. https://doi.org/10.3390/rs14102327
Chen X, Gu X, Zhan Y, Wang D, Zhang Y, Mumtaz F, Shi S, Liu Q. The Impact of Central Heating on the Urban Thermal Environment Based on Multi-Temporal Remote Sensing Images. Remote Sensing. 2022; 14(10):2327. https://doi.org/10.3390/rs14102327
Chicago/Turabian StyleChen, Xinran, Xingfa Gu, Yulin Zhan, Dakang Wang, Yazhou Zhang, Faisal Mumtaz, Shuaiyi Shi, and Qixin Liu. 2022. "The Impact of Central Heating on the Urban Thermal Environment Based on Multi-Temporal Remote Sensing Images" Remote Sensing 14, no. 10: 2327. https://doi.org/10.3390/rs14102327
APA StyleChen, X., Gu, X., Zhan, Y., Wang, D., Zhang, Y., Mumtaz, F., Shi, S., & Liu, Q. (2022). The Impact of Central Heating on the Urban Thermal Environment Based on Multi-Temporal Remote Sensing Images. Remote Sensing, 14(10), 2327. https://doi.org/10.3390/rs14102327