Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data
2.2.1. Tabular Data
2.2.2. Vector Data
2.2.3. Raster Data
2.3. Methodology
2.3.1. Reconstruction Height Building Using DEMNAS
2.3.2. Solar PV Potential on the Rooftop Using Meteorology and Hillshade Analysis
2.3.3. Estimated Energy Consumption of Each Building
2.3.4. The Residential Property Modeling
2.3.5. Building Priority for Rooftop Solar PV
2.3.6. Optimum Rooftop Solar PV Installation Planning
3. Results
3.1. Reconstruction of Building Height Model
3.2. Solar PV Effective Model
3.3. Building Energy Consumption
3.4. Residential Property Index
3.5. Building Priority to Solar PV Rooftop Installation
3.6. Optimum Location and Optimum Tilt Solar PV Rooftop Installation
4. Discussion
4.1. Comparison of Solar PV Analysis per Building Using DEMNAS and Lidar-Photogrammetry Data
4.2. Study Limitation and Possible Study Direction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakirtas, T.; Akpolat, A.G. The Relationship between Energy Consumption, Urbanization, and Economic Growth in New Emerging-Market Countries. Energy 2018, 147, 110–121. [Google Scholar] [CrossRef]
- Khan, M.K.; Khan, M.I.; Rehan, M. The Relationship between Energy Consumption, Economic Growth and Carbon Dioxide Emissions in Pakistan. Financ. Innov. 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Li, J.; Bhattacharya, P. The Solution to the Global Energy Crisis with New Materials, and Sustainability. J. Phase Change Mater. 2021, 1. [Google Scholar] [CrossRef]
- Poudyal, R.; Loskot, P.; Nepal, R.; Parajuli, R.; Khadka, S.K. Mitigating the Current Energy Crisis in Nepal with Renewable Energy Sources. Renew. Sustain. Energy Rev. 2019, 116, 109388. [Google Scholar] [CrossRef]
- Raza, A.; Meiyu, G.; Gholami, R.; Rezaee, R.; Rasouli, V.; Sarmadivaleh, M.; Bhatti, A.A. Shale Gas: A Solution for Energy Crisis and Lower CO2 Emission in Pakistan. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 1647–1656. [Google Scholar] [CrossRef]
- Shevchenko, S.; Koval, A.; Danylchenko, D.; Koval, V. Energy Crisis and Electricity Reform of Ukraine-First Results. In Proceedings of the 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 5–10 October 2020; pp. 526–529. [Google Scholar]
- Looney, B. Statistical Review of World Energy 2020, 69th 2020. pp. 3–9. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (accessed on 6 June 2021).
- New, M.; Liverman, D.; Schroder, H.; Anderson, K. Four Degrees and beyond: The Potential for a Global Temperature Increase of Four Degrees and Its Implications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 6–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bölük, G.; Mert, M. Fossil & Renewable Energy Consumption, GHGs (Greenhouse Gases) and Economic Growth: Evidence from a Panel of EU (European Union) Countries. Energy 2014, 74, 439–446. [Google Scholar]
- IRENA Renewable Capacity Statistics 2021. Available online: https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021 (accessed on 6 June 2021).
- Silveira, J.L.; Tuna, C.E.; de Queiroz Lamas, W. The Need of Subsidy for the Implementation of Photovoltaic Solar Energy as Supporting of Decentralized Electrical Power Generation in Brazil. Renew. Sustain. Energy Rev. 2013, 20, 133–141. [Google Scholar] [CrossRef]
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Peng, J.; Lu, L.; Yang, H. Review on Life Cycle Assessment of Energy Payback and Greenhouse Gas Emission of Solar Photovoltaic Systems. Renew. Sustain. Energy Rev. 2013, 19, 255–274. [Google Scholar] [CrossRef]
- Mundo-Hernández, J.; de Celis Alonso, B.; Hernández-Álvarez, J.; de Celis-Carrillo, B. An Overview of Solar Photovoltaic Energy in Mexico and Germany. Renew. Sustain. Energy Rev. 2014, 31, 639–649. [Google Scholar] [CrossRef]
- ESDM. Indonesia Energy Outlook 2019. 2019. Available online: https://www.esdm.go.id/id/publikasi/indonesia-energy-outlook (accessed on 1 March 2022).
- Yu, L.; Li, Y.P.; Huang, G.H. Planning Municipal-Scale Mixed Energy System for Stimulating Renewable Energy under Multiple Uncertainties-The City of Qingdao in Shandong Province, China. Energy 2019, 166, 1120–1133. [Google Scholar] [CrossRef]
- ESDM. Rencana Strategis Kementerian Energi Dan Sumber Daya Mineral 2020–2024. 2021, p. 197. Available online: https://www.esdm.go.id/id/publikasi/rencana-strategis (accessed on 16 August 2021).
- Weeks, J.R. Defining Urban Areas. In Remote Sensing of Urban and Suburban Areas; Springer: Berlin, Germay, 2010; pp. 33–45. [Google Scholar]
- Zhang, M.; Song, Y.; Li, P.; Li, H. Study on Affecting Factors of Residential Energy Consumption in Urban and Rural Jiangsu. Renew. Sustain. Energy Rev. 2016, 53, 330–337. [Google Scholar] [CrossRef]
- Shukla, A.K.; Ojha, C.S.P.; Mijic, A.; Buytaert, W.; Pathak, S.; Garg, R.D.; Shukla, S. Population Growth, Land Use and Land Cover Transformations, and Water Quality Nexus in the Upper Ganga River Basin. Hydrol. Earth Syst. Sci. 2018, 22, 4745–4770. [Google Scholar] [CrossRef] [Green Version]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic Self-Consumption in Buildings: A Review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Allouhi, A. Solar PV Integration in Commercial Buildings for Self-Consumption Based on Life-Cycle Economic/Environmental Multi-Objective Optimization. J. Clean. Prod. 2020, 270, 122375. [Google Scholar] [CrossRef]
- Pillot, B.; Al-Kurdi, N.; Gervet, C.; Linguet, L. An Integrated GIS and Robust Optimization Framework for Solar PV Plant Planning Scenarios at Utility Scale. Appl. Energy 2020, 260, 114257. [Google Scholar] [CrossRef] [Green Version]
- Ihsan, K.T.N.; Sakti, A.D.; Wikantika, K.; Safitri, S. Development of Low-Cost 3D Building Model Using National Digital Elevation Model in Urban Area of Bandung City, Indonesia. ECS Trans. 2022, 107, 16973. [Google Scholar] [CrossRef]
- Song, X.; Huang, Y.; Zhao, C.; Liu, Y.; Lu, Y.; Chang, Y.; Yang, J. An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images. Energies 2018, 11, 3172. [Google Scholar] [CrossRef] [Green Version]
- Mahtta, R.; Joshi, P.K.; Jindal, A.K. Solar Power Potential Mapping in India Using Remote Sensing Inputs and Environmental Parameters. Renew Energy 2014, 71, 255–262. [Google Scholar] [CrossRef]
- Principe, J.; Takeuchi, W. Assessment of Solar PV Power Potential over Asia Pacific Region with Remote Sensing Considering Meteorological Factors. J. Renew. Sustain. Energy 2019, 11, 013502. [Google Scholar] [CrossRef]
- Suomalainen, K.; Wang, V.; Sharp, B. Rooftop Solar Potential Based on LiDAR Data: Bottom-up Assessment at Neighbourhood Level. Renew Energy 2017, 111, 463–475. [Google Scholar] [CrossRef]
- Hong, T.; Lee, M.; Koo, C.; Jeong, K.; Kim, J. Development of a Method for Estimating the Rooftop Solar Photovoltaic (PV) Potential by Analyzing the Available Rooftop Area Using Hillshade Analysis. Appl. Energy 2017, 194, 320–332. [Google Scholar] [CrossRef]
- Desthieux, G.; Carneiro, C.; Camponovo, R.; Ineichen, P.; Morello, E.; Boulmier, A.; Abdennadher, N.; Dervey, S.; Ellert, C. Solar Energy Potential Assessment on Rooftops and Facades in Large Built Environments Based on Lidar Data, Image Processing, and Cloud Computing. Methodological Background, Application, and Validation in Geneva (Solar Cadaster). Front. Built Environ. 2018, 4, 14. [Google Scholar] [CrossRef]
- Gašparović, I.; Gašparović, M. Determining Optimal Solar Power Plant Locations Based on Remote Sensing and GIS Methods: A Case Study from Croatia. Remote Sens. 2019, 11, 1481. [Google Scholar] [CrossRef] [Green Version]
- Mukisa, N.; Zamora, R.; Lie, T.T.; Wu, X.; Chen, G. Multi Criteria Analysis Ranking of Solar Photovoltaic Modules Manufacturing Countries by an Importing Country: A Case of Uganda. Sol. Energy 2021, 223, 326–345. [Google Scholar] [CrossRef]
- Tumiwa, F.; Lontoh, L.; Lang, K.; Vis-Dunbar, D. A Citizens’ Guide to Energy Subsidies in Indonesia-Update. 2012. Available online: https://www.iisd.org/publications/report/citizens-guide-energy-subsidies-indonesia-update (accessed on 22 April 2022).
- BPS. Bandung Municipality in Figures 2020. 2020, pp. 51–56. Available online: https://ppid.bandung.go.id (accessed on 10 July 2021).
- Arfiansyah, D.; Han, H. Bandung Smart City: The Digital Revolution for a Sustainable Future. In Handbook of Smart Cities; Springer: Cham, Switzerland, 2020; pp. 1–27. [Google Scholar]
- Sholeh, C.; Sintaningrum, S.; Sugandi, Y.S. Formulation of Innovation Policy: Case of Bandung Smart City. J. Ilmu Sosial dan Ilmu Politik 2019, 22, 173–186. [Google Scholar] [CrossRef] [Green Version]
- ESMAP. Global Solar Atlas 2.0 Technical Report. 2019. Available online: https://documents1.worldbank.org/curated/en/529431592893043403/pdf/Global-Solar-Atlas-2-0-Technical-Report.pdf (accessed on 11 July 2021).
- BIG Geospasial Untuk Negeri. Available online: https://www.esdm.go.id/id/publikasi/indonesia-energy-outlook (accessed on 1 March 2022).
- Google Earth Pro Google Earth Pro Bandung City. 3D Building Data Layer. Available online: https://earth.google.com/web/ (accessed on 31 August 2021).
- OpenStreetMap Contributors. Available online: https://planet.osm.org (accessed on 15 March 2021).
- OpenStreetMap Contributors Planet Dump. Available online: https://www.openstreetmap.org (accessed on 15 March 2021).
- ITB-LAPI Government of Bandung: Bandung Geodata. Available online: http://103.108.201.6/layers/geonode:BANGUNANFASUMAR (accessed on 2 February 2021).
- Abatzoglou, J.T. Development of Gridded Surface Meteorological Data for Ecological Applications and Modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC Algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA Eosdis Land Processes Daac 2015, 10, 126638. [Google Scholar] [CrossRef]
- BPS Bandung Municipality in Figures 2019. 2019. Available online: https://ppid.bandung.go.id (accessed on 10 July 2021).
- Tang, L.; Li, L.; Ying, S.; Lei, Y. A Full Level-of-Detail Specification for 3D Building Models Combining Indoor and Outdoor Scenes. ISPRS Int. J. Geo-Inf. 2018, 7, 419. [Google Scholar] [CrossRef] [Green Version]
- Misra, P.; Avtar, R.; Takeuchi, W. Comparison of Digital Building Height Models Extracted from AW3D, TanDEM-X, ASTER, and SRTM Digital Surface Models over Yangon City. Remote Sens. 2018, 10, 2008. [Google Scholar] [CrossRef] [Green Version]
- Girindran, R.; Boyd, D.S.; Rosser, J.; Vijayan, D.; Long, G.; Robinson, D. On the Reliable Generation of 3D City Models from Open Data. Urban Sci. 2020, 4, 47. [Google Scholar] [CrossRef]
- Vosselman, G. Slope Based Filtering of Laser Altimetry Data. Int. Arch. Photogramm. Remote Sens. 2000, 33, 935–942. [Google Scholar]
- Ali, T.A. Building of Robust Multi-Scale Representations of LiDAR-Based Digital Terrain Model Based on Scale-Space Theory. Opt. Lasers Eng. 2010, 48, 316–319. [Google Scholar] [CrossRef]
- Tarquini, S.; Isola, I.; Favalli, M.; Mazzarini, F.; Bisson, M.; Pareschi, M.T.; Boschi, E. TINITALY/01: A New Triangular Irregular Network of Italy. Ann. Geophys. 2007, 50, 407–425. [Google Scholar] [CrossRef]
- Fissore, E.; Pirotti, F. DSM and DTM for Extracting 3D Building Models: Advantages and Limitations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1539–1544. [Google Scholar] [CrossRef] [Green Version]
- Sefercik, U.G.; Karakis, S.; Bayik, C.; Alkan, M.; Yastikli, N. Contribution of Normalized DSM to Automatic Building Extraction from HR Mono Optical Satellite Imagery. Eur. J. Remote Sens. 2014, 47, 575–591. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Rumsey, D.J. How to Interpret a Correlation Coefficient r. Statistics for Dummies. 2016. Available online: http://mathaction.pbworks.com/w/file/fetch/133081815/3.CorrelationCoefficient.pdf (accessed on 6 June 2021).
- Analytical Methods Committee. Is My Calibration Linear? Analyst 1994, 119, 2363–2366. [Google Scholar] [CrossRef]
- Daniya, T.; Geetha, M.; Kumar, B.S.; Cristin, R. Least Square Estimation of Parameters for Linear Regression. Int. J. Control Autom. 2020, 13, 447–452. [Google Scholar]
- Hong, T.; Lee, M.; Koo, C.; Kim, J.; Jeong, K. Estimation of the Available Rooftop Area for Installing the Rooftop Solar Photovoltaic (PV) System by Analyzing the Building Shadow Using Hillshade Analysis. Energy Procedia 2016, 88, 408–413. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, K.; Niu, D.D.; Jin, Y.A.; Liu, Y. The Characteristic Analysis of the Solar Energy Photovoltaic Power Generation System. In Proceedings of the IOP Conference Series: 5th Global Conference on Materials Science and Engineering, Tunghai University, Taichung City, Taiwan, 8–11 November 2016; Volume 164, p. 012018. [Google Scholar]
- Chander, S.; Purohit, A.; Sharma, A.; Nehra, S.P.; Dhaka, M.S. A Study on Photovoltaic Parameters of Mono-Crystalline Silicon Solar Cell with Cell Temperature. Energy Rep. 2015, 1, 104–109. [Google Scholar] [CrossRef] [Green Version]
- del Hoyo, M.; Rondanelli, R.; Escobar, R. Significant Decrease of Photovoltaic Power Production by Aerosols. The Case of Santiago de Chile. Renew. Energy 2020, 148, 1137–1149. [Google Scholar] [CrossRef]
- Stephens, G.L.; Haynes, J.M. Near Global Observations of the Warm Rain Coalescence Process. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015; ISBN 0198742843. [Google Scholar]
- ArcGIS How Hillshade Works. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/3d-analyst/how-hillshade-works.htm# (accessed on 23 December 2021).
- NOAA ESRL Sun Position Calculator. Available online: https://gml.noaa.gov/grad/solcalc/ (accessed on 3 December 2021).
- Fachrizal, R.; Munkhammar, J. Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles. Energies 2020, 13, 1153. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A Review on Buildings Energy Consumption Information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Xu, G.; Wang, W. China’s Energy Consumption in Construction and Building Sectors: An Outlook to 2100. Energy 2020, 195, 117045. [Google Scholar] [CrossRef]
- Howard, B.; Parshall, L.; Thompson, J.; Hammer, S.; Dickinson, J.; Modi, V. Spatial Distribution of Urban Building Energy Consumption by End Use. Energy Build. 2012, 45, 141–151. [Google Scholar] [CrossRef]
- Resch, E.; Bohne, R.A.; Kvamsdal, T.; Lohne, J. Impact of Urban Density and Building Height on Energy Use in Cities. Energy Procedia 2016, 96, 800–814. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Shah, P.; Beauregard, B.E. Measuring Multiple Housing Deprivations in Urban India Using Slum Severity Index. Habitat Int. 2020, 101, 102190. [Google Scholar] [CrossRef]
- Harari, M.; Wong, M. Slum Upgrading and Long-Run Urban Development: Evidence from Indonesia. In Proceedings of the 2018 Meeting of Society for Economic Dynamics, Mexico City, Mexico, 28–30 June 2018. [Google Scholar]
- Dovey, K.; Pafka, E. The Urban Density Assemblage: Modelling Multiple Measures. Urban Des. Int. 2014, 19, 66–76. [Google Scholar] [CrossRef]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R. Slums from Space—15 Years of Slum Mapping Using Remote Sensing. Remote Sens. 2016, 8, 455. [Google Scholar] [CrossRef] [Green Version]
- Baud, I.; Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Karuppannan, S. Understanding Heterogeneity in Metropolitan India: The Added Value of Remote Sensing Data for Analyzing Sub-Standard Residential Areas. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 359–374. [Google Scholar] [CrossRef]
- Cocola-Gant, A. Tourism Gentrification. In Handbook of Gentrification Studies; Edward Elgar Publishing: Cheltenham, UK, 2018. [Google Scholar]
- Zhang, L.; Zhou, T.; Mao, C. Does the Difference in Urban Public Facility Allocation Cause Spatial Inequality in Housing Prices? Evidence from Chongqing, China. Sustainability 2019, 11, 6096. [Google Scholar] [CrossRef] [Green Version]
- Lan, F.; Wu, Q.; Zhou, T.; Da, H. Spatial Effects of Public Service Facilities Accessibility on Housing Prices: A Case Study of Xi’an, China. Sustainability 2018, 10, 4503. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.J.; Song, J.; Choi, M.J. Measuring the Externality Effects of Commercial Land Use on Residential Land Value: A Case Study of Seoul. Sustainability 2016, 8, 432. [Google Scholar] [CrossRef] [Green Version]
- White, R. Tipe Rumah Berdasarkan Luas Bangunan 2021. Available online: https://www.raywhite.co.id/news/105404tipe-tipe-rumah-berdasarkan-luas-bangunannya (accessed on 10 November 2021).
- Pekerjaan Umum, C.-K. Identifikasi Kawasan Permukiman Kumuh Penyangga Kota Metropolitan 2006. Available online: https://ciptakarya.pu.go.id/dok/hukum/pedoman/panduan_identifikasi_kawasan_permukiman_kumuh.pdf (accessed on 10 September 2021).
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Denholm, P.; O’Connell, M.; Brinkman, G.; Jorgenson, J. Overgeneration from Solar Energy in California. A Field Guide to the Duck Chart; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015. [Google Scholar]
- Fachrizal, R.; Ramadhani, U.H.; Munkhammar, J.; Widén, J. Combined PV–EV Hosting Capacity Assessment for a Residential LV Distribution Grid with Smart EV Charging and PV Curtailment. Sustain. Energy Grids Netw. 2021, 26, 100445. [Google Scholar] [CrossRef]
- Fachrizal, R.; Shepero, M.; Åberg, M.; Munkhammar, J. Optimal PV-EV Sizing at Solar Powered Workplace Charging Stations with Smart Charging Schemes Considering Self-Consumption and Self-Sufficiency Balance. Appl. Energy 2022, 307, 118139. [Google Scholar] [CrossRef]
- Nazmul, R.B. Calculating Optimum Angle for Solar Panels of Dhaka, Bangladesh for Capturing Maximum Irradiation. In Proceedings of the 2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dehradun, India, 18–19 December 2017; pp. 25–28. [Google Scholar]
- Jayaraj, P.; Ramiya, A.M. 3D CityGML Building Modelling from Lidar Point Cloud Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Toschi, I.; Ramos, M.M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F. Oblique Photogrammetry Supporting 3D Urban Reconstruction of Complex Scenarios. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-1/W1, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Qin, R. Change Detection on LOD 2 Building Models with Very High Resolution Spaceborne Stereo Imagery. ISPRS J. Photogramm. Remote Sens. 2014, 96, 179–192. [Google Scholar] [CrossRef]
- Arefi, H.; Reinartz, P. Accuracy Enhancement of ASTER Global Digital Elevation Models Using ICESat Data. Remote Sens. 2011, 3, 1323–1343. [Google Scholar] [CrossRef] [Green Version]
- ESA Sentinel-5P TROPOMI User Guide. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-5p-tropomi (accessed on 22 April 2022).
- Gaughan, A.E.; Stevens, F.R.; Linard, C.; Jia, P.; Tatem, A.J. High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015. PLoS ONE 2013, 8, e55882. [Google Scholar]
- Alam, M.M.; Murad, M.W.; Noman, A.H.M.; Ozturk, I. Relationships among Carbon Emissions, Economic Growth, Energy Consumption and Population Growth: Testing Environmental Kuznets Curve Hypothesis for Brazil, China, India and Indonesia. Ecol. Indic. 2016, 70, 466–479. [Google Scholar] [CrossRef]
- Putri, S.R.; Wijayanto, A.W.; Sakti, A.D. Developing Relative Spatial Poverty Index Using Integrated Remote Sensing and Geospatial Big Data Approach: A Case Study of East Java, Indonesia. ISPRS Int. J. Geo-Inf. 2022, 11, 275. [Google Scholar] [CrossRef]
- Sakti, A.D.; Rahadianto, M.A.E.; Pradhan, B.; Muhammad, H.N.; Andani, I.G.A.; Sarli, P.W.; Abdillah, M.R.; Anggraini, T.S.; Purnomo, A.D.; Ridwana, R.; et al. School Location Analysis by Integrating the Accessibility, Natural and Biological Hazards to Support Equal Access to Education. ISPRS Int. J. Geo-Inf. 2022, 11, 12. [Google Scholar] [CrossRef]
- Sakti, A.D.; Fauzi, A.I.; Takeuchi, W.; Pradhan, B.; Yarime, M.; Vega-Garcia, C.; Agustina, E.; Wibisono, D.; Anggraini, T.S.; Theodora, M.O.; et al. Spatial Prioritization for Wildfire Mitigation by Integrating Heterogeneous Spatial Data: A New Multi-Dimensional Approach for Tropical Rainforests. Remote Sens. 2022, 14, 543. [Google Scholar] [CrossRef]
- Yousefi, S.; Pourghasemi, H.R.; Emami, S.N.; Pouyan, S.; Eskandari, S.; Tiefenbacher, J.P. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Sci. Rep. 2020, 10, 12144. [Google Scholar] [CrossRef] [PubMed]
No | Dataset/Unit | Product | Data Format | Time of Data Use | Resolution | Reference |
---|---|---|---|---|---|---|
1 | Energy Consumption (MWh) | Bandung Gov. | Statistical | Annual. 2018 | - | [34] |
2 | Population | Bandung Gov. | Statistical | Annual. 2018 | - | [34] |
3 | Hourly Solar PV (Wh) | Global Solar Atlas | Statistical | 2021 | - | [37] |
4 | District Boundary | BIG | Vector | 2015 | 1:25,000 | [38] |
5 | Building Footprint | BIG | Vector | 2015 | 1:5000 | [38] |
6 | Public Facilities | BIG | Vector | 2015 | 1:25,000 | [38] |
7 | Health Facilities | BIG | Vector | 2015 | 1:25,000 | [38] |
8 | Schools Location | BIG | Vector | 2015 | 1:25,000 | [38] |
9 | Transportation Facility | BIG | Vector | 2015 | 1:25,000 | [38] |
10 | Roads | BIG | Vector | 2015 | 1:25,000 | [38] |
11 | Building Height (m) | Google Earth Pro | Vector | 2021 | - | [39] |
12 | Tourism spot | OSM | Vector | 2021 | - | [40,41] |
13 | Sample Height Building from Lidar Photogrammetry | ITB | Vector | 2017 | - | [42] |
14 | Shortwave Radiation (W/m2) | TerraClimate: | Raster | Monthly. 2018 | 4638.3 m | [43] |
15 | Aerosol Optical Depth | MAIAC | Raster | Daily. 2018 | 1000 m | [44] |
16 | Precipitation (mm/day) | CHIRPS Daily 2.0 | Raster | Daily. 2018 | 5566 m | [45] |
17 | Surface Temperature (K) | MOD11A2.006 | Raster | 8 days. 2018 | 1000 m | [46] |
18 | National DEM (m) | BIG | Raster | 2015 | ~8 m | [38] |
No | Dataset | Height Building | Solar PV Potential | Energy Consumption | Residential Property Index | Comparison Data | Optimum Rooftop | Sustainability Solar PV |
---|---|---|---|---|---|---|---|---|
1 | Building Footprint | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - |
2 | National Digital Elevation | ✓ | - | - | - | - | - | - |
3 | Sample Building Height | ✓ | - | - | - | - | - | - |
4 | Shortwave Radiation | - | ✓ | - | - | ✓ | - | ✓ |
5 | Land Surface Temperature | - | ✓ | - | - | ✓ | - | ✓ |
6 | Aerosol Optical Depth | - | ✓ | - | - | ✓ | - | ✓ |
7 | Precipitation | - | ✓ | - | - | ✓ | - | ✓ |
8 | Energy Consumption | - | - | ✓ | - | - | - | - |
9 | Population | - | - | ✓ | - | - | - | - |
10 | District Boundary | - | - | ✓ | - | - | - | ✓ |
11 | Tourism Location | - | - | - | ✓ | - | - | - |
12 | Public Facilities Location | - | - | - | ✓ | - | - | - |
13 | Health Facilities Location | - | - | - | ✓ | - | - | - |
14 | Schools Location | - | - | - | ✓ | - | - | - |
15 | Transportation Facility | - | - | - | ✓ | - | - | - |
16 | Roads | - | - | - | ✓ | - | - | - |
17 | Sample Height Building from Lidar Photogrammetry | - | - | - | - | ✓ | - | - |
18 | Hourly profiles of solar PV | - | - | - | - | ✓ | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakti, A.D.; Ihsan, K.T.N.; Anggraini, T.S.; Shabrina, Z.; Sasongko, N.A.; Fachrizal, R.; Aziz, M.; Aryal, J.; Yuliarto, B.; Hadi, P.O.; et al. Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia. Remote Sens. 2022, 14, 2796. https://doi.org/10.3390/rs14122796
Sakti AD, Ihsan KTN, Anggraini TS, Shabrina Z, Sasongko NA, Fachrizal R, Aziz M, Aryal J, Yuliarto B, Hadi PO, et al. Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia. Remote Sensing. 2022; 14(12):2796. https://doi.org/10.3390/rs14122796
Chicago/Turabian StyleSakti, Anjar Dimara, Kalingga Titon Nur Ihsan, Tania Septi Anggraini, Zahratu Shabrina, Nugroho Adi Sasongko, Reza Fachrizal, Muhammad Aziz, Jagannath Aryal, Brian Yuliarto, Pradita Octoviandiningrum Hadi, and et al. 2022. "Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia" Remote Sensing 14, no. 12: 2796. https://doi.org/10.3390/rs14122796
APA StyleSakti, A. D., Ihsan, K. T. N., Anggraini, T. S., Shabrina, Z., Sasongko, N. A., Fachrizal, R., Aziz, M., Aryal, J., Yuliarto, B., Hadi, P. O., & Wikantika, K. (2022). Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia. Remote Sensing, 14(12), 2796. https://doi.org/10.3390/rs14122796