Efficient Superpixel Generation for Polarimetric SAR Images with Cross-Iteration and Hexagonal Initialization
Abstract
:1. Introduction
- To the best of our knowledge, the cross-iteration strategy is proposed for PolSAR image superpixel generation for the first time. Without imposing redundant computational load, the cross-iteration strategy is a flexible and simple scheme that can be generalized to several other interpretation tasks, i.e., image classification and segmentation, in which various measures with different superiority can be exploited alternately in the iterative process according to corresponding criteria, which completely differs from the capabilities of other existing weighing methods.
- The similarity measure ability of RWD and the computational efficiency of GD outperform numerous other distance measures for PolSAR images, which are fully exploited in this study. It is well known that none of the existing distance measures is ideal for PolSAR image superpixel generation, such as the large time consumption for RWD and weak boundary adherence for GD. However, the RWD and GD can be innovatively integrated to reduce their respective drawbacks and positively merge the merits of various measures via cross-iteration.
- The experimental results conducted on both two simulated PolSAR data sets and two real-world PolSAR data sets effectively demonstrate that the proposed HCI is capable of obtaining reliable results in various land cover scenes. Compared with six competitive state-of-the-art methods, our proposed HCI can provide better computational performance with higher boundary adherence.
2. PolSAR Data
2.1. RWD
2.2. GD
3. Materials and Methods
3.1. Initialization
3.2. Cross-Iteration
3.3. Procedure of the Proposed Algorithm
- (1)
- Initialization. Initialize the PolSAR image as a hexagonal distribution. Then, all pixels are set as unstable pixels. Set the iteration index .
- (2)
- Local relabeling. If or if the unstable pixel set is empty, then the algorithm ends and proceeds to (4). Alternatively, we adopt the comprehensive similarity measure via cross-iteration with (22) to find the clustering center in the searching region, and the label of this center is assigned to the current unstable pixel.
- (3)
- Updating. Update the superpixel models and the unstable pixel set. Set and return to (2).
- (4)
- Postprocessing. Search the superpixels with sizes smaller than . Calculate the dissimilarity with (28) and merge this superpixel with its neighborhood based on the predefined criterion.
3.4. Evaluation Criteria
4. Results and Discussion
4.1. Data Sets
4.2. Performance of Initialization
4.3. Parameter Analysis of
4.4. Superpixel Generation Results of Simulated Data
4.5. Superpixel Generation Results of the AIRSAR Data
4.6. Superpixel Generation Results of RADARSAT-2 Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIRSAR | NASA (National Aeronautics and Space Administration) radar technology testbed |
ASA | Achievable segmentation accuracy |
BR | Boundary recall |
C | C Programming Language |
CI | Cross-iteration |
CPU | Central Processing Unit |
DUR | Decreasing unstable-pixels-to-all-pixels ratio |
F-D | Final statistical distance |
GB | Gigabit |
GD | Geodesic distance |
GHz | Giga Hertz |
GMS | Generalized mean shift |
GS | IER method integrating GD and spatial distance |
HAGS | GS method integrating hexagonal initialization and all pixels initialization |
HAWS | WS method integrating hexagonal initialization and all pixels initialization |
HCI | The proposed method based on cross-iteration with hexagonal initialization |
Hex-IER | IER based on hexagonal initialization |
HLT | Hotelling-Lawley trace (HLT) distance |
HGS | GS method integrating hexagonal initialization |
HWS | WS method integrating hexagonal initialization |
IER | Iterative edge refinement |
LSC | Linear spectral clustering |
MATLAB | MATLAB (Matrix and laboratory) Programming Language |
ML | Maximum-likelihood |
MS | Mean shift |
PolSAR | Polarimetric synthetic aperture radar |
POL-HLT | Superpixel generation method integrating HLT distance for PolSAR images |
POL-LSC | LSC method for PolSAR images |
POL-SLIC | SLIC method for PolSAR images |
RADARSAT-2 | Canadian Space Agency (CSA) Earth observation satellite |
RGB | RGB (Red, Green and Blue) color model |
RT | Running time |
RWD | Revised Wishart distance |
SAR | Synthetic aperture radar |
SEEDS | Energy-driven sampling |
SLIC | Simple linear iterative clustering |
SW | Simple weighting |
UP | Unstable pixels |
UR | Unstable-pixels-to-all-pixels ratio |
USE | Under-segmentation error |
WS | IER method integrating RWD and spatial distance |
References
- Ren, S. Semi-supervised Classication for PolSAR Data with Multi-scale Evolving Weighted Graph Convolutional Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 12, 2911–2927. [Google Scholar] [CrossRef]
- Gadhiya, T.; Roy, A.K. Superpixel-Driven Optimized Wishart Network for Fast PolSAR Image Classification Using Global k-Means Algorithm. IEEE Trans. Geosci. Remote Sens. 2019, 58, 97–109. [Google Scholar] [CrossRef]
- Meilin, L.; Huanxin, Z.; Qian, M.; Jiachi, S.; Xu, C.; Xianxiang, Q. Unsupervised classification of PolSAR image based on tensor product graph diffusion. In Proceedings of the Fourth International Workshop on Pattern Recognition, Nanjing, China, 28–30 June 2019; Volume 11198, pp. 1–6. [Google Scholar]
- Tan, W.; Sun, B.; Xiao, C.; Huang, P.; Yang, W. A Novel Unsupervised Classification Method for Sandy Land Using Fully Polarimetric SAR Data. Remote Sens. 2021, 13, 355. [Google Scholar] [CrossRef]
- Bi, H.; Sun, J.; Xu, Z. A Graph-Based Semisupervised Deep Learning Model for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2116–2132. [Google Scholar] [CrossRef]
- Zhang, T.; Du, Y.; Yang, Z.; Quan, S.; Liu, T.; Xue, F.; Chen, Z.; Yang, J. PolSAR Ship Detection Using the Superpixel-Based Neighborhood Polarimetric Covariance Matrices. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Li, J. Oil Spill Detection in Quad-Polarimetric SAR Images Using an Advanced Convolutional Neural Network Based on SuperPixel Model. Remote Sens. 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Zou, H.; Yu, W.; Wang, P. Superpixel-Oriented Classification of PolSAR Images Using Complex-Valued Convolutional Neural Network Driven by Hybrid Data. IEEE Trans. Geosci. Remote Sens. 2020, 59, 10094–10111. [Google Scholar] [CrossRef]
- Stutz, D.; Hermans, A.; Leibe, B. Superpixels: An evaluation of the state-of-the-art. Comput. Vis. Image Underst. Cviu 2018, 166, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.; Xiang, D.; Wang, W.; Xiong, B.; Kuang, G. Scattering Feature-Driven Superpixel Segmentation for Polarimetric SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2173–2183. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, W.; Tang, T.; Guan, D.; Quan, S.; Liu, T.; Su, Y. Adaptive Statistical Superpixel Merging With Edge Penalty for PolSAR Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2412–2429. [Google Scholar] [CrossRef]
- Yin, J.; Wang, T.; Du, Y.; Liu, X.; Zhou, L.; Yang, J. SLIC Superpixel Segmentation for Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Lin, H.; Bao, J.; Yin, J.; Yang, J. Superpixel Segmentation with Boundary Constraints for Polarimetric SAR Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Comaniciu, D.; Meer, P. Mean shift analysis and applications. IEEE Int. Conf. Comput. Vis. 2002, 2, 1197–1203. [Google Scholar]
- Lang, F.; Yang, J.; Li, D.; Shi, L.; Wei, J. Mean-Shift-Based Speckle Filtering of Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2014, 7, 4440–4454. [Google Scholar] [CrossRef]
- Lang, F.; Yang, J.; Yan, S.; Qin, F. Superpixel Segmentation of Polarimetric Synthetic Aperture Radar (SAR) Images Based on Generalized Mean Shift. Remote Sens. 2018, 10, 1592. [Google Scholar] [CrossRef] [Green Version]
- Tuzel, M.; Ramalingam, O.; Liu, M.; Tuzel, O.; Ramalingam, S. Entropy rate superpixel segmentation. In Proceedings of the CVPR 2011, Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- Zhang, Y.; Hartley, R.; Mashford, J.; Burn, S. Superpixels via pseudo-Boolean optimization. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 1387–1394. [Google Scholar]
- Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-Based Classification With an Adaptive Number of Classes for Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 907–924. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, D.; Ban, Y.; Zhang, J.; Wan, J. Superpixel Segmentation of Polarimetric SAR Data Based on Integrated Distance Measure and Entropy Rate Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4045–4058. [Google Scholar] [CrossRef]
- Levinshtein, A.; Stere, A.; Kutulakos, K.N.; Fleet, D.J.; Siddiqi, K. TurboPixels: Fast Superpixels Using Geometric Flows. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2290–2297. [Google Scholar] [CrossRef] [Green Version]
- Nock, R.; Nielsen, F. Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1452. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.; Gou, S.; Chen, P.; Wang, Y.; Jiao, L. Fast Classification for Large Polarimetric SAR Data Based on Refined Spatial-Anchor Graph. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1589–1593. [Google Scholar] [CrossRef]
- Yang, S.; Yuan, X.; Liu, X.; Chen, Q. Superpixel generation for polarimetric SAR using Hierarchical Energy maximization. Comput. Geosci. 2019, 135, 104395. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Sstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, J. Superpixel segmentation using Linear Spectral Clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Feng, J.; Cao, Z.; Pi, Y. Polarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels. Remote Sens. 2014, 6, 7158–7181. [Google Scholar] [CrossRef] [Green Version]
- Qin, F.; Guo, J.; Lang, F. Superpixel Segmentation for Polarimetric SAR Imagery Using Local Iterative Clustering. IEEE Geosci. Remote Sens. Lett. 2017, 12, 13–17. [Google Scholar]
- Yue, Z.; Zou, H.; Luo, T.; Qin, X.; Zhou, S.; Ji, K. A Fast Superpixel Segmentation Algorithm for PolSAR Images Based on Edge Refinement and Revised Wishart Distance. Sensors 2016, 16, 1687. [Google Scholar]
- Zhu, S.; Cao, D.; Jiang, S.; Wu, Y.; Hu, P. Fast superpixel segmentation by iterative edge refinement. Electron. Lett. 2015, 51, 230–232. [Google Scholar] [CrossRef]
- Li, M.; Zou, H.; Ma, Q.; Sun, J.; Qin, X. Superpixel segmentation for polsar images based on hexagon initialization and edge refinement. ISPRS Arch. 2020, 43, 1225–1232. [Google Scholar] [CrossRef]
- Ratha, D.; De, S.; Celik, T.; Bhattacharya, A. Change Detection in Polarimetric SAR Images Using a Geodesic Distance Between Scattering Mechanisms. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1066–1070. [Google Scholar] [CrossRef]
- Ratha, D.; Bhattacharya, A.; Frery, A.C. Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance. IEEE Geosci. Remote Sens. Lett. 2018, 15, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Hong, Z.; Chao, W.; Meng, L.; Bo, Z. Superpixel-based PolSAR images change detection. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015. [Google Scholar]
- Zhang, L.; Han, C.; Yan, C. Improved SLIC superpixel generation algorithm and its application in polarimetric SAR images classification. In Proceedings of the IGARSS 2017—2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Hou, B.; Yang, C.; Ren, B.; Jiao, L. Decomposition Feature Iterative Clustering Based Superpixel Segmentation for PolSAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1239–1243. [Google Scholar] [CrossRef]
- Nakahara, M. Geometry, Topology and Physics; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Qin, X.; Zou, H.; Zhou, S.; Ji, K. Simulation of spatially correlated PolSAR images using inverse transform method. J. Appl. Remote Sens. 2015, 9, 095082. [Google Scholar] [CrossRef]
- Yommy, A.S.; Liu, R.; Wu, A.S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the International Conference on Intelligent Human–Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015. [Google Scholar]
Distance Measure | Revised Wishart Distance | Geodesic Distance |
---|---|---|
Square distribution & Edge pixels | WS | GS |
Hexagonal distribution & Edge pixels | HWS | HGS |
Hexagonal distribution & All pixels | HAWS | HAGS |
Algorithm | Clustering (s) | Postprocessing (s) | Total (s) |
---|---|---|---|
POL-SLIC | 839 | 124 | 963 |
POL-LSC | 371 | - | 371 |
POL-HLT | 755 | 64 | 819 |
WS | 641 | 65 | 706 |
HAWS | 556 | 64 | 620 |
HAGS | 530 | 65 | 595 |
HCI | 520 | 63 | 583 |
BR of the RADARSAT-2 Data Set Based on the Unfiltered Image | ||||||||||||
S | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Average |
POL-SLIC | 0.5042 | 0.5049 | 0.5137 | 0.5043 | 0.5076 | 0.5082 | 0.5084 | 0.5069 | 0.5146 | 0.5071 | 0.5071 | 0.5079 |
POL-LSC | 0.5375 | 0.5149 | 0.4924 | 0.4815 | 0.4818 | 0.4695 | 0.4578 | 0.4453 | 0.4414 | 0.4492 | 0.4421 | 0.4739 |
POL-HLT | 0.9682 | 0.9701 | 0.9674 | 0.9670 | 0.9666 | 0.9645 | 0.9538 | 0.9592 | 0.9556 | 0.9551 | 0.9449 | 0.9611 |
WS | 0.8678 | 0.8705 | 0.8677 | 0.8675 | 0.8710 | 0.8698 | 0.8565 | 0.8644 | 0.8586 | 0.8554 | 0.8465 | 0.8632 |
HAWS | 0.9264 | 0.9262 | 0.9241 | 0.9229 | 0.9190 | 0.9176 | 0.9152 | 0.9149 | 0.9067 | 0.9090 | 0.9006 | 0.9166 |
HAGS | 0.8126 | 0.8119 | 0.7963 | 0.7850 | 0.7721 | 0.7722 | 0.7566 | 0.7556 | 0.7407 | 0.7392 | 0.7306 | 0.7703 |
HCI | 0.9245 | 0.9246 | 0.9249 | 0.9233 | 0.9223 | 0.9199 | 0.9185 | 0.9192 | 0.9114 | 0.9144 | 0.9066 | 0.9191 |
RT(s) of the RADARSAT-2 Data Set Based on the Unfiltered Image | ||||||||||||
S | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Average |
POL-SLIC | 683 | 690 | 685 | 683 | 679 | 673 | 652 | 670 | 646 | 645 | 624 | 666 |
POL-LSC | 83 | 51 | 35 | 29 | 26 | 23 | 21 | 23 | 18 | 17 | 15 | 31 |
POL-HLT | 6587 | 6849 | 7069 | 7038 | 7133 | 7237 | 6306 | 6586 | 6351 | 6511 | 27,495 | 8651 |
WS | 464 | 446 | 436 | 424 | 418 | 414 | 394 | 400 | 390 | 388 | 376 | 414 |
HAWS | 461 | 456 | 433 | 419 | 400 | 396 | 386 | 400 | 421 | 464 | 416 | 423 |
HAGS | 284 | 276 | 287 | 302 | 276 | 239 | 220 | 219 | 213 | 209 | 202 | 248 |
HCI | 387 | 373 | 362 | 359 | 346 | 351 | 343 | 343 | 335 | 337 | 328 | 351 |
USE of the RADARSAT-2 Data Set Based on the Unfiltered Image | ||||||||||||
S | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Average |
POL-SLIC | 0.3937 | 0.3902 | 0.3910 | 0.3901 | 0.3866 | 0.3897 | 0.3927 | 0.3863 | 0.3960 | 0.3846 | 0.3881 | 0.3899 |
POL-LSC | 0.3782 | 0.4017 | 0.4188 | 0.4368 | 0.4673 | 0.4779 | 0.4939 | 0.5199 | 0.5237 | 0.5412 | 0.5557 | 0.4741 |
POL-HLT | 0.5286 | 0.5589 | 0.5784 | 0.6087 | 0.6369 | 0.6534 | 0.6619 | 0.6868 | 0.6966 | 0.6970 | 0.7225 | 0.6391 |
WS | 0.4407 | 0.4660 | 0.4818 | 0.5052 | 0.5259 | 0.5402 | 0.5565 | 0.5687 | 0.5784 | 0.5827 | 0.5986 | 0.5313 |
HAWS | 0.4529 | 0.4749 | 0.4982 | 0.5168 | 0.5395 | 0.5621 | 0.5793 | 0.5861 | 0.6098 | 0.6177 | 0.6247 | 0.5511 |
HAGS | 0.4196 | 0.4460 | 0.4683 | 0.4884 | 0.5099 | 0.5219 | 0.5394 | 0.5544 | 0.5752 | 0.5827 | 0.6050 | 0.5192 |
HCI | 0.4496 | 0.4772 | 0.5002 | 0.5235 | 0.5479 | 0.5615 | 0.5823 | 0.5894 | 0.6158 | 0.6204 | 0.6310 | 0.5544 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zou, H.; Qin, X.; Dong, Z.; Sun, L.; Wei, J. Efficient Superpixel Generation for Polarimetric SAR Images with Cross-Iteration and Hexagonal Initialization. Remote Sens. 2022, 14, 2914. https://doi.org/10.3390/rs14122914
Li M, Zou H, Qin X, Dong Z, Sun L, Wei J. Efficient Superpixel Generation for Polarimetric SAR Images with Cross-Iteration and Hexagonal Initialization. Remote Sensing. 2022; 14(12):2914. https://doi.org/10.3390/rs14122914
Chicago/Turabian StyleLi, Meilin, Huanxin Zou, Xianxiang Qin, Zhen Dong, Li Sun, and Juan Wei. 2022. "Efficient Superpixel Generation for Polarimetric SAR Images with Cross-Iteration and Hexagonal Initialization" Remote Sensing 14, no. 12: 2914. https://doi.org/10.3390/rs14122914
APA StyleLi, M., Zou, H., Qin, X., Dong, Z., Sun, L., & Wei, J. (2022). Efficient Superpixel Generation for Polarimetric SAR Images with Cross-Iteration and Hexagonal Initialization. Remote Sensing, 14(12), 2914. https://doi.org/10.3390/rs14122914