Quantifying the Impacts of the 2020 Flood on Crop Production and Food Security in the Middle Reaches of the Yangtze River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sets
2.2.1. Sentinel-1A/B Data
2.2.2. Sentinel-2 Data
2.2.3. Copernicus Global Land Cover
2.3. Methodology
2.3.1. LULC Map Extracted from Multi-Source Data
2.3.2. Monthly Composite Flooding Map
3. Results
3.1. Spatial and Temporal Variability of Flood Impact Area
3.2. Food Security
- (1)
- Compared to 2019, the total sown areas of farm crops, grain crops, and rice in 2020 increased by 0.94%, 0.61%, and 1.30%, respectively.
- (2)
- Compared to 2019, the output of grain crops, grain crops harvested in summer, grain crops harvested in autumn, rice, and early rice in 2020 increased by 0.85%, 0.89%, 0.68%, 1.07%, and 3.88%, respectively.
- (3)
- Until early May 2022, the PRC government released no detailed province-level agricultural data for 2020. It is likely that they will announce different rates and methods.
- (4)
- Compared to the January–July 2020 period, the quantity of Grains and Feeds imported during the January–July 2021 period to the PRC from the U.S. increased by 316%. The increases in corn, wheat, barley, and rice increased by 1691%, 153%, 503%, and 166%, respectively, in the same period.
4. Discussion
4.1. Rapid Damage Assessment
4.2. Remedial Actions after the Flood
4.3. Apply the Research Results for Other Cases
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhou, Q.; Yu, Q.; Wu, W. Analysis of spatial pattern and ecological service value changes of large-scale regional paddy fields based on remote sensing data. Smart Agric. 2020, 2, 43–57. [Google Scholar]
- Lü, X.; Zhou, G. A review on main meteorological disaster of double-cropping rice in China. J. Appl. Meteor. Sci. 2018, 29, 385–395. [Google Scholar] [CrossRef]
- The state council information office. P.R.C. The State Council Information Office Held a Press Conference on Flood Prevention and Disaster Relief Work. 13 August 2020. Available online: http://www.gov.cn./xinwen/2020-08/13/content_5534534.htm (accessed on 5 May 2022).
- The Foreign Agricultural Service (FAS). China: Grain and Feed Update. 2021. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Grain%20and%20Feed%20Update_Beijing_China%20-%20People%27s%20Republic%20of_06-28-2021.pdf (accessed on 4 May 2022).
- Huo, Z.; Fan, Y.; Yang, J.; Shang, Y. Review on Agricultural Flood Disaster in China. J. Appl. Meteorol. Sci. 2017, 28, 641–653. [Google Scholar]
- Yin, H.; Li, C. Human impact on floods and flood disasters on the Yangtze River. Geomorphology 2001, 41, 105–109. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Li, D. The Analysis of the Impact of Land-Use Changes on Flood Exposure of Wuhan in Yangtze River Basin, China. Water Resour. Manag. 2014, 28, 2507–2522. [Google Scholar] [CrossRef]
- Mou, X.L.; Li, H.; Huang, C.; Liu, Q.; Liu, G. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction. Remote Sens. Land Resour. 2021, 33, 1–10. Available online: https://www.cgsjournals.com/zgdzdcqkw-data/gtzyyg/2021/2/PDF/gtzyyg202102001.pdf (accessed on 18 June 2022).
- Pandey, A.C.; Kaushik, K.; Parida, B.R. Google Earth Engine for Large-Scale Flood Mapping Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra Basin. Sustainability 2022, 14, 4210. [Google Scholar] [CrossRef]
- Fatchurrachman; Rudiyanto; Soh, N.C.; Shah, R.M.; Giap, S.G.E.; Setiawan, B.I.; Minasny, B. High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine. Remote Sens. 2022, 14, 1875. [Google Scholar] [CrossRef]
- Attia, W.; Ragab, D.; Abdel-Hamid, A.M.; Marghani, A.M.; Elfadaly, A.; Lasaponara, R. On the Use of Radar and Optical Satellite Imagery for the Monitoring of Flood Hazards on Heritage Sites in Southern Sinai, Egypt. Sustainability 2022, 14, 5500. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, W.; Liu, H.; Zhang, W.; Hu, J. Identifying Dynamic Changes in Water Surface Using Sentinel-1 Data Based on Genetic Algorithm and Machine Learning Techniques. Remote Sens. 2021, 13, 3745. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, X.; Xu, H.; Jing, Q.; Pan, X.; Liu, T.; Wang, H.; Hou, H. A GIS-Based Spatial Multi-Index Model for Flood Risk Assessment in the Yangtze River Basin, China. Environ. Impact Assess. Rev. 2020, 83, 106397. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, Y.; Feng, L.; Chen, J.; Lakshmi, V.; Shi, H. Are Only Floods with Large Discharges Threatening? Flood Characteristics Evolution in the Yangtze River Basin. Geosci. Lett. 2021, 8, 32. [Google Scholar] [CrossRef]
- Yanan, Y.; Yang, K.; Xiao, F.; Yadong, C.; Hanwen, Z.; Hongming, Z. Edge extraction method of remote sensing UAV terrace image based on topographic feature. Smart Agric. 2019, 1, 50. [Google Scholar]
- Nguyen, A.K.; Liou, Y.A.; Li, M.H.; Tran, T.A. Zoning eco-environmental vulnerability for environmental management and protection. Ecol. Indic. 2016, 69, 100–117. [Google Scholar] [CrossRef]
- Liou, Y.A.; Nguyen, A.K.; Li, M.H. Assessing spatiotemporal eco-environmental vulnerability by Landsat data. Ecol. Indic. 2017, 80, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.A.; Liou, Y.A. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total Environ. 2019, 664, 995–1004. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Spatiotemporal dynamics and gray forecast of ecosystem services value in the Yangtze River Economic Belt. Ecol. Econ. 2019, 35, 196–201. [Google Scholar]
- Dao, P.D.; Liou, Y.A. Object-based flood mapping and affected rice field estimation with Landsat 8 OLI and MODIS data. Remote Sens. 2015, 7, 5077–5097. [Google Scholar] [CrossRef] [Green Version]
- Li, G.F.; Xiang, X.Y.; Tong, Y.Y.; Wang, H.M. Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stoch. Environ. Res. Risk Assess. 2013, 27, 1683–1693. [Google Scholar] [CrossRef]
- Report on Important Water and Rain Conditions in the Yangtze River Basin in 2020. Available online: http://www.cjh.com.cn/article_2313_237960.html (accessed on 4 May 2022).
- Zhao, R.; Li, Y.; Ma, M. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability 2021, 13, 503. [Google Scholar] [CrossRef]
- Felegari, S.; Sharifi, A.; Moravej, K.; Amin, M.; Golchin, A.; Muzirafuti, A.; Tariq, A.; Zhao, N. Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping. Appl. Sci. 2021, 11, 10104. [Google Scholar] [CrossRef]
- Valero, S.; Arnaud, L.; Planells, M.; Ceschia, E. Synergy of Sentinel-1 and Sentinel-2 Imagery for Early Seasonal Agricultural Crop Mapping. Remote Sens. 2021, 13, 4891. [Google Scholar] [CrossRef]
- Sentinel-1, ESA. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1 (accessed on 5 May 2022).
- Sentinel-1 SAR GRD. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 5 May 2022).
- Sentinel-2, ESA. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 5 May 2022).
- Liu, Y.; Li, Y.; Wu, J. Study on extraction of paddy fields based on LSWI and time series NDV. Geogr. Geo-Inf. Sci. 2015, 31, 32–37. [Google Scholar]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping Paddy Rice Agriculture in South and Southeast Asia Using Multi-Temporal MODIS Images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Jamali, A. Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: A case study of the northern region of Iran. SN Appl. Sci. 2019, 1, 1448. [Google Scholar] [CrossRef] [Green Version]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Global Land Operations “Vegetation and Energy”. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_LC100m-V3_I3.4.pdf (accessed on 5 May 2022).
- Buchhorn, M.; Smets, B.; Bertels, L.; De Roo, B.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100m: Collection 3: Epoch 2019: Globe 2020. Available online: https://zenodo.org/record/3939050#.YrVOxuxBxPY (accessed on 5 May 2022). [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Halder, A.; Ghosh, A.; Ghosh, S. Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems. Appl. Soft Comput. 2011, 11, 5770–5781. [Google Scholar] [CrossRef]
- Li, D.; Wu, B.; Chen, B.; Xue, Y.; Zhang, Y. Review of water body information extraction based on satellite remote sensing. J. Tsinghua Univ. Sci. Technol. 2020, 60, 147–161. [Google Scholar]
- Kang, J.; Yang, X.; Wang, Z.; Huang, C.; Wang, J. Collaborative Extraction of Paddy Planting Areas with Multi-Source Information Based on Google Earth Engine: A Case Study of Cambodia. Remote Sens. 2022, 14, 1823. [Google Scholar] [CrossRef]
- Htitiou, A.; Boudhar, A.; Chehbouni, A.; Benabdelouahab, T. National-Scale Cropland Mapping Based on Phenological Metrics, Environmental Covariates, and Machine Learning on Google Earth Engine. Remote Sens. 2021, 13, 4378. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Sha, H.-C.; Chen, T.-M.; Wang, T.-S.; Li, Y.-T.; Lai, Y.-C.; Chiang, M.-H. Assessment of disaster losses in rice paddy field and yield after Tsunami induced by the 2011 great east Japan earthquake. J. Mar. Sci. Technol. 2012, 20, 2. [Google Scholar]
- Xing, L.; Niu, Z.; Jiao, C.; Zhang, J.; Han, S.; Cheng, G.; Wu, J. A Novel Workflow for Seasonal Wetland Identification Using Bi-Weekly Multiple Remote Sensing Data. Remote Sens. 2022, 14, 1037. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Available online: https://data.stats.gov.cn/english/index.htm (accessed on 5 May 2022).
- Viana, C.M.; Girão, I.; Rocha, J. Long-Term Satellite Image Time-Series for Land Use/Land Cover Change Detection Using Refined Open Source Data in a Rural Region. Remote Sens. 2019, 11, 1104. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, J. Land use and land cover change detection using satellite remote sensing techniques in the mountainous Three Gorges Area, China. Int. J. Remote Sens. 2010, 31, 1519–1542. [Google Scholar] [CrossRef]
- UPDATE 1-China Buys First Indian Rice in Decades amid Scarce Supply; Reuters: London, UK, 2020.
- Li, X.; Yuan, W.; Dong, W. A Machine Learning Method for Predicting Vegetation Indices in China. Remote Sens. 2021, 13, 1147. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Zuo, L.; Wang, X.; Zhao, X.; Sun, F. Mapping Crop Distribution Patterns and Changes in China from 2000 to 2015 by Fusing Remote-Sensing, Statistics, and Knowledge-Based Crop Phenology. Remote Sens. 2022, 14, 1800. [Google Scholar] [CrossRef]
- Yan, H.; Du, W.; Zhou, Y.; Luo, L.; Niu, Z. Satellite-Based Evidences to Improve Cropland Productivity on the High-Standard Farmland Project Regions in Henan Province, China. Remote Sens. 2022, 14, 1724. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Y.; Chen, J.; Ma, M.; Fan, L.; Lu, W. Mapping a Paddy Rice Area in a Cloudy and Rainy Region Using Spatiotemporal Data Fusion and a Phenology-Based Algorithm. Remote Sens. 2021, 13, 4400. [Google Scholar] [CrossRef]
- Bian, C.; Shi, H.; Wu, S.; Zhang, K.; Wei, M.; Zhao, Y.; Sun, Y.; Zhuang, H.; Zhang, X.; Chen, S. Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data. Remote Sens. 2022, 14, 1474. [Google Scholar] [CrossRef]
- Roman, L. Ukraine Can Feed the World. UkraineAlert. Atlantic Council. 4 March 2021. Available online: https://www.atlanticcouncil.org/blogs/ukrainealert/ukraine-can-feed-the-world/ (accessed on 20 June 2022).
- Jha, M.K.; Chowdary, V.M. Challenges of Using Remote Sensing and GIS in Developing Nations. Hydrogeol. J. 2006, 15, 197–200. [Google Scholar] [CrossRef]
- Liu, L.-T.; Liu, X.-J.; Lun, F.; Wu, L.; Lu, C.-X.; Guo, J.-H.; Qu, T.-T.; Liu, G.; Shen, L.; Cheng, S.-K. Research on China’s food security under global climate change background. J. Nat. Resour. 2018, 33, 927–939. [Google Scholar]
- Cheng, S.-K.; Li, Y.-Y.; Liu, X.-J.; Wang, L.-E.; Wu, L.; Lu, C.-X.; Xie, G.-D.; Liu, A.-M. Thoughts on food security in China in the new period. J. Nat. Resour. 2018, 33, 911–926. [Google Scholar]
Station Name | 6/2 | 6/12 | 6/28 | 7/3 | 7/5 | 7/12 | 7/18 | 7/24 | 7/27 | 7/29 | 8/5 | 8/15 | 8/18 | 8/27 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zhicheng, Hubei | 39.70 | 39.65 | 43.26 | 46.30 | 45.76 | 43.00 | 46.23 | 48.19 | 46.95 | 47.19 | 45.93 | 46.98 | 47.42 | 46.42 |
Shishou, Hubei | 30.36 | 31.36 | 35.45 | 37.44 | 37.52 | 37.54 | 38.27 | 39.45 | 39.12 | 39.17 | 38.18 | 38.05 | 38.25 | 38.45 |
Jianli, Hubei | 28.38 | 29.84 | 33.42 | 35.11 | 35.38 | 36.15 | 36.32 | 37.22 | 37.08 | 37.12 | 36.17 | 35.66 | 35.79 | 36.29 |
Jiujing, Jingxi | 12.27 | 16.05 | 17.77 | 18.87 | 19.68 | 22.74 | 22.18 | 21.92 | 21.77 | 21.73 | 21.18 | 20.01 | 19.73 | 19.68 |
Anqing, Anhui | 8.77 | 12.39 | 13.93 | 14.95 | 15.54 | 18.21 | 18.02 | 17.82 | 17.6 | 17.64 | 17.07 | 15.98 | 15.71 | 15.53 |
Datong, Anhui | 7.25 | 10.67 | 12.17 | 13.14 | 13.61 | 16.03 | 15.98 | 15.77 | 15.57 | 15.61 | 15.02 | 13.97 | 13.74 | 13.53 |
Data time: Daily 08:00 am; early June–late August 2020 |
Inundation Area (km2) | Crop-Affected Area (km2) | |||
---|---|---|---|---|
Province | July | August | July | August |
Anhui | 3699 | 4168 | 2039 | 2347 |
Hubei | 7797 | 7105 | 4146 | 3533 |
Hunan | 3410 | 4287 | 1588 | 1965 |
Jiangxi | 7035 | 7503 | 3876 | 3501 |
Total | 21,941 | 23,063 | 11,649 | 11,346 |
Province | 2019 | 2018 | 2017 | 2016 | Mean |
---|---|---|---|---|---|
Anhui | 5842 | 5589 | 5825 | 5663 | 5730 |
Hubei | 3645 | 3539 | 3582 | 3700 | 3616 |
Hunan | 4035 | 4154 | 3572 | 3509 | 3818 |
Jiangxi | 3748 | 3789 | 3601 | 3596 | 3683 |
Total | 17,270 | 17,071 | 16,580 | 16,468 | 16,847 |
(1000 ha) | 2017 | 2018 | 2019 | 2020 | 2020/2019 Change % |
---|---|---|---|---|---|
Total Sown Areas of Farm Crops | 166,331.00 | 165,902.38 | 165,931.00 | 167,487.00 | 0.94 |
Sown Area of Grain Crops | 117,989.00 | 117,038.21 | 116,064.00 | 116,768.00 | 0.61 |
Sown Area of Rice | 30,747.00 | 30,189.45 | 29,693.52 | 30,080.00 | 1.30 |
(10,000 tons) | 2017 | 2018 | 2019 | 2020 | 2020/2019 Change % |
---|---|---|---|---|---|
Output of Grain Crops | 66,160.73 | 65,789.22 | 66,384.00 | 66,949.20 | 0.85 |
Output of Grain Crops Harvested in Summer | 14,174.46 | 13,881.02 | 14,160.00 | 14,286.00 | 0.89 |
Output of Grain Crops Harvested in Autumn | 48,999.10 | 49,049.18 | 49,597.00 | 49,934.00 | 0.68 |
Output of Cereal | 61,520.54 | 61,003.58 | 61,370.00 | 61,674.00 | 0.50 |
Output of Rice | 21,267.59 | 21,212.90 | 20,961.00 | 21,186.00 | 1.07 |
Output of Early Rice | 2987.16 | 2859.02 | 2627.00 | 2729.00 | 3.88 |
Unit: MT | 2017 | 2018 | 2019 | 2020 | January–July 2020 | January–July 2021 | 2021/2020 Change % |
---|---|---|---|---|---|---|---|
Grains and Feeds | 9,127,355.90 | 4,951,992.40 | 3,005,759.80 | 16,703,734.40 | 5,457,918.60 | 22,702,279.60 | 316.00 |
Corn | 811,069.00 | 290,460.00 | 312,473.00 | 7,052,133.00 | 857,222.00 | 15,351,846.00 | 1691.00 |
Grain Sorghum | 4,603,556.00 | 2,660,222.00 | 1,004,182.00 | 5,529,616.00 | 2,910,232.00 | 4,303,861.00 | 48.00 |
Wheat | 1,514,399.00 | 396,987.00 | 236,062.00 | 2,252,067.00 | 691,835.00 | 1,750,758.00 | 153.00 |
Feed, Ingrd and Fod | 2,128,023.20 | 1,530,842.50 | 1,399,988.60 | 1,821,838.80 | 970,588.90 | 1,271,562.80 | 31.00 |
Barley | 0.00 | 0.00 | 0.00 | 89.00 | 39.00 | 235.00 | 503.00 |
Barley Products | 12.30 | 59.60 | 18.40 | 59.00 | 39.90 | 53.90 | 35.00 |
Rice | 739.20 | 122.00 | 73.70 | 54.20 | 19.10 | 50.60 | 166.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-C.; Hoang, D.V.; Liou, Y.-A. Quantifying the Impacts of the 2020 Flood on Crop Production and Food Security in the Middle Reaches of the Yangtze River, China. Remote Sens. 2022, 14, 3140. https://doi.org/10.3390/rs14133140
Wang L-C, Hoang DV, Liou Y-A. Quantifying the Impacts of the 2020 Flood on Crop Production and Food Security in the Middle Reaches of the Yangtze River, China. Remote Sensing. 2022; 14(13):3140. https://doi.org/10.3390/rs14133140
Chicago/Turabian StyleWang, Liang-Chen, Duc Vinh Hoang, and Yuei-An Liou. 2022. "Quantifying the Impacts of the 2020 Flood on Crop Production and Food Security in the Middle Reaches of the Yangtze River, China" Remote Sensing 14, no. 13: 3140. https://doi.org/10.3390/rs14133140
APA StyleWang, L.-C., Hoang, D. V., & Liou, Y.-A. (2022). Quantifying the Impacts of the 2020 Flood on Crop Production and Food Security in the Middle Reaches of the Yangtze River, China. Remote Sensing, 14(13), 3140. https://doi.org/10.3390/rs14133140