Using GNSS Radio Occultation Data to Monitor Tropical Atmospheric Anomalies during the January–February 2009 Sudden Stratospheric Warming Event
Abstract
:1. Introduction
2. Data and Methodology
2.1. RO Data
2.2. ECMWF Data
2.3. Methodology
3. Results and Discussion
3.1. Individual and Tropical Mean Anomalies
3.2. Spatial and Temporal Variations of Tropical Atmospheric Anomalies
3.3. Characteristics of Tropopause Variations in Tropical Region
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McInturff, R.M. Stratospheric Warmings: Synoptic, Dynamic and General-Circulation Aspects; NASA-RP-1017; NASA Reference Publ.: Washington, DC, USA, 1978; Volume 174, pp. 1–175.
- Andrews, D.G.; Holton, J.G.; Leovy, C.B. Middle Atmospheres Dynamics; Academic Press: San Diego, CA, USA, 1987; p. 40. [Google Scholar]
- Butler, A.H.; Seidel, D.J.; Hardiman, S.C.; Butchart, N.; Birner, T.; Match, A. Defining sudden stratospheric warmings. B. Am. Meteor. Soc. 2015, 96, 1913–1928. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Zhou, S.; Miller, A.J.; Wang, J.; Angell, J.K. Downward-propagating temperature anomalies in the preconditioned polar stratosphere. J. Clim. 2002, 15, 781–792. [Google Scholar] [CrossRef]
- Newman, P.A.; Coy, L.; Kramarova, N.; Nash, E.R.; Strahan, S. The Major Stratospheric Sudden Warming of February 2018, Thursday. In Proceedings of the Aerosol and Environmental Physics Group, Seminar Talk, Vienna, Austria, 21 March 2019. [Google Scholar]
- Lehtonen, I.; Karpechko, A.Y. Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. J. Geophys. Res. Atmos. 2016, 121, 1591–1610. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.J.; Mitchell, D.M.; Seviour, W.J.M.; Wright, C.J. Tracking the stratosphere-to-surface impact of Sudden Stratospheric Warmings. J. Geophys. Res. Atmos. 2021, 126, e2020JD033881. [Google Scholar] [CrossRef]
- Manney, G.L.; Krüger, K.; Pawson, S.; Minschwaner, K.; Schwartz, M.J.; Daffer, W.H.; Livesey, N.J.; Mlynczak, M.G.; Remsberg, E.E.; Russell, J.M., III; et al. The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res. 2008, 113, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Holt, L.A.; Randall, C.E.; Peck, E.D.; Marsh, D.R.; Smith, A.K.; Harvey, V.L. The influence of major sudden stratospheric warming and elevated stratopause events on the effects of energetic particle precipitation in WACCM. J. Geophys. Res. Atmos. 2013, 118, 636–646. [Google Scholar] [CrossRef]
- Liu, G.; Huang, W.; Shen, H.; Aa, E.; Li, M.; Liu, S.; Luo, B. Ionospheric response to the 2018 sudden stratospheric warming event at middle- and low-latitude stations over China sector. Space Weather 2019, 17, 1230–1240. [Google Scholar] [CrossRef] [Green Version]
- Kakoti, G.; Kalita, B.R.; Bhuyan, P.K.; Baruah, S.; Wang, K. Longitudinal and interhemispheric ionospheric response to 2009 and 2013 SSW events in the African-European and Indian-East Asian sectors. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028570. [Google Scholar] [CrossRef]
- Flury, T.; Hocke, K.; Haefele, A.; Kämpfer, N.; Lehmann, R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming. J. Geophys. Res. 2009, 114, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kuttippurath, J.; Nikulin, G. A comparative study of the major sudden stratospheric warmings in the arctic winters 2003/2004-2009/2010. Atmos. Chem. Phys. 2012, 12, 8115–8129. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, A.; Joshi, M.; Stevens, D.; Mitchell, D. The effects of different sudden stratospheric warming type on the ocean. Geophys. Res. Lett. 2014, 41, 7739–7745. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Baldwin, M.P.; Wallace, J.M. Stratospheric connection to northern hemisphere wintertime weather: Implications for prediction. J. Clim. 2002, 15, 1421–1428. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric harbingers of anomalous weather regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef]
- Labitzke, K.; Kunze, M. On the remarkable Arctic winter in 2008/2009. J. Geophys. Res. Atmos. 2009, 114, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dunkerton, T.J.; Hsu, C.-P.F.; Mcintyre, M.E. Some Eulerian and Lagrangian diagnostics for a model stratospheric warming. J. Atmos. Sci. 1981, 38, 819–843. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.R. On the meridional circulation of the middle atmosphere. J. Atmos. Sci. 1987, 44, 3599–3609. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J. Global variation of zonal mean ozone during stratospheric warming events. J. Atmos. Sci. 1993, 50, 3308–3321. [Google Scholar] [CrossRef]
- Randel, W.J.; Garcia, R.R.; Wu, F. Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci. 2002, 59, 2141–2152. [Google Scholar] [CrossRef]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratospheric-troposphere exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Plumb, R.A.; Eluszkiewicz, J. The Brewer- Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci. 1999, 56, 868–890. [Google Scholar] [CrossRef]
- Kodera, K. Influence of stratospheric sudden warming on the equatorial troposphere. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Kuroda, Y. Effect of stratospheric sudden warming and vortex intensification on the tropospheric climate. J. Geophys. Res. 2008, 113, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Yamazaki, K. Tropical cooling in the case of stratospheric sudden warming in January 2009: Focus on the tropical tropopause layer. Atmos. Chem. Phys. 2011, 11, 6325–6336. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, M. Latitudinal extension of cooling and upwelling signals associated with stratospheric sudden warmings. J. Meteorol. Soc. Jpn. 2011, 89, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Escolar, M.; Calvo, N.; Barriopedro, D.; Fueglistaler, S. Tropical response to stratospheric sudden warmings and its modulation by the QBO. J. Geophys. Res. Atmos. 2014, 119, 7382–7395. [Google Scholar] [CrossRef] [Green Version]
- Dhaka, S.K.; Kumar, V.; Choudhary, R.K.; Ho, S.P.; Takahashi, M.; Yoden, S. Indications of a strong dynamical coupling between the polar and tropical regions during the sudden stratospheric warming event January 2009, based on COSMIC/FORMASAT-3 satellite temperature data. Atmos. Res. 2015, 166, 60–69. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Scherllin-Pirscher, B.; Kirchengast, G.; Steiner, A.K.; Kuo, Y.-H.; Foelsche, U. Quantifying uncertainty in climatological fields from GPS radio occultation: An empiricalanalytical error mode. Atmos. Meas. Technol. 2011, 4, 2019–2034. [Google Scholar] [CrossRef] [Green Version]
- Ladstädter, F.; Steiner, A.K.; Schwärz, M.; Kirchengast, G. Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013. Atmos. Meas. Technol. 2015, 8, 1819–1834. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Schreiner, W.S.; Lei, J.; Rocken, C.; Hunt, D.C.; Kuo, Y.-H.; Wan, W. Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res. Space Phys. 2010, 115, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.T.; Lin, C.H.; Chang, L.C.; Huang, H.H.; Liu, J.Y.; Chen, A.B.; Chen, C.H.; Liu, C.H. Observational evidence of ionospheric migrating tide modification during the 2009 stratospheric sudden warming. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Klingler, R. Observing Sudden StratosphericWarmings with Radio Occultation Data, with Focus on the Event 2009. Master’s Thesis, University of Graz, Graz, Austria, June 2014. [Google Scholar]
- Li, Y.; Kirchengast, G.; Schwaerz, M.; Ladstaedter, F.; Yuan, Y.B. Monitoring sudden stratospheric warmings using radio occultation: A new approach demonstrated based on the 2009 event. Atmos. Meas. Technol. 2021, 14, 2327–2343. [Google Scholar] [CrossRef]
- Hajj, G.A.; Kursinski, E.R.; Romans, L.J.; Bertiger, W.I.; Leroy, S.S. A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol. Terr. Phys. 2022, 64, 451–469. [Google Scholar] [CrossRef]
- Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y.B.; Schwaerz, M.; Fritzer, J.; Zhang, K. Dynamic statistical optimization of GNSS radio occultation bending angles: An advanced algorithm and its performance analysis. Atmos. Meas. Technol. 2015, 8, 3447–3465. [Google Scholar] [CrossRef] [Green Version]
- Pirscher, B. Multi-satellite climatologies of fundamental atmospheric variables from radio occultation and their validation. Ph.D. Thesis, University of Graz, Graz, Austria, March 2010. [Google Scholar]
- Healy, S.B.; Eyre, J.R. Retrieving temperature, water vapour and surface pressure information from refractive-index profiles derived by radio occultation: A simulation study. Q. J. Roy. Meteor. Soc. 2000, 126, 1661–1683. [Google Scholar] [CrossRef]
- Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Schwaerz, M.; Nielsen, J.K.; Ho, S.-P.; Yuan, Y.-B. A new algorithm for the retrieval of atmospheric profiles from GNSS radio occultation data in moist air and comparison to 1DVar retrievals. Remote Sens. 2019, 11, 2729. [Google Scholar] [CrossRef] [Green Version]
- Ware, R.; Exner, M.; Gorbunov, M.; Hardy, K.; Herman, B.; Kuo, Y.; Meehan, T.; Melbourne, W.; Rocken, C.; Schreiner, W.; et al. GPS sounding of the atmosphere from low Earth orbit: Preliminary results. B. Am. Meteorol. Soc. 1996, 77, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Wickert, J.; Reigber, C.; Beyerle, G.; König, R.; Marquardt, C.; Schmidt, T.; Grundwaldt, L.; Galas, R.; Meehan, T.K.; Melbourne, W.; et al. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett. 2001, 28, 32633266. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, W.; Rocken, C.; Sokolovskiy, S.; Syndergaard, S.; Hunt, D. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys. Res. Lett. 2007, 34, L04808. [Google Scholar] [CrossRef] [Green Version]
- Luntama, J.-P.; Kirchengast, G.; Borsche, M.; Foelsche, U.; Steiner, A.; Healy, S.; von Engeln, A.; O’Clerigh, E.; Marquardt, C. Prospects of the EPS GRAS mission for operational atmospheric applications. Bull. Am. Meteor. Soc. 2008, 89, 1863–1875. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Bai, W.; Liu, C.; Liu, Y.; Du, Q.; Wang, X.; Yang, G.; Liao, M.; Yang, Z.; Zhang, X.; et al. The FengYun-3C radio occultation sounder GNOS: A review of the mission and its early results and science applications. Atmos. Meas. Technol. 2018, 11, 5797–5811. [Google Scholar] [CrossRef] [Green Version]
- Foelsche, U.; Borsche, M.; Steiner, A.K.; Gobiet, A.; Pirscher, B.; Kirchengast, G.; Wickert, J.; Schmidt, T. Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite. Clim. Dyn. 2008, 31, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.-P.; Hunt, D.; Steiner, A.K.; Mannucci, A.J.; Kirchengast, G.; Gleisner, H.; Heise, S.; von Engeln, A.; Marquardt, C.; Sokolovskiy, S.; et al. Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers. J. Geophys. Res. 2012, 117, D18111. [Google Scholar] [CrossRef]
- Steiner, A.K.; Hunt, D.; Ho, S.P.; Kirchengast, G.; Mannucci, A.J.; Scherllin-Pirscher, B.; Gleisner, H.; Von Engeln, A.; Schmidt, T.; Ao, C.; et al. Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos. Chem. Phys. 2013, 13, 1469–1484. [Google Scholar] [CrossRef] [Green Version]
- Schwaerz, M.; Kirchengast, G.; Scherllin-Pirscher, B.; Schwarz, J.; Ladstädter, F.; Angerer, B. Multi-Mission Validation by Satellite Radio Occultation—Extension Project; Final Report for ESA/ESRIN No. 01/2016, WEGC; University of Graz: Graz, Austria, 2016. [Google Scholar]
- Gobiet, A.; Kirchengast, G. Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility. J. Geophys. Res. 2004, 109, D24110. [Google Scholar] [CrossRef] [Green Version]
- Gobiet, A.; Kirchengast, G.; Manney, G.L.; Borsche, M.; Retscher, C.; Stiller, G. Retrieval of temperature profiles from CHAMP for climate monitoring: Intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses. Atmos. Chem. Phys. 2007, 7, 3519–3536. [Google Scholar] [CrossRef] [Green Version]
- Scherllin-Pirscher, B.; Steiner, A.K.; Kirchengast, G.; Schwaerz, M.; Leroy, S.S. The power of vertical geolocation of atmospheric profiles from GNSS radio occultation. J. Geophys. Res.-Atmos. 2017, 122, 1595–1616. [Google Scholar] [CrossRef]
- Angerer, B.; Ladstädter, F.; Scherllin-Pirscher, B.; Schwärz, M.; Steiner, A.K.; Foelsche, U.; Kirchengast, G. Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6. Atmos. Meas. Technol. 2017, 10, 4845–4863. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yuan, Y.; Song, M. Using GNSS Radio Occultation Data to Monitor Tropical Atmospheric Anomalies during the January–February 2009 Sudden Stratospheric Warming Event. Remote Sens. 2022, 14, 3234. https://doi.org/10.3390/rs14133234
Li Y, Yuan Y, Song M. Using GNSS Radio Occultation Data to Monitor Tropical Atmospheric Anomalies during the January–February 2009 Sudden Stratospheric Warming Event. Remote Sensing. 2022; 14(13):3234. https://doi.org/10.3390/rs14133234
Chicago/Turabian StyleLi, Ying, Yunbin Yuan, and Min Song. 2022. "Using GNSS Radio Occultation Data to Monitor Tropical Atmospheric Anomalies during the January–February 2009 Sudden Stratospheric Warming Event" Remote Sensing 14, no. 13: 3234. https://doi.org/10.3390/rs14133234
APA StyleLi, Y., Yuan, Y., & Song, M. (2022). Using GNSS Radio Occultation Data to Monitor Tropical Atmospheric Anomalies during the January–February 2009 Sudden Stratospheric Warming Event. Remote Sensing, 14(13), 3234. https://doi.org/10.3390/rs14133234