Exploration of the Contribution of Fire Carbon Emissions to PM2.5 and Their Influencing Factors in Laotian Tropical Rainforests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Process
2.2.1. PM2.5 Data
2.2.2. The Fire Carbon Emission (FCE) Data
2.2.3. Climate Data
2.2.4. Vegetation and Topography Data
2.2.5. Anthropic Factors
2.2.6. Scale of Study Cell
2.3. Data Analysis
2.3.1. Spatial Analysis
2.3.2. Random Forest (RF) Regression
2.3.3. Assessment of Variable Importance
2.3.4. Evaluation of RF
2.3.5. Structural Equation Model (SEM)
3. Results
3.1. Spatial and Temporal Distribution of FCE and PM2.5
3.2. The Importance of Influencing Factors of PM2.5 and FCE
3.3. The Variables Selected and Goodness of Fit for RF
3.4. Climate Factors Control on PM2.5 Exposure and FCE
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thao, N.N.L.; Pimonsree, S.; Prueksakorn, K.; Thao, P.T.B.; Vongruang, P. Public health and economic impact assessment of PM2.5 from open biomass burning over countries in mainland Southeast Asia during the smog episode. Atmos. Pollut. Res. 2022, 13, 101418. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano, A.F. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441. [Google Scholar] [CrossRef]
- Andela, N.; van der Werf, G.R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Chang. 2014, 4, 791–795. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1361. [Google Scholar] [CrossRef]
- van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.Q.; Van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Archer, C.; Penny, A.L.; Templeman, S.; Mckenzie, M.; Lopez, C.R. State of the Tropics 2020 Report; James Cook University: Townsville, Australia, 2020. [Google Scholar]
- Ma, Y.N.; Xin, J.Y.; Zhang, W.Y.; Liu, Z.R.; Ma, Y.J.; Kong, L.B.; Wang, Y.S.; Deng, Y.; Lin, S.H.; He, Z.M. Long-term variations of the PM2.5 concentration identified by MODIS in the tropical rain forest, Southeast Asia. Atmos. Res. 2018, 219, 140–152. [Google Scholar] [CrossRef]
- Nguyen, G.T.H.; Shimadera, H.; Uranishi, K.; Matsuo, T.; Kondo, A. Numerical assessment of PM2.5 and O3 air quality in Continental Southeast Asia: Impacts of future projected anthropogenic emission change and its impacts in combination with potential future climate change impacts. Atmos. Environ. 2020, 226, 117398. [Google Scholar] [CrossRef]
- Vongruang, P.; Pimonsree, S. Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmos. Environ. 2020, 228, 117414. [Google Scholar] [CrossRef]
- Zheng, L.S.; Yang, X.Y.; Lai, S.C.; Ren, H.; Yue, S.Y.; Zhang, Y.Y.; Huang, X.; Gao, Y.G.; Sun, Y.L.; Wang, Z.F.; et al. Impacts of springtime biomass burning in the northern Southeast Asia on marine organic aerosols over the Gulf of Tonkin, China. Environ. Pollut. 2018, 237, 285–297. [Google Scholar] [CrossRef]
- Matz, C.J.; Egyed, M.; Xi, G.L.; Racine, J.; Pavlovic, R.; Rittmaster, R.; Henderson, S.B.; Stieb, D.M. Health impact analysis of PM2.5 from wildfire smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 2020, 725, 138506. [Google Scholar] [CrossRef] [PubMed]
- Nassikas, N.J.; Chan, E.A.W.; Nolte, C.G.; Roman, H.A.; Micklewhite, N.; Kinney, P.L.; Jane Carter, E.; Fann, N.L. Modeling future asthma attributable to fine particulate matter (PM2.5) in a changing climate: A health impact assessment. Air Qual. Atmos. Health 2022, 15, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, X.; Ding, Y.; Liu, Y.; Zhang, H.; Wang, Y.; Zhong, J. The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China. Sci. China Earth Sci. 2019, 62, 1885–1902. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Pilla, F.; Basu, B.; Basu, A.S.; Sarkar, K.; Chakraborti, S.; Joshi, P.K.; Zhang, Q.; Wang, Y.; Bhatt, S.; et al. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Sci. Total Environ. 2020, 725, 138331. [Google Scholar] [CrossRef] [PubMed]
- Levy, H.I.; Horowitz, L.W.; Schwarzkopf, M.D.; Ming, Y.; Golaz, J.C.; Naik, V.; Ramaswamy, V. The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res.-Atmos. 2013, 118, 4521–4532. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.M.; Leung, L.R. Changing circulation structure and precipitation characteristics in Asian monsoon regions: Greenhouse warming vs. aerosol effects. Geosci. Lett. 2017, 4, 28. [Google Scholar] [CrossRef]
- Hong, C.; Zhang, Q.; Zhang, Y.; Davis, S.J.; He, K. Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality. Nat. Clim. Chang. 2020, 10, 845–850. [Google Scholar] [CrossRef]
- Li, K. Future PM2.5 Air Quality in China and Severe Haze More Frequent Under Climate Change; University of Chinese Academy of Sciences: Beijing, China, 2017. [Google Scholar]
- Coogan, S.C.P.; Robinne, F.N.; Jain, P.; Flannigan, M.D. Scientists’ warning on wildfire—A Canadian perspective. Can. J. For. Res. 2019, 49, 1015–1023. [Google Scholar] [CrossRef]
- French, N.H.F.; Jenkins, L.K.; Loboda, T.; Flannigan, M.D.; Jandt, R.; Bourgeau-Chavez, L.L.; Whitley, M. Fire in arctic tundra of Alaska: Past fire activity, future fire potential, and significance for land management and ecology. Int. J. Wildland Fire 2015, 24, 1045–1061. [Google Scholar] [CrossRef]
- Su, Z.W.; Zheng, L.J.; Luo, S.S.; Tigabu, M.; Guo, F.T. Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic regression and geographically weighted logistic regression. Nat. Hazards 2021, 108, 1317–1345. [Google Scholar] [CrossRef]
- Nguyen, G.T.H.; Shimadera, H.; Uranishi, K.; Matsuo, T.; Kondo, A.; Thepanondh, S. Numerical assessment of PM2.5 and O3 air quality in continental southeast Asia: Baseline simulation and aerosol direct effects investigation. Atmos. Environ. 2019, 219, 117054. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Li, J.; Syed, J.H.; Zhang, G.; Watanabe, H. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review. Environ. Pollut. 2017, 227, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Schroeder, W.; Biswas, S.; Justice, C. Trends in Vegetation fires in South and Southeast Asian Countries. Sci. Rep. 2019, 9, 7422. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.; Kalashnikova, O.V.; Kahn, R.A.; et al. Global Estimates and Long-term Trends of Fine Particulate Matter Concentrations (1998–2018). Environ. Sci. Technol. 2020, 54, 7879–7890. [Google Scholar] [CrossRef]
- Li, J.M.; Han, X.L.; Jin, M.J.; Zhang, X.X.; Wang, S.X. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population’s PM2.5 exposure from 1998 to 2016. Environ. Int. 2019, 128, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Drüke, M.; Forkel, M.; Von Bloh, W.; Sakschewski, B.; Cardoso, M.; Bustamante, M.; Kurths, J.; Thonicke, K. Improving the LPJmL4-SPITFIRE vegetation-fire model for south america using satellite data. Geosci. Model Dev. 2019, 12, 5029–5054. [Google Scholar] [CrossRef]
- Prosperi, P.; Bloise, M.; Tubiello, F.N.; Conchedda, G.; Rossi, S.; Boschetti, L.; Salvatore, M.; Bernoux, M. New estimates of greenhouse gas emissions from biomass burning and peat fires using modis collection 6 burned areas. Clim. Chang. 2020, 161, 415–432. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Collins, B.; Etedali, H.R.; Tavakol, A.; Kaviani, A. Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957–2016 in Iran based on CRU TS gridded dataset. J. Arid Land 2021, 13, 858–878. [Google Scholar] [CrossRef]
- Berg, A.; McColl, K.A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Chang. 2021, 11, 331–337. [Google Scholar] [CrossRef]
- Bauer, P.; Sandu, I.; Magnusson, L.; Mladek, R.; Fuentes, M. ECMWF global coupled atmosphere, ocean and sea-ice dataset for the Year of Polar Prediction 2017–2020. Sci. Data 2020, 7, 427. [Google Scholar] [CrossRef]
- Gu, X.H.; Zhang, Q.; Li, J.F.; Singh, V.P.; Liu, J.Y.; Sun, P.; Cheng, C.X. Attribution of global soil moisture drying to human activities: A quantitative viewpoint. Geophys. Res. Lett. 2019, 46, 2573–2582. [Google Scholar] [CrossRef]
- Wang, Y.S.; Zhang, Y.G.; Yu, X.X.; Jia, G.D.; Liu, Z.Q.; Sun, L.B.; Zheng, P.F.; Zhu, X.H. Grassland soil moisture fluctuation and its relationship with evapotranspiration. Ecol. Indic. 2021, 131, 108196. [Google Scholar] [CrossRef]
- Yu, Y.; Mao, J.F.; Thornton, P.E.; Notaro, M.; Wullschleger, S.D.; Shi, X.Y.; Hoffman, F.M.; Wang, Y.P. Quantifying the drivers and predictability of seasonal changes in African fire. Nat. Commun. 2020, 11, 2893. [Google Scholar] [CrossRef] [PubMed]
- Danielson, J.J.; Gesch, D.B. Global multi-resolution terrain elevation data 2010 (GMTED2010). In U.S. Geological Survey Open-File Report 2011–1073; U.S. Geological Survey: Reston, VA, USA, 2011; p. 23. [Google Scholar]
- Xiong, Q.L.; Luo, X.J.; Liang, P.H.; Xiao, Y.; Xiao, Q.; Sun, H.; Pan, K.W.; Wang, L.X.; Li, L.J.; Pang, X.Y. Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. For. Ecol. Manag. 2020, 474, 118381. [Google Scholar] [CrossRef]
- Liu, S.L.; Liu, L.M.; Wu, X.; Hou, X.Y.; Zhao, S.; Liu, G.H. Quantitative evaluation of human activity intensity on the regional ecological impact studies. Acta Ecol. Sin. 2018, 38, 6797–6809. (In Chinese) [Google Scholar]
- Duan, Q.T.; Luo, L.H. A dataset of human footprint over the Qinghai-Tibet Plateau during 1990–2015. Sci. Data Bank 2020, 5, 303–312. (In Chinese) [Google Scholar]
- Beyhan, E.; Yarci, C.; Yilmaz, A. Investigation of Hemeroby Degree of Vegetation in Urban Transport Areas: The Case of zmit (Kocaeli). Front. Life Sci. Relat. Technol. 2020, 1, 28–34. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Mitchell, A. The ESRI Guide to GIS Analysis; ESRI Press: Redlands, VA, USA, 2005; Volume 2. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Zheng, W.Z.; Li, W.B.; Huang, Y. Large Group Activity Security Risk Assessment and Risk Early Warning Based on Random Forest Algorithm. Pattern Recognit. Lett. 2021, 144, 1–5. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling Spatial Patterns of Fire Occurrence in Mediterranean Europe Using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.Z.; Deng, X.F.; Zhang, K.S.; Zhang, M.L.; Grieneisen, M.L.; Di, B.F. Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model. Environ. Sci. Technol. 2018, 52, 4180–4189. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Jiao, S.; Chen, W.M.; Wang, J.L.; Du, N.N.; Li, Q.P.; Wei, G.H. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 2018, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; van Agtmaal, M.; et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, D.P.; Zhao, X.M.; Fang, Q.W.; Liu, Y. The comparison of goodness index of structural equation model. Mod. Prev. Med. 2010, 37, 7–9. (In Chinese) [Google Scholar]
- Dawson, J.P.; Racherla, P.N.; Lynn, B.H.; Adams, P.J.; Pandis, S.N. Impacts of climate change on regional and urban air quality in the eastern United States: Role of meteorology. J. Geophys. Res. 2009, 114, D05308. [Google Scholar] [CrossRef]
- Nguyen, T.; Yu, X.X.; Zhang, Z.M.; Liu, M.M.; Liu, X.H. Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. J. Environ. Sci. 2015, 27, 33–41. [Google Scholar] [CrossRef]
- McDowell, N.; Allen, C.D.; Anderson-Teixeira, K.; Brando, P.; Brienen, R.; Chambers, J.; Christoffersen, B.; Davies, S.; Doughty, C.; Duque, A. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 2018, 219, 851–869. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Xie, Y.Y.; Dong, W.; Ming, Y.; Wang, J.; Shen, L. Adverse effects of increasing drought on air quality via natural processes. Atmos. Chem. Phys. 2017, 17, 12827–12843. [Google Scholar] [CrossRef]
- Demetillo, M.A.G.; Anderson, J.F.; Geddes, J.A.; Yang, X.; Najacht, E.Y.; Herrera, S.A.; Kabasares, K.M.; Kotsakis, A.E.; Lerdau, M.T.; Pusede, S.E. Observing Severe Drought Influences on Ozone Air Pollution in California. Environ. Sci. Technol. 2019, 53, 4695–4706. [Google Scholar] [CrossRef]
- Wang, Y.W.; Yang, Y.H.; Zhao, N.; Liu, C.; Wang, Q.X. The magnitude of the effect of air pollution on sunshine hours in China hours in China. J. Geophys. Res. 2012, 117, D00V14. [Google Scholar]
- Feng, X.Y.; Wei, S.M.; Wang, S.G. Temperature inversions in the atmospheric boundary layer and lower troposphere over the sichuan basin, china: Climatology and impacts on air pollution. Sci. Total Environ. 2020, 726, 138579. [Google Scholar] [CrossRef] [PubMed]
- Aron, R. Mixing height–an inconsistent indicator of potential air pollution concentrations. Atmos. Environ. 1983, 17, 2193–2197. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Zhou, Y. Study on mixed layer height in Guiyang City. Guizhou Environ. Prot. Sci. Technol. 1997, 04, 37–40. (In Chinese) [Google Scholar]
- Guo, Q.; Wu, D.Y.; Yu, C.X.; Wang, T.S.; Ji, M.X.; Wang, X. Impacts of meteorological parameters on the occurrence of air pollution episodes in the Sichuan basin. J. Environ. Sci. 2022, 114, 308–321. [Google Scholar] [CrossRef]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhong, J.T.; Wang, J.Z.; Wang, Y.Q.; Liu, Y.J. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming. Atmos. Chem. Phys. 2018, 18, 5991–5999. [Google Scholar] [CrossRef]
- Wang, H.J.; Chen, H.P.; Liu, J. Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Chem. Phys. 2015, 16, 4205–4211. [Google Scholar] [CrossRef]
- Rakhmatulina, E.; Stephens, S.; Thompson, S. Soil moisture influences on Sierra Nevada dead fuel moisture content and fire risks. For. Ecol. Manag. 2021, 496, 119379. [Google Scholar] [CrossRef]
- Dadap, N.; Cobb, A.; Hoyt, A.; Harvey, C.F.; Konings, A.G. Using Remotely Sensed Soil Moisture to Estimate Fire Risk in Tropical Peatlands. In Agu Fall Meeting Abstracts, Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2017; 2017; Available online: https://ui.adsabs.harvard.edu/abs/2017AGUFM.B13D1794D/abstract (accessed on 25 June 2022).
- Tang, S.M.; Hoang, T.H.; Anuthida, S.Q.; Glenn, O.; Pham, T.P.T. The State of Southeast Asia: 2020. In Survey Report; ISEAS-Yusof Ishak Institute: Singapore, 2020; Available online: https://www.iseas.edu.sg/wp-content/uploads/pdfs/TheStateofSEASurveyReport_2020.pdf (accessed on 25 June 2022).
Variables | Region | Global Moran’s I | z-Score | p-Value |
---|---|---|---|---|
PM2.5 concentration | NL | 0.996 | 112.664 | <0.0001 |
Fire carbon emission | NL | 0.963 | 110.963 | <0.0001 |
Variables/Unit | Minimum | 1st Quartile | Median | Mean | 3rd Quartile | Maximum |
---|---|---|---|---|---|---|
PM2.5 (ug·m−3) | 21.35 | 26.52 | 29.61 | 29.26 | 31.75 | 37.56 |
FCE (PgC·year−1) | 2.331 | 52.926 | 69.417 | 73.9 | 89.581 | 285.239 |
AI | 1 | 1.265 | 1.354 | 1.402 | 1.545 | 1.898 |
TMP (°C) | 20.29 | 22.38 | 23.01 | 23.16 | 23.76 | 27.04 |
DTR (°C) | 7.099 | 8.571 | 9.373 | 9.501 | 10.476 | 11.757 |
Elevation (m) | 153.5 | 579.5 | 799.8 | 803.8 | 1025.2 | 2234.2 |
Footprint | 0.0951 | 10.4115 | 15.696 | 16.0133 | 20.4711 | 57.8405 |
Hemeroby | 0.7017 | 1.4616 | 1.7478 | 1.8271 | 1.9724 | 6.4505 |
LAI | 54.07 | 374.21 | 450.49 | 444.06 | 524.3 | 814.82 |
SM | 0.274 | 0.3969 | 0.407 | 0.4046 | 0.4171 | 0.4512 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Xu, Z.; Lin, L.; Chen, Y.; Hu, H.; Wei, S.; Luo, S. Exploration of the Contribution of Fire Carbon Emissions to PM2.5 and Their Influencing Factors in Laotian Tropical Rainforests. Remote Sens. 2022, 14, 4052. https://doi.org/10.3390/rs14164052
Su Z, Xu Z, Lin L, Chen Y, Hu H, Wei S, Luo S. Exploration of the Contribution of Fire Carbon Emissions to PM2.5 and Their Influencing Factors in Laotian Tropical Rainforests. Remote Sensing. 2022; 14(16):4052. https://doi.org/10.3390/rs14164052
Chicago/Turabian StyleSu, Zhangwen, Zhenhui Xu, Lin Lin, Yimin Chen, Honghao Hu, Shujing Wei, and Sisheng Luo. 2022. "Exploration of the Contribution of Fire Carbon Emissions to PM2.5 and Their Influencing Factors in Laotian Tropical Rainforests" Remote Sensing 14, no. 16: 4052. https://doi.org/10.3390/rs14164052
APA StyleSu, Z., Xu, Z., Lin, L., Chen, Y., Hu, H., Wei, S., & Luo, S. (2022). Exploration of the Contribution of Fire Carbon Emissions to PM2.5 and Their Influencing Factors in Laotian Tropical Rainforests. Remote Sensing, 14(16), 4052. https://doi.org/10.3390/rs14164052