Distributed Satellite Relay Cooperative Communication with Optimized Signal Space Dimension
Abstract
:1. Introduction
- (i)
- Joint design of signal spatial structure optimization and superposition signal separation method. Based on the signal space reconstruction model, the cooperative node space compression method is designed to get rid of interference management constraints. The joint design of beam forming of multiple access nodes is realized.
- (ii)
- Adaptive scheduling of multi-interactive cooperative transmission. The general processing strategy for complex transmission mode and its application in multi-directional relay transmission are studied.
2. Materials and Methods
2.1. Signal Model
2.2. Cooperative Transmission of Spatial Information Network
2.2.1. Universal Multicast Transmission Strategy Based on Ring Planning
2.2.2. Resource Allocation Optimization of Space Compression
3. Results
3.1. Analysis of MIMO Channel Characteristics
3.2. Spectral Efficiency
3.3. Method Robustness
4. Discussion
4.1. Result Analysis
4.2. Antenna Configuration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation Comparison Table | |
Amplify and Forward | AF |
Decode and Forward | DF |
Maximum Ratio Combining | MRC |
Selective Diversity Combining | SDC |
Network Coding | NC |
High Altitude Platforms | HAPs |
Unmanned Aerial Vehicles | UAVs |
Common Channel Interference | CCI |
Multiple Input Multiple Output | MIMO |
Single Input Single Output | SISO |
Degrees of Freedom | DoF |
Contact Graph Routing | CGR |
Multiple Access Channel | MAC |
Broadcast Channel | BC |
Receive Antenna Selection | RAS |
Signal Space Alignment | SSA |
Uniform Linear Array | ULA |
Signal-To-Noise Ratio | SNR |
Independent And Identically Distributed | i.i.d |
Time Division Multiple Access | TDMA |
Angular Standard Deviation | ASD |
Spectral Efficiency | SE |
Minimum Mean-Squared Error | MMSE |
Zero-Forcing | ZF |
Cumulative Distribution Function | CDF |
Maximum Likelihood | ML |
Physical Network Coding | PNC |
Power Delay Profile | PDP |
Mathematical Symbols | |
Transpose | |
Conjugate Transpose | |
Nullspaces | |
Rank of Matrix | |
Expectation | |
Matrix Trace | |
Generate Subspace | |
N-dimensional complex value |
References
- Daneshjou, K.; Mohammadi, A.; Bakhtiari, M. Mission Planning for on-orbit Servicing Through Multiple Servicing Satellites: A New Approach. Adv. Space Res. 2017, 60, 1148–1162. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, F. Now and Future of Remote Sensing Constellations. Satell. Netw. 2019, 3, 24–29. [Google Scholar]
- Li, D.; Wang, M.; Sheng, X.; Dong, Z. From Earth Observation Satellite to Earth observation Brain. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 143–149. [Google Scholar]
- Cola, D.; Tarchi, D.; Vanelli-Coralli, A. Future Trends in Broadband Satellite Communications: Information Centric Networks and Enabling Technologies. Int. J. Satell. Commun. Netw. 2015, 33, 473–490. [Google Scholar] [CrossRef]
- Corbin, B.A. The Value Proposition of Distributed Satellite Systems for Space Science Missions; Massachusetts Institute of Technology, Department of Aeronautics and Astronautics: Cambridge, MA, USA, 2015. [Google Scholar]
- Warty, C. Cooperative Communication for Multiple Satellite Network. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2010; pp. 1–7. [Google Scholar]
- Wang, X.; Yang, M.; Guo, Q. Optimized Power Allocation Scheme for Land Mobile Satellite Cooperative Diversity Communications. In Proceedings of the IEEE VTC (Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–4. [Google Scholar]
- Arti, M.K.; Bhatnagar, M.R. Beamforming And Combining in Hybrid Satellite-Terrestrial Cooperative Systems. IEEE Commun. Lett. 2014, 18, 483–486. [Google Scholar]
- Vieira, F.; Lucani, D.E.; Alagha, N. Load-Aware Soft-Handovers for Multibeam Satellites: A Network Coding Perspective. In Proceedings of the IEEE ASMS and SPSC, Vigo, Spain, 5–7 September 2012; pp. 189–196. [Google Scholar]
- Vieira, F.; Lucani, D.E.; Alagha, N. Codes And Balances: Multibeam Satellite Load Balancing with Coded Packets. In Proceedings of the IEEE ICC, Ottawa, ON, Canada, 10–15 June 2012; pp. 3316–3321. [Google Scholar]
- Vieira, F.; Barros, J. Network Coding Multicast in Satellite Networks. In Proceedings of the IEEE NGI, Aviero, Portugal, 1–3 July 2009; pp. 1–6. [Google Scholar]
- Mauger, R.; Rosenberg, C. Qos Guarantees for Multimedia Services on A TDMA-Based Satellite Network. IEEE Commun. Mag. 1997, 35, 56–65. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Sarikaya, B. Design Of IP-Based Routing in A LEO Satellite Network. In Proceedings of the ACM WOSBIS, Dallas, TX, USA, 25–30 October 1998; pp. 81–88. [Google Scholar]
- Chang, H.S.; Kim, B.W.; Lee, C.G.; Min, S.L.; Choi, Y.; Yang, H.S.; Kim, D.N.; Kim, C.S. FSA-Based Link Assignment and Routing in Low-Earth Orbit Satellite Networks. IEEE Trans. Veh. Technol. 1998, 47, 1037–1048. [Google Scholar] [CrossRef]
- Gounder, V.V.; Prakash, R.; Abu-Amara, H. Routing in LEO-Based Satellite Networks. In Proceedings of the IEEE ETSWCS, Richardson, TX, USA, 12–13 April 1999; pp. 22.1–22.6. [Google Scholar]
- Fischer, D.; Basin, D.; Engel, T. Topology Dynamics and Routing for Predictable Mobile Networks. In Proceedings of the IEEE ICNP, Orlando, FL, USA, 19–22 October 2008; pp. 207–217. [Google Scholar]
- Fischer, D.; Basin, D.; Eckstein, K.; Engel, T. Predictable Mobile Routing for Spacecraft Networks. IEEE Trans. Mob. Comput. 2013, 12, 1174–1187. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Zhou, M. Topological Dynamics Characterization for LEO Satellite Networks. Comput. Netw. 2007, 51, 43–53. [Google Scholar] [CrossRef]
- Kobayashi, H.; Shinonaga, H.; Araki, N.; Ito, Y. Study on Interference Between Non-GSO MSS Gateway Station and GSO FSS Earth Station Under Reverse Band Operation. In Proceedings of the Tenth International Conference on Digital Satellite Communications, Brighton, UK, 15–19 May 1995; pp. 29–57. [Google Scholar]
- Fortes, J.M.P.; Sampaio-Neto, R.; Maldonado, J.E.A. An Analytical Method for Assessing Interference in Interference Environments Involving NGSO Satellite Networks. Int. J. Satell. Commun. 1999, 17, 399–419. [Google Scholar] [CrossRef]
- Park, C.-S.; Kang, C.-G.; Choi, Y.-S.; Oh, C.-H. Interference Analysis of Geostationary Satellite Networks in the Presence of Moving Non-Geostationary Satellites. In Proceedings of the International Conference on Information Technology Convergence & Services, Cebu, Philippines, 11–13 August 2010; pp. 1–5. [Google Scholar]
- Guidotti, A.; Icolari, V.; Tarchi, D.; Vanelli-Coralli, A. An Interference Estimation Technique for Satellite Cognitive Radio Systems. In Proceedings of the ICC 2015, London, UK, 8–12 June 2015; pp. 892–897. [Google Scholar]
- Hyhty, M. Frequency Sharing Between FSS And BSS Satellites in the 17.3–18.4 GHz Band. In Proceedings of the Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, 15–16 November 2015; pp. 176–179. [Google Scholar]
- Sharma, S.K.; Chatzinotas, S.; Ottersten, B. In-Line Interference Mitigation Techniques for Spectral Coexistence of GEO and NGEO Satellites. Int. J. Satell. Commun. Netw. 2016, 34, 11–39. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, C.; Kuang, L.; Jin, J.; He, Y.; Han, Z. Spatial Spectrum Sharing for Satellite and Terrestrial Communication Networks. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, S.; Liu, Q.; Liu, Y.; Li, H. MIMO Relay Channel Signal Transmission in Transformed Subspace. Digit. Signal Process. 2016, 57, 46–55. [Google Scholar] [CrossRef]
- Cheng, H.; Yuan, X.; Tan, Y. Generalized Compute-Compress-and-Forward. IEEE Trans. Inf. Theory 2019, 65, 462–481. [Google Scholar] [CrossRef]
- Ding, T.; Yuan, X.; Liew, S. Algorithmic Beamforming Design for MIMO Multiway Relay Channel with Clustered Full Data Exchange. IEEE Trans. Veh. Technol. 2018, 67, 10081–10086. [Google Scholar] [CrossRef]
- Lee, N.; Lim, J.B.; Chun, J. Degrees of Freedom of the MIMO Y Channel: Signal Space Alignment for Network Coding. Inf. Theory IEEE Trans. 2010, 56, 3332–3342. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, N.; Yang, Z.; Yu, F. Proactive Jamming Toward Interference Alignment Networks: Beneficial and Adversarial Aspects. IEEE Syst. J. 2019, 13, 412–423. [Google Scholar] [CrossRef]
- Xin, H.; Yuan, X.; Liew, S.C. Multi-Pair MIMO Two-Way Relaying: A Principal-Angle Perspective. Signal Processing IEEE Trans. 2016, 64, 380–394. [Google Scholar]
- Chaaban, A.; Aydin, S. Multi-Way Communications: An Information Theoretic Perspective. Found. Trends Commun. Inf. Theory 2015, 12, 185–371. [Google Scholar] [CrossRef]
- Bafghi, A.H.A.; Jamali, V.; Nasiri-Kenari, M.; Schober, R. Degrees of Freedom of the K-User Interference Channel Assisted by Active and Passive IRSs. IEEE Trans. Commun. 2022, 70, 3063–3080. [Google Scholar] [CrossRef]
- Lee, B.; Lee, N.; Ha, N.; Shin, W. On the Degrees-of-Freedom for Relay-Aided MIMO Interference Channels with Partial and Delayed CSI. IEEE Wirel. Commun. Lett. 2021, 10, 306–310. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
node antennas | M |
relay antennas | N |
K | 3 |
taps | 3 |
Number of channels | M × N |
frequency | 2.4 GHz |
FFT Length | 64 |
modulation | 16 QAM |
band width | 20 MHz |
Roll off factor | 0.3 |
Channel 1 | Channel 2 | Channel 3 | Channel 4 | |
---|---|---|---|---|
path 1 | 115.31 | 124.25 | 107.84 | 115.79 |
path 2 | 4993.75 | 4995.00 | 4995.50 | 4987.51 |
path 3 | 9991.25 | 9992.50 | 9990.00 | 9981.25 |
Channel 1 | Channel 2 | Channel 3 | Channel 4 | |
---|---|---|---|---|
path 1 | −2.01 | −2.13 | −2.00 | −2.12 |
path 2 | −5.13 | −4.86 | −5.15 | −4.89 |
path 3 | −11.97 | −12.11 | −12.04 | −12.05 |
K | Scheme | M | N | Total Number |
---|---|---|---|---|
4 | SSA | 4 | 6 | 22 |
Proposed | 3 | 7 | 19 | |
5 | SSA | 6 | 10 | 40 |
Proposed | 4 | 13 | 33 | |
6 | SSA | 8 | 15 | 63 |
Proposed | 5 | 21 | 51 |
K | (d12, d13, d14, … d42, d43) | N | Tproposed | T [34] |
---|---|---|---|---|
3 | (2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0) | 4 | 11 | 16 |
4 | (1, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0) | 6 | 17 | 30 |
4 | (3, 0, 0, 1, 2, 1, 1, 1, 0, 2, 0, 0) | 7 | 21 | 35 |
4 | (3, 0, 0, 1, 3, 0, 1, 0, 3, 2, 0, 2) | 10 | 33 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, X.; Liu, Q.; Li, H. Distributed Satellite Relay Cooperative Communication with Optimized Signal Space Dimension. Remote Sens. 2022, 14, 4474. https://doi.org/10.3390/rs14184474
Wang Y, Wang X, Liu Q, Li H. Distributed Satellite Relay Cooperative Communication with Optimized Signal Space Dimension. Remote Sensing. 2022; 14(18):4474. https://doi.org/10.3390/rs14184474
Chicago/Turabian StyleWang, Yong, Xiyuan Wang, Qiao Liu, and Hui Li. 2022. "Distributed Satellite Relay Cooperative Communication with Optimized Signal Space Dimension" Remote Sensing 14, no. 18: 4474. https://doi.org/10.3390/rs14184474
APA StyleWang, Y., Wang, X., Liu, Q., & Li, H. (2022). Distributed Satellite Relay Cooperative Communication with Optimized Signal Space Dimension. Remote Sensing, 14(18), 4474. https://doi.org/10.3390/rs14184474