Assessment of the Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in a Chilean Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Monitoring Campaign and Field Data Collection
2.3. Diffuse Attenuation Coefficient and Optical Water Classification
2.4. Landsat and Sentinel Images
2.5. Algorithms for KdPAR Estimation
2.6. Statistical Analysis
3. Results
3.1. Monitoring Campaign and Field Data Collection
3.2. Algorithms for KdPAR Estimation
3.3. Algorithm Validation
3.4. Seasonal Spatial Pattern of KdPAR
3.5. KdPAR and Its Relationship with Meteorological Variables
3.6. Optical Water Classification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Rose, K.C.; Neale, P.J.; Tzortziou, M.; Gallegos, C.L.; Jordan, T.E. Patterns of spectral spatial and long-term variability in light attenuation in an optically complex sub-estuary. Limnol. Oceanogr. 2019, 64, S257–S272. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Zhou, Q.; Zhou, Y.; Zhang, Y.; Qin, B.; Deng, J. Decreasing underwater ultraviolet radiation exposure strongly driven by increasing ultraviolet attenuation in lakes in eastern and southwest China. Sci. Total Environ. 2020, 720, 137694. [Google Scholar] [CrossRef] [PubMed]
- Bukaveckas, P.A. Changes in acidity, DOC, and water clarity of Adirondack lakes over a 30-year span. Aquat. Sci. 2021, 83, 50. [Google Scholar] [CrossRef]
- Köhler, S.J.; Kothawala, D.; Futter, M.N.; Liungman, O.; Tranvik, L. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes. PLoS ONE 2013, 8, e70598. [Google Scholar] [CrossRef]
- Nimptsch, J.; Woelfl, S.; Osorio, S.; Valenzuela, J.; Moreira, C.; Ramos, V.; Castelo-Branco, R.; Leão, P.N.; Vasconcelos, V. First record of toxins associated with cyanobacterial blooms in oligotrophic North Patagonian lakes of Chile-a genomic approach. Int. Rev. Hydrobiol. 2016, 101, 57–68. [Google Scholar] [CrossRef]
- Wetzel, R. Limnology: Lake and River Ecosystems; Press, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Belzile, C.; Vincent, W.F.; Kumagai, M. Contribution of absorption and scattering to the attenuation of UV and photosynthetically available radiation in Lake Biwa. Limnol. Oceanogr. 2002, 47, 95–107. [Google Scholar] [CrossRef]
- Neale, P.J.; Thomas, B.C. Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis: Global predictions for Prochlorococcus and Synechococcus. Glob. Chang. Biol. 2017, 23, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Stramski, D.; Darecki, M. Characterization of the light field and apparent optical properties in the ocean euphotic layer based on hyperspectral measurements of irradiance quartet. Appl. Sci. 2018, 8, 2677. [Google Scholar] [CrossRef]
- Matthes, L.C.; Ehn, J.K.; Girard, S.L.; Pogorzelec, N.M.; Babin, M.; Mundy, C.J. Average cosine coefficient and spectral distribution of the light field under sea ice: Implications for primary production. Elementa 2019, 7, 25. [Google Scholar] [CrossRef]
- Wernand, M.R. On the history of the Secchi disc. J. Eur. Opt. Soc. 2010, 5, 10013s. [Google Scholar] [CrossRef] [Green Version]
- Chícharo, L.; Wagner, I.; Chichara, M.; Kapinsks, M.; Zalewski, M. Practical Experiments Guide for Ecohydrology; UNESCO: Paris, France, 2009; Volume 91, ISBN 9788578110796. [Google Scholar]
- Montecino, V. Primary productivity in South American temperate lakes and reservoirs Productividad primaria en lagos y embalses de la región templada de Sudamérica. Rev. Chil. Hist. Nat. 1991, 64, 555–567. [Google Scholar]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef] [PubMed]
- Soria, J.; Jover, M.; Domínguez-Gómez, J.A. Influence of wind on suspended matter in the water of the albufera of Valencia (Spain). J. Mar. Sci. Eng. 2021, 9, 343. [Google Scholar] [CrossRef]
- Murray, C. Remote Sensing of Water Color to Assess Water Quality in a Changing Climate. Ph.D. Thesis, University of Rhode Island, Kingston, RI, USA, 2022. [Google Scholar]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Cardenas, R.; Urrutia, R. Retrieving water turbidity in araucanian lakes (South-central chile) based on multispectral landsat imagery. Remote Sens. 2021, 13, 3133. [Google Scholar] [CrossRef]
- Jerlov, N.G. Marine Optics; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Huang, C.C.; Yao, L.; Huang, T.; Zhang, M.L.; Zhu, A.X.; Yang, H. Wind and rainfall regulation of the diffuse attenuation coefficient in large, shallow lakes from long-term MODIS observations using a semianalytical model. J. Geophys. Res. 2017, 122, 6748–6763. [Google Scholar] [CrossRef]
- Briceño, I.; Pérez, W.; San Miguel, D.; Ramos, S. Determinación de calidad de agua en el Lago Vichuquén, con imágenes de satélite Landsat 8, sensor OLI, año 2016, Chile. Rev. Teledetección 2018, 67–78. [Google Scholar] [CrossRef]
- Poddar, S.; Chacko, N.; Swain, D. Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors. Front. Mar. Sci. 2019, 6, 598. [Google Scholar] [CrossRef]
- Abirhire, O.; Davies, J.M.; Guo, X.; Hudson, J. Understanding the factors associated with long-term reconstructed turbidity in Lake Diefenbaker from Landsat-imagery. Sci. Total Environ. 2020, 724, 138222. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Abarca-del-Rio, R.; Cárdenas, R.; Parra, O.; Martínez-Retureta, R.; Urrutia, R. Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Song, K.; Ma, J.; Wen, Z.; Fang, C.; Shang, Y.; Zhao, Y.; Wang, M.; Du, J. Remote estimation of Kd (PAR) using MODIS and Landsat imagery for turbid inland waters in Northeast China. ISPRS J. Photogramm. Remote Sens. 2017, 123, 159–172. [Google Scholar] [CrossRef]
- Lei, S.; Xu, J.; Li, Y.; Lyu, H.; Liu, G.; Zheng, Z.; Xu, Y.; Du, C.; Zeng, S.; Wang, H.; et al. Temporal and spatial distribution of Kd(490) and its response to precipitation and wind in lake Hongze based on MODIS data. Ecol. Indic. 2020, 108, 105684. [Google Scholar] [CrossRef]
- Lee, Z.P.; Lubac, B.; Werdell, J.; Arnone, R. An Update of the Quasi-Analytical Algorithm (QAA_v5). Available online: http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf (accessed on 6 March 2022).
- Lee, C.F.; Li, Y.M.; Zha, Y.; Sun, D.; Yin, B. Validation of a quasi-analytical algorithm for highly turbid eutrophic water of meiliang bay in Taihu Lake, China. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2492–2500. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z. Update of the Quasi-Analytical Algorithm (QAA_v6). Available online: https:// (accessed on 1 December 2021).
- Watanabe, F.; Mishra, D.R.; Astuti, I.; Rodrigues, T.; Alcântara, E.; Imai, N.N.; Barbosa, C. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS J. Photogramm. Remote Sens. 2016, 121, 28–47. [Google Scholar] [CrossRef]
- Saulquin, B.; Hamdi, A.; Gohin, F.; Populus, J.; Mangin, A.; d’Andon, O.F. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 2013, 128, 224–233. [Google Scholar] [CrossRef]
- Ogashawara, I.; Mishra, D.R.; Nascimento, R.F.F.; Alcântara, E.H.; Kampel, M.; Stech, J.L. Re-parameterization of a quasi-analytical algorithm for colored dissolved organic matter dominant inland waters. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 128–145. [Google Scholar] [CrossRef]
- Xing, X.; Boss, E.; Zhang, J.; Chai, F. Evaluation of ocean color remote sensing algorithms for diffuse attenuation coefficients and optical depths with data collected on BGC-Argo floats. Remote Sens. 2020, 12, 2367. [Google Scholar] [CrossRef]
- Pitarch, J.; Vanhellemont, Q. The QAA-RGB: A universal three-band absorption and backscattering retrieval algorithm for high resolution satellite sensors. Development and implementation in ACOLITE. Remote Sens. Environ. 2021, 265, 112667. [Google Scholar] [CrossRef]
- Huovinen, P.; Ramírez, J.; Caputo, L.; Gómez, I. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile. Sci. Total Environ. 2019, 679, 196–208. [Google Scholar] [CrossRef]
- DGA Atlas del Agua. Atlas del Agua Chile 2016, 1, 24. Available online: http://biblioteca.digital.gob.cl/handle/123456789/1382 (accessed on 30 November 2021).
- Salazar, G.; Jalabert, D. Towards a landscape ecosophy. Interpreting how the Villarrica-Pucón urban system inhabitants in the Araucanía region of Chile perceive and relate with the dynamics of Landscape. Urbe 2016, 8, 28–41. [Google Scholar] [CrossRef]
- De los Rios-Escalante, P.; Contreras, A.; Lara, G.; Latsague, M.; Esse, C. First reports of associations between spectral properties, chlorophyll, bacterial and zooplankton in two Chilean north Patagonian lakes (Villarrica and Caburgua, 38°S, Araucania region, Chile). J. King Saud Univ. Sci. 2020, 32, 3167–3173. [Google Scholar] [CrossRef]
- Meruane, C. El Efecto del Viento Puelche Sobre la Hidrodinamica y Calidad de Aguas del Lago Villarrica. Memoria Para Optar al Título de Ingeniero Civil. Facultad de Ciencias Físicas y Matemáticas. Ph.D. Thesis, Departamento de Ingeniería Civil, Universidad de Chile, Santiago, Chile, 2005; p. 137. [Google Scholar] [CrossRef]
- MMA. Decreto 19 Establece Normas Secundarias De Calidad Ambiental Para La Protección De Las Aguas Continentales Superficiales Del Lago Villarrica. 2013, pp. 1–10. Available online: https://bcn.cl/2erjt (accessed on 30 November 2021).
- Campos, H.; Steffen, W.; Roman, C.; Zúñiga, L.; Aguero, G. Limnological studies in the Lake Villarrica. Arch. Hydrobiol. Suppl. Monogr. Beiträge 1983, 65, 371–406. [Google Scholar]
- Wojtiuk, J.R.; Otero, A.M. CONDOMINIOS: INDICADORES DEL CAMBIO DEL POST-TURISMO. EL CASO DE PUCÓN, CHILE. Rev. Real. Tendencias y Desafíos En Tur. CONDET 2020, 18, 53–73. [Google Scholar]
- Vergara, L.; Sánchez, C.; Zunino, H.M. Migración por estilo de vida: ¿Creando comunidades diversas y cohesionadas? El caso de Los Riscos, Pucón, Chile. Rev. Austral Ciencias Soc. 2019, 36, 47–67. [Google Scholar] [CrossRef]
- Molina, A.; Falvey, M.; Rondanelli, R. A solar radiation database for Chile. Sci. Rep. 2017, 7, 14823. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Cardenas, R.; Parra, O.; González-Rodríguez, L.; Martin, O.; Urrutia, R. On the quantification of habitability: Merging the astrobiological and ecological schools. Int. J. Astrobiol. 2019, 18, 412–415. [Google Scholar] [CrossRef]
- Knight, E.J.; Kvaran, G. Landsat-8 operational land imager design, characterization and performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Woodcock, T.L.S.T.; Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011–1012. [Google Scholar] [CrossRef]
- Nasa. USGS Landsat 8 (L8) Data Users Handbook Version 5.0. Nasa 2019, 8, 97. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Acolite For Sentinel-2: Aquatic Applications of MSI imagery. In ESA Special Publication SP-740, Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; ESA Special Publication: Prague, Czech Republic, 2016. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry. Opt. Express 2020, 28, 29948. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model perforance in a Single Diagram. J. Geophisycal Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; González-Rodríguez, L.; Duran-Llacer, I.; Cardenas, R.; Urrutia, R. Spatio-temporal analysis of chlorophyll in six Araucanian lakes of Central-South Chile from Landsat imagery. Ecol. Inform. 2021, 65, 101431. [Google Scholar] [CrossRef]
- Chegoonian, A.M.; Zolfaghari, K.; Leavitt, P.R.; Baulch, H.M.; Duguay, C.R. Improvement of field fluorometry estimates of chlorophyll a concentration in a cyanobacteria-rich eutrophic lake. Limnol. Oceanogr. Methods 2022, 20, 193–209. [Google Scholar] [CrossRef]
- DGA. Informe Final:Análisis de Fitoplancton en Muestras de Agua; Instituto de Fomento Pesquero: San Diego, CA, USA, 2018. [Google Scholar]
- Avila-Alonso, D.; Cardenas, R.; Rodriguez, L.; Alvarez-Salgueiro, J. Phytoplankton photosynthetic potential in coastal zones around the world. Rev. Cuba. Fis. 2016, 33, 62–64. [Google Scholar]
- MMA. Cuarto Informe de Calidad “Normas Secundarias de Calidad Ambiental Para la Protección de Las Aguas Superficiales de la Cuenca Del Lago Villarrica”. 2020. Available online: https://catalogador.mma.gob.cl:8080/geonetwork/srv/spa/resources.get?uuid=ecd5ef99-902a-46c8-b731-691bfa7fe42e&fname=5_Informe%20de%20Calidad_FINAL.pdf&access=public (accessed on 30 November 2021).
- Hidalgo, R.; Zunino, H. Negocios inmobiliarios en centros turisticos de montañay nuevos modos de vida: El papel de los migrantes de amenidad existenciales en la comuna de Pucó -Chile. Estud. y Perspect. En Tur. 2011, 20, 307–326. [Google Scholar]
- López, L.R.; Cárdenas, R.; Parra, O.; Urrutia, R.; González, L.; Martínez, R. On the Subaquatic Light Fields in Lakes of Southern Chile and Their Photosynthetic Potential. In Proceedings of the 2nd International Conference on BioGeoSciences; Springer: Cham, Switzerland, 2019; pp. 95–110. ISBN 9783030042332. [Google Scholar]
Month. | T (°C) | WS (ms−1) | RH (%) | Rain (mm) | PAR (mmol/m2) | Cloud Cover (%) |
---|---|---|---|---|---|---|
Jan | 16.62 | 2.68 | 69.82 | 2521.7 | 1235.37 | 18.69 |
Feb | 16.64 | 2.78 | 66.58 | 2164.8 | 1082.19 | 17.37 |
Mar | 14.90 | 2.79 | 73.79 | 3397.0 | 764.56 | 20.47 |
Apr | 11.83 | 3.33 | 84.08 | 5586.7 | 436.46 | 21.89 |
May | 9.74 | 3.76 | 88.28 | 8888 | 249.21 | 22.91 |
Jun | 7.90 | 5.32 | 86.29 | 13,154.4 | 181.04 | 22.82 |
Jul | 7.39 | 5.62 | 85.84 | 9508.2 | 220.51 | 24.87 |
Aug | 8.16 | 5.82 | 84.41 | 9272.3 | 345.55 | 26.76 |
Sep | 9.79 | 4.27 | 80.64 | 6181.5 | 550.76 | 25.48 |
Oct | 11.23 | 3.65 | 78.03 | 5741.9 | 801.51 | 28.82 |
Nov | 12.99 | 3.95 | 76.44 | 4174 | 1019.96 | 28.82 |
Dec | 14.93 | 3.01 | 72.87 | 3929.3 | 1237.38 | 25.16 |
Average | 11.84 | 3.92 | 78.92 | 6210.0 | 677.04 | 23.67 |
Parameter | Statistic | Summer | Spring | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | V4 | V5 | V6 | V1 | V2 | V3 | V4 | V5 | V6 | ||
SD | min (m) | 4.5 | 4.5 | 4.5 | 4.5 | 5 | 4.5 | 4.5 | 4.5 | 4 | 5.5 | 4 | 4 |
max (m) | 16.5 | 11.5 | 14 | 15.5 | 18 | 11.5 | 12.5 | 11.5 | 13 | 11.5 | 12 | 11.5 | |
Average | 7.61 | 7.62 | 8.56 | 9.69 | 9.17 | 7.5 | 6.5 | 7.68 | 7.89 | 8.31 | 6.46 | 7.5 | |
SD | 2.48 | 2.04 | 3.16 | 3.65 | 3.58 | 2 | 2.54 | 2.01 | 2.47 | 1.58 | 2.53 | 2 | |
CV (%) | 32.6 | 26.8 | 36.96 | 37.65 | 39.03 | 26.62 | 33.81 | 26.18 | 31.3 | 19.01 | 33.95 | 26.64 | |
n | 53 | 74 | 26 | 13 | 23 | 36 | 29 | 73 | 31 | 16 | 38 | 37 | |
Chl-a | min (µg/L) | 0.21 | 0.2 | 0.45 | 0.24 | 0.84 | 1.67 | 0.1 | 0.24 | 0.24 | 0.52 | 0.14 | 0.3 |
max (µg/L) | 18.88 | 14.43 | 5.4 | 9.53 | 20.03 | 20.03 | 19.17 | 14.88 | 9.01 | 19.39 | 19.18 | 9.78 | |
Average | 6.34 | 2.32 | 3.65 | 3.35 | 3.63 | 5.32 | 2.74 | 2.27 | 1.67 | 2.83 | 2.1 | 2.18 | |
SD | 5.92 | 2.54 | 5.4 | 2.57 | 4.38 | 4.57 | 4.46 | 2.44 | 1.82 | 4.82 | 3.26 | 1.92 | |
CV (%) | 93.43 | 109.57 | 148.04 | 76.62 | 120.59 | 85.85 | 162.67 | 107.44 | 109.33 | 170.17 | 154.93 | 88.03 | |
n | 34 | 57 | 19 | 12 | 18 | 20 | 29 | 60 | 27 | 21 | 31 | 29 | |
Turbidity | min (NTU) | 0.1 | 0.1 | 0.34 | 0.1 | 0.1 | 0 | 0.24 | 0.2 | 0.1 | 0.1 | 0.1 | 0 |
max (NTU) | 2.42 | 4.7 | 6.17 | 0.92 | 4.8 | 2.5 | 7.86 | 5.01 | 3.39 | 0.4 | 3.81 | 3.5 | |
Average | 0.94 | 1.11 | 1.29 | 0.52 | 0.77 | 0.86 | 2.3 | 2.22 | 1.02 | 0.22 | 1.32 | 1.38 | |
SD | 0.67 | 1.23 | 1.61 | 0.21 | 1 | 0.67 | 3.05 | 1.69 | 1.25 | 0.15 | 1.3 | 1.17 | |
CV (%) | 71.05 | 111.06 | 124.99 | 40.13 | 129.73 | 77.81 | 132.76 | 76.29 | 122.64 | 70.42 | 98.44 | 84.21 | |
n | 39 | 37 | 22 | 15 | 22 | 26 | 19 | 29 | 23 | 10 | 23 | 23 | |
KdPAR | min (m−1) | 0.12 | 0.17 | 0.14 | 0.13 | 0.11 | 0.17 | 0.16 | 0.17 | 0.15 | 0.17 | 0.17 | 0.17 |
max (m−1) | 0.44 | 0.5 | 0.44 | 0.44 | 0.4 | 0.44 | 0.44 | 0.44 | 0.5 | 0.36 | 0.44 | 0.5 | |
Average | 0.26 | 0.26 | 0.23 | 0.21 | 0.22 | 0.27 | 0.31 | 0.26 | 0.25 | 0.24 | 0.3 | 0.27 | |
SD | 0.08 | 0.08 | 0.1 | 0.11 | 0.09 | 0.07 | 0.1 | 0.08 | 0.15 | 0.05 | 0.1 | 0.08 | |
CV (%) | 30.52 | 29.72 | 43.15 | 51.81 | 40.23 | 26.15 | 31.4 | 30.09 | 61.54 | 22.77 | 32.6 | 30.53 | |
n | 53 | 74 | 25 | 13 | 23 | 36 | 29 | 73 | 31 | 20 | 38 | 37 |
Optical Classification | Coastal Water Type | Ocean Water Type | Lake Villarrica | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C3 | C5 | C7 | C9 | I | II | III | C1, III | C1, III | |
KdPAR (m−1) | 0.29 | 0.38 | 0.51 | 0.71 | 1.04 | 0.15 | 0.19 | 0.25 | 0.24 Summer | 0.27 Spring |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-López, L.; González-Rodríguez, L.; Duran-Llacer, I.; García, W.; Cardenas, R.; Urrutia, R. Assessment of the Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in a Chilean Lake. Remote Sens. 2022, 14, 4568. https://doi.org/10.3390/rs14184568
Rodríguez-López L, González-Rodríguez L, Duran-Llacer I, García W, Cardenas R, Urrutia R. Assessment of the Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in a Chilean Lake. Remote Sensing. 2022; 14(18):4568. https://doi.org/10.3390/rs14184568
Chicago/Turabian StyleRodríguez-López, Lien, Lisdelys González-Rodríguez, Iongel Duran-Llacer, Wirmer García, Rolando Cardenas, and Roberto Urrutia. 2022. "Assessment of the Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in a Chilean Lake" Remote Sensing 14, no. 18: 4568. https://doi.org/10.3390/rs14184568
APA StyleRodríguez-López, L., González-Rodríguez, L., Duran-Llacer, I., García, W., Cardenas, R., & Urrutia, R. (2022). Assessment of the Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in a Chilean Lake. Remote Sensing, 14(18), 4568. https://doi.org/10.3390/rs14184568