Spatial–Temporal Trends in and Attribution Analysis of Vegetation Change in the Yellow River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. Spatial–Temporal Variations in NDVI
2.3.2. Vegetation Attribution Analysis
3. Results
3.1. Overall Characteristics of the Vegetation Cover in the YRB
3.2. Temporal Features of the Vegetation in the YRB
3.3. Spatial Variation in Vegetation in the YRB
3.4. Attribution Analysis of NDVI Variation in the YRB
3.4.1. Qualitative Analysis of the NDVI
3.4.2. Quantitative Analysis of the NDVI
4. Discussion
4.1. Variations in the Vegetation Coverage and the Factors Influencing It in the YRB
4.2. What Are the Contributions of the Vegetation Coverage Research?
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klimavičius, L.; Rimkus, E.; Stonevičius, E.; Mačiulytė, V. Seasonality and long-term trends of NDVI values in different land use types in the eastern part of the Baltic Sea basin. Oceanologia 2022. [Google Scholar] [CrossRef]
- Han, J.C.; Huang, Y.F.; Zhang, H.; Wu, X.F. Characterization of elevation and land cover dependent trends of NDVI variations in the Hexi region, northwest China. J. Environ. Manag. 2019, 232, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.M.; Fu, B.J.; Piao, S.L.; Wang, S.H.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Li, J.J.; Peng, S.Z.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Feng, T.; Liu, L.Z.; Yang, J.H.; Wu, J.J. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecol. Indic. 2021, 125, 107479. [Google Scholar] [CrossRef]
- Zhao, G.J.; Tian, P.; Mu, X.M.; Jiao, J.Y.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G.J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Peng, L.; Wang, J.; Liu, M.M.; Xue, Z.H.; Bagherzadeh, A.; Liu, M.Y. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Ma, Q.M.; Long, Y.P.; Jia, X.P.; Wang, H.B.; Li, Y.S. Vegetation response to climatic variation and human activities on the Ordos Plateau from 2000 to 2016. Environ. Earth Sci. 2019, 78, 709. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Zhu, Y.J.; Liu, Z.P. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 2011, 151, 437–448. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, Z.P.; Gao, J.L.; Emanuele, L.; Ren, Y.Q.; Shao, M.A.; Wei, X.R. The Grain for Green project eliminated the effect of soil erosion on organic carbon on China’s Loess Plateau between 1980 and 2008. Agric. Ecosyst. Environ. 2021, 322, 107636. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D.; et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob. Chang. Biol. 2001, 7, 357–373. [Google Scholar] [CrossRef]
- Theurillat, J.P.; Guisan, A. Potential Impact of Climate Change on Vegetation in the European Alps: A Review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.Y.; Li, L.; Wu, Y.P.; Feng, G.L.; Qian, Z.H.; Sun, G.Q. Effects of climate change on vegetation patterns in Hulun Buir Grassland. Phys. A Stat. Mech. Appl. 2022, 597, 127275. [Google Scholar] [CrossRef]
- Brown, D.G. Comparison of vegetation-topography relationships at the Alpine treeline ecotone. Phys. Geogr. 1994, 15, 125–145. [Google Scholar] [CrossRef]
- Fu, B.J.; Zhang, Q.J.; Chen, L.D.; Zhao, W.W.; Gulinck, H.; Liu, G.B.; Yang, Q.K.; Zhu, Y.G. Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China. Catena 2006, 65, 41–48. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wang, J.Y.; Wang, X.Y.; Wang, Y.S. Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China. Land Use Policy 2020, 99, 105084. [Google Scholar] [CrossRef]
- Zhao, A.Z.; Zhang, A.B.; Liu, J.H.; Feng, L.L.; Zhao, Y.L. Assessing the effects of drought and “Grain for Green” Program on vegetation dynamics in China’s Loess Plateau from 2000 to 2014. Catena 2019, 175, 446–455. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Wang, T.; Chen, G.; Zhu, K.; Wang, Q.; Wang, J. Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [Google Scholar] [CrossRef]
- Zhu, L.J.; Meng, J.J.; Zhu, L.K. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Zewdie, W.; Csaplovics, E.; Inostroza, L. Monitoring ecosystem dynamics in northwestern Ethiopia using NDVI and climate variables to assess long term trends in dryland vegetation variability. Appl. Geogr. 2017, 79, 167–178. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Kong, D.X.; Miao, C.Y.; Wu, J.W.; Duan, Q.Y. Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012. Ecol. Eng. 2016, 91, 566–573. [Google Scholar] [CrossRef]
- Hu, Y.G.; Li, H.; Wu, D.; Chen, W.; Zhao, X.; Hou, M.L.; Li, A.J.; Zhu, Y.J. LAI-indicated vegetation dynamic in ecologically fragile region: A case study in the Three-North Shelter Forest program region of China. Ecol. Indic. 2021, 120, 106932. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Kamaratakis, E.K.; Chrysoulakis, N. SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int. J. Remote Sens. 2006, 27, 4819–4838. [Google Scholar] [CrossRef]
- Jing, C.W.; Shortridge, A.; Lin, S.P.; Wu, J.P. Comparison and validation of SRTM and ASTER GDEM for a subtropical landscape in Southeastern China. Int. J. Digit. Earth. 2014, 7, 969–992. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.X.; Yu, Y.; Liu, Y.F.; Li, J.L.; Meng, C.; Cai, Y.M. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef]
- Qian, C.; Shao, L.Q.; Hou, X.H.; Zhang, B.B.; Chen, W.; Xia, X.L. Detection and attribution of vegetation greening trend across distinct local landscapes under China’s Grain to Green Program: A case study in Shaanxi Province. Catena 2019, 183, 104182. [Google Scholar] [CrossRef]
- Sun, J.Q.; Wang, X.J.; Shahid, S.; Yin, Y.X.; Li, E. Spatiotemporal changes in water consumption structure of the Yellow River Basin, China. Phys. Chem. Earth Parts A/B/C 2022, 126, 103112. [Google Scholar] [CrossRef]
- Omer, A.; Elagib, N.A.; Ma, Z.G.; Saleem, F.; Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 2020, 749, 141446. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.K.; Xu, Y.P.; Wang, Y.T.; Gu, H.T.; Wang, F.M.; Pan, S.L. Influences of climatic variability and human activities on terrestrial water storage variations across the Yellow River basin in the recent decade. J. Hydrol. 2019, 579, 124218. [Google Scholar] [CrossRef]
- Bao, Z.X.; Zhang, J.Y.; Wang, G.Q.; Chen, Q.W.; Guan, T.S.; Yan, X.L.; Liu, C.S.; Liu, J.; Wang, J. The impact of climate variability and land use/cover change on the water balance in the Middle Yellow River Basin, China. J. Hydrol. 2019, 577, 123942. [Google Scholar] [CrossRef]
- Li, C.C.; Zhang, Y.Q.; Shen, Y.J.; Yu, Q. Decadal water storage decrease driven by vegetation changes in the Yellow River Basin. Sci. Bull. 2020, 65, 1859–1861. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zuo, Q.T.; Han, C.H.; Ma, J.X. Integrated assessment of variation characteristics and driving forces in precipitation and temperature under climate change: A case study of Upper Yellow River basin, China. Atmos. Res. 2020, 272, 106156. [Google Scholar] [CrossRef]
- Yang, Z.F.; Yan, Y.; Liu, Q. The relationship of Streamflow-Precipitation-Temperature in the Yellow River Basin of China during 1961-2000. Procedia Environ. Sci. 2012, 13, 2336–2345. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wang, S.; Wang, C.; Zhao, W.W. Runoff sensitivity increases with land use/cover change contributing to runoff decline across the middle reaches of the Yellow River basin. J. Hydrol. 2021, 600, 126536. [Google Scholar] [CrossRef]
- Wang, D.L.; Feng, H.M.; Zhang, B.Z.; Wei, Z.; Tian, Y.L. Quantifying the impacts of climate change and vegetation change on decreased runoff in China’s yellow river basin. Ecohydrol. Hydrobiol. 2022, 22, 310–322. [Google Scholar] [CrossRef]
- Sun, Z.D.; Chang, N.B.; Opp, C.; Hennig, T. Evaluation of ecological restoration through vegetation patterns in the lower Tarim River, China with MODIS NDVI data. Ecol. Inform. 2011, 6, 156–163. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, S.Z.; Huang, Q.; Wang, H.; Leng, G.Y.; Fang, W. Time-lagged response of vegetation dynamics to climatic and teleconnection factors. Catena 2020, 189, 104474. [Google Scholar] [CrossRef]
- Xu, S.Q.; Yu, Z.B.; Yang, C.G.; Ji, X.B.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Mathieu, D.; Roberto, O.C.; Katarina, Č.; Sergio, A.E.; Jan, G.P.W.C.; Peter, P.; Jožica, G.; Zalika, Č.; Maks, M.; Martin, D.L.; et al. Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia—An integrated approach using remote sensing and tree-ring data. Agric. For. Meteorol. 2020, 287, 107925. [Google Scholar] [CrossRef]
- Shen, X.J.; Liu, B.H.; Henderson, M.; Wang, L.; Jiang, M.; Lu, X.G. Vegetation Greening, Extended Growing Seasons, and Temperature Feedbacks in Warming Temperate Grasslands of China. J. Clim. 2022, 35, 5103–5117. [Google Scholar] [CrossRef]
- Jin, N.; Tao, B.; Ren, W.; He, L.; Zhang, D.; Wang, D.; Yu, Q. Assimilating remote sensing data into a crop model improves winter wheat yield estimation based on regional irrigation data. Agric. Water Manag. 2022, 266, 107583. [Google Scholar] [CrossRef]
Region | Number | Name | Area (×104 km2) | Elevation (m) | Precipitation (mm/a) | Temperature (°C) | NDVI | Mean Slope (°) |
---|---|---|---|---|---|---|---|---|
UYRB | 1 | Datong | 1.44 | 3765.25 | 345.84 | 2.54 | 0.68 | 13.34 |
2 | HuangShui | 1.55 | 3642.61 | 375.32 | 4.43 | 0.66 | 13.26 | |
3 | Shizuishan-Toudaoguai | 7.08 | 1476 | 259.21 | 7.26 | 0.30 | 3.15 | |
4 | Xiaheyan-Shizuishan | 5.45 | 1729.37 | 265.54 | 9.08 | 0.30 | 3.71 | |
MYRB | 5 | Fen | 3.88 | 1509.46 | 486.09 | 10.43 | 0.64 | 8.46 |
6 | Jing | 4.29 | 1707.21 | 491.63 | 9.36 | 0.53 | 11.44 | |
7 | Kuye | 0.90 | 1320.78 | 401.00 | 8.05 | 0.36 | 4.79 | |
8 | Beiluo | 2.62 | 1370.16 | 499.48 | 9.93 | 0.68 | 11.39 | |
9 | Qin | 0.91 | 1329.76 | 535.84 | 10.51 | 0.74 | 10.31 | |
10 | Wei | 4.54 | 1980.07 | 532.99 | 8.56 | 0.64 | 12.22 | |
11 | Wuding | 2.41 | 1317.47 | 417.24 | 9.14 | 0.37 | 6.03 | |
12 | Yiluo | 1.73 | 1043.85 | 648.15 | 12.93 | 0.75 | 10.42 | |
LYRB | 13 | Gaocun-Lijin | 2.19 | 69.52 | 631.36 | 13.87 | 0.66 | 1.23 |
14 | Upper daicunba | 0.84 | 300.06 | 725.79 | 10.89 | 0.69 | 3.88 |
Region | Mean | Variation Magnitude | Variation Speed (a−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | 1982–1999 | 2000–2019 | 1982–2019 | 1982–1999 | 2000–2019 | 1982–2019 | 1982–1999 | 2000–2019 | 1982–2019 | |
YRB | 0.5105 | 0.5795 | 0.556 | 0.0248 | 0.1161 | 0.1427 | 0.0011 * | 0.0067 ** | 0.0027 ** | |
UYRB | 1 | 0.6633 | 0.6967 | 0.68 | 0.0197 | 0.0619 | 0.0786 | 0.0006 | 0.0041 ** | 0.0013 ** |
2 | 0.6563 | 0.6996 | 0.6779 | 0.0322 | 0.0997 | 0.121 | 0.0009 | 0.0055 ** | 0.0017 ** | |
3 | 0.2764 | 0.3509 | 0.3137 | 0.0406 | 0.0954 | 0.144 | 0.0020 ** | 0.0062 ** | 0.0028 ** | |
4 | 0.2757 | 0.3679 | 0.3218 | 0.0451 | 0.1628 | 0.2033 | 0.0015 * | 0.0088 ** | 0.0036 ** | |
MYRB | 5 | 0.5984 | 0.6945 | 0.6465 | −0.0152 | 0.1386 | 0.1451 | 0.0002 | 0.0087 ** | 0.0037 ** |
6 | 0.4976 | 0.6003 | 0.5489 | 0.0324 | 0.1957 | 0.2304 | 0.0008 | 0.0105 ** | 0.0042 ** | |
7 | 0.3175 | 0.4447 | 0.3811 | −0.0233 | 0.1837 | 0.2363 | 0.0025 ** | 0.0107 ** | 0.0051 ** | |
8 | 0.6529 | 0.7208 | 0.6869 | 0.0105 | 0.1193 | 0.1259 | 0.0007 | 0.0067 ** | 0.0027 ** | |
9 | 0.7033 | 0.7801 | 0.7417 | 0.0283 | 0.0952 | 0.1017 | 0.0006 | 0.0056 ** | 0.0029 ** | |
10 | 0.6384 | 0.6948 | 0.6666 | 0.0404 | 0.1426 | 0.1588 | 0.0003 | 0.0070 ** | 0.0024 ** | |
11 | 0.3258 | 0.4658 | 0.3958 | 0.0156 | 0.1776 | 0.2187 | 0.0016 | 0.0112 ** | 0.0057 | |
12 | 0.7462 | 0.775 | 0.7606 | 0.0197 | 0.0428 | 0.0701 | 0.0006 | 0.0018 | 0.0010 ** | |
LYRB | 13 | 0.7285 | 0.7457 | 0.7371 | 0.0772 | 0.004 | 0.078 | 0.0022 | 0.0007 | 0.0008 |
14 | 0.6894 | 0.7132 | 0.7013 | 0.0534 | 0.0285 | 0.1012 | 0.0027 * | 0.0017 | 0.0009 |
Influence Factors Area Rate (%) | ||||||
---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | ||
DEM (m) | <800 | 0.08 | 0.37 | 4.07 | 6.84 | 0.41 |
800–1200 | 2.33 | 6.29 | 6.26 | 2.96 | 1.01 | |
1200–1600 | 7.06 | 11.84 | 4.69 | 2.46 | 2.58 | |
1600–2000 | 3.07 | 4.17 | 1.96 | 0.88 | 0.85 | |
2000–2500 | 0.82 | 2.11 | 1.04 | 0.68 | 0.43 | |
>2500 | 0.40 | 2.92 | 4.56 | 10.86 | 5.98 | |
Precipitation (mm) | <200 | 1.52 | 0.49 | 0.60 | 0.06 | 0.00 |
200–400 | 3.78 | 21.56 | 8.02 | 4.03 | 0.50 | |
400–600 | 0.03 | 3.45 | 18.47 | 18.59 | 7.28 | |
600–800 | 0.03 | 0.04 | 0.49 | 6.47 | 4.60 | |
Temperature (°C) | <3 | 0.08 | 1.85 | 3.53 | 6.64 | 3.93 |
3–7 | 0.72 | 3.40 | 6.56 | 5.30 | 1.88 | |
7–11 | 4.54 | 20.23 | 14.63 | 7.83 | 2.94 | |
11–16 | 0.03 | 0.06 | 2.85 | 9.39 | 3.62 | |
Slope (°) | <10 | 12.26 | 20.48 | 14.73 | 13.97 | 4.10 |
10–20 | 1.10 | 6.13 | 6.27 | 7.56 | 4.53 | |
>20 | 0.38 | 1.12 | 1.58 | 3.13 | 2.66 |
District | NDVI Rank | Average Elevation, m | Average Slope, ° | |||||
---|---|---|---|---|---|---|---|---|
1982–1999 | 2000–2019 | Range | 1982–1999 | 2000–2019 | Range | |||
YRB | L1 | 1490.82 | 1487.17 | −3.65 | 3.58 | 3.57 | −0.01 | |
L2 | 1689.92 | 1725.03 | 35.11 | 5.54 | 4.56 | −0.98 | ||
L3 | 1780.65 | 1797.97 | 17.32 | 8.34 | 7.84 | −0.5 | ||
L4 | 2078.41 | 2004.45 | −73.96 | 9.64 | 9.42 | −0.22 | ||
L5 | 2351.64 | 2155.98 | −195.66 | 12.97 | 12.73 | −0.24 | ||
UYRB | 1 | L3 | 3753.65 | 3640.40 | −113.25 | 13.21 | 12.97 | −0.24 |
L4 | 3446.90 | 3472.95 | 26.05 | 12.00 | 11.98 | −0.02 | ||
L5 | 3188.87 | 3168.63 | −20.24 | 17.40 | 17.08 | −0.32 | ||
2 | L3 | 2612.12 | 2460.09 | −152.03 | 12.39 | 13.72 | 1.33 | |
L4 | 3204.76 | 3185.41 | −19.35 | 14.47 | 14.56 | 0.09 | ||
L5 | 3186.87 | 3218.60 | 31.73 | 12.99 | 14.90 | 1.91 | ||
3 | L1 | 1414.67 | 1387.73 | −26.94 | 3.59 | 4.56 | 0.97 | |
L2 | 1498.14 | 1476.35 | −21.79 | 3.68 | 3.42 | −0.26 | ||
L3 | 1419.33 | 1477.15 | 57.82 | 4.58 | 4.85 | 0.27 | ||
4 | L1 | 1263.88 | 1279.97 | 16.09 | 4.12 | 4.82 | 0.70 | |
L2 | 1288.97 | 1298.87 | 9.90 | 3.25 | 3.26 | 0.01 | ||
L3 | 1086.45 | 1101.58 | 15.13 | 1.48 | 1.74 | 0.26 | ||
MYRB | 5 | L3 | 1017.00 | 904.25 | −112.75 | 7.23 | 6.37 | −0.86 |
L4 | 1216.13 | 1153.18 | −62.95 | 9.12 | 8.19 | −0.93 | ||
L5 | 1654.77 | 1592.02 | −62.75 | 15.71 | 14.98 | −0.73 | ||
6 | L2 | 1574.07 | 1617.19 | 43.12 | 11.48 | 9.43 | −2.05 | |
L3 | 1309.11 | 1426.34 | 117.23 | 10.63 | 11.57 | 0.94 | ||
L4 | 1425.30 | 1341.13 | −84.17 | 11.99 | 11.02 | −0.97 | ||
L5 | 1610.86 | 1543.71 | −67.15 | 13.73 | 13.83 | 0.10 | ||
7 | L2 | 1265.52 | 1321.28 | 55.76 | 5.11 | 4.09 | −1.02 | |
L3 | 1277.67 | 1205.84 | −71.83 | 2.46 | 5.97 | 3.51 | ||
8 | L3 | 1262.94 | 1351.50 | 88.56 | 10.69 | 11.05 | 0.36 | |
L4 | 1163.61 | 1145.08 | −18.53 | 11.06 | 10.50 | −0.56 | ||
L5 | 1366.98 | 1360.90 | −6.08 | 12.01 | 12.05 | 0.04 | ||
9 | L4 | 1080.30 | 1012.52 | −67.78 | 10.18 | 9.46 | −0.72 | |
L5 | 1413.47 | 1290.74 | −122.73 | 15.98 | 13.43 | −2.55 | ||
10 | L3 | 1763.30 | 1819.40 | 56.10 | 10.60 | 10.74 | 0.14 | |
L4 | 1330.74 | 1332.93 | 2.19 | 9.57 | 9.01 | −0.56 | ||
L5 | 1736.88 | 1740.13 | 3.25 | 19.42 | 19.06 | −0.36 | ||
11 | L2 | 1234.23 | 1259.98 | 25.75 | 5.64 | 1.93 | −3.71 | |
L3 | 1147.33 | 1203.86 | 56.53 | 8.17 | 8.09 | −0.08 | ||
12 | L4 | 546.46 | 517.02 | −29.44 | 7.07 | 6.12 | −0.95 | |
L5 | 1133.45 | 1115.26 | −18.19 | 16.85 | 16.71 | −0.14 | ||
LYRB | 13 | L4 | 68.39 | 71.10 | 2.71 | 1.47 | 1.66 | 0.19 |
L5 | 56.47 | 56.57 | 0.10 | 0.40 | 0.41 | 0.01 | ||
14 | L4 | 201.03 | 203.22 | 2.19 | 3.81 | 3.84 | 0.03 |
Region | NDVI versus Climate over T1 Period | NDVI Change | Contribution (%) | ||||
---|---|---|---|---|---|---|---|
YRB | NDVI = 0.00128P + 0.0070T + 0.216 (R2 = 0.88) | 0.5105 | 0.5795 | 0.0690 | 40.7 | 59.3 | |
UYRB | 1 | NDVI = 0.003P + 0.0087T + 0.27 (R2 = 0.81) | 0.6633 | 0.6967 | 0.0334 | 55.2 | 44.8 |
2 | NDVI = 0.00294P + 0.0091T + 0.235 (R2 = 0.84) | 0.6563 | 0.6996 | 0.0433 | 71.1 | 28.9 | |
3 | NDVI = 0.00069P + 0.0036T + 0.128 (R2 = 0.79) | 0.2757 | 0.3679 | 0.0922 | 23.3 | 76.7 | |
4 | NDVI = 0.00089P + 0.003T + 0.129 (R2 = 0.82) | 0.2764 | 0.3509 | 0.0745 | 33 | 67 | |
MYRB | 5 | NDVI = 0.00063P + 0.01T + 0.244 (R2 = 0.85) | 0.5984 | 0.6945 | 0.0961 | 34.6 | 65.4 |
6 | NDVI = 0.00049P + 0.0086T + 0.232 (R2 = 0.83) | 0.4976 | 0.6003 | 0.1027 | 25.1 | 74.9 | |
7 | NDVI = 0.00052P + 0.003T + 0.17 (R2 = 0.73) | 0.3175 | 0.4447 | 0.1272 | 13 | 87 | |
8 | NDVI = 0.00061P + 0.0013T + 0.267 (R2 = 0.85) | 0.6529 | 0.7208 | 0.0679 | 32.1 | 67.9 | |
9 | NDVI = 0.00046P + 0.013T + 0.302 (R2 = 0.85) | 0.7033 | 0.7801 | 0.0768 | 21 | 79 | |
10 | NDVI = 0.00049P + 0.013T + 0.29 (R2 = 0.90) | 0.6384 | 0.6948 | 0.0564 | 42.8 | 57.2 | |
11 | NDVI = 0.00052P + 0.0037T + 0.155 (R2 = 0.70) | 0.3258 | 0.4658 | 0.1400 | 12 | 88 | |
12 | NDVI = 0.00021P + 0.0166T + 0.261 (R2 = 0.89) | 0.7462 | 0.7750 | 0.0288 | 33.6 | 66.4 | |
LYRB | 13 | NDVI = 0.00049P + 0.012T + 0.257 (R2 = 0.76) | 0.7285 | 0.7457 | 0.0172 | 28.7 | 71.3 |
14 | NDVI = 0.00038P + 0.013T + 0.247 (R2 = 0.84) | 0.6894 | 0.7132 | 0.0238 | 43.4 | 56.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, S.; Zhang, Q.; Wang, H. Spatial–Temporal Trends in and Attribution Analysis of Vegetation Change in the Yellow River Basin, China. Remote Sens. 2022, 14, 4607. https://doi.org/10.3390/rs14184607
Jian S, Zhang Q, Wang H. Spatial–Temporal Trends in and Attribution Analysis of Vegetation Change in the Yellow River Basin, China. Remote Sensing. 2022; 14(18):4607. https://doi.org/10.3390/rs14184607
Chicago/Turabian StyleJian, Shengqi, Qiankun Zhang, and Huiliang Wang. 2022. "Spatial–Temporal Trends in and Attribution Analysis of Vegetation Change in the Yellow River Basin, China" Remote Sensing 14, no. 18: 4607. https://doi.org/10.3390/rs14184607
APA StyleJian, S., Zhang, Q., & Wang, H. (2022). Spatial–Temporal Trends in and Attribution Analysis of Vegetation Change in the Yellow River Basin, China. Remote Sensing, 14(18), 4607. https://doi.org/10.3390/rs14184607