Polar Aerosol Vertical Structures and Characteristics Observed with a High Spectral Resolution Lidar at the ARM NSA Observatory
Abstract
:1. Introduction
2. Dataset and Methods
3. Results
4. Discussion
5. Conclusions
- (1)
- A case study on 22 March 2016 at the NSA site shows that HSRL is able to observe fine aerosol vertical distributions. Aerosol layers at different altitudes have different origins according to the National Oceanic and Atmospheric Administration (NOAA) HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory model simulations;
- (2)
- Probability Distribution Functions (PDFs) of , SR, and from 6 years of HSRL data confirm that is generally one order of magnitude smaller than atmospheric molecular scatter (). Considering that is noisy when lidar signals are weak, we use a SR threshold value of 1.15 to separate weak aerosol layers and strong aerosol layers; is only analyzed when SR is above 1.15 through the study;
- (3)
- The annual cycle of aerosol vertical distributions shows that Arctic Haze events are frequently observed in later winter and spring at the NSA site. Top heights of the Arctic Haze increase from near the surface in February to 8 km in April and May. Large aerosol loadings with small are observed in July and August, which could be caused by transported marine aerosols from the adjacent Artic Ocean during the open-water period. In addition, mineral dust is frequently presented in strong aerosol layers in the spring, fall, and winter seasons at the NSA site;
- (4)
- Combined HSRL and multifilter rotating shadowband radiometer (MFRSR) data show that aerosol optical depth (AOD) at the wavelength of 500 nm have similar monthly variations with low altitude aerosol loading. MFRSR derived aerosol Ångström exponent (AE) between the 415 and 870 nm shows larger values in June, July, and August, and smaller values in March and October, indicating the dominance of smaller aerosol particles in the summer season and the dominance of large aerosol particles in March and October.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curry, J.A.; Schramm, J.L.; Rossow, W.B.; Randall, D. Overview of Arctic Cloud and Radiation Characteristics. J. Clim. 1996, 9, 1731–1764. [Google Scholar] [CrossRef]
- Lubin, D.; Vogelmann, A.M. A climatologically significant aerosol longwave indirect effect in the Arctic. Nature 2006, 439, 453–456. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, J.H.; Su, H.; Choi, Y.; Huang, L.; Guo, J.; Yung, Y.L. Elucidating the Role of Anthropogenic Aerosols in Arctic Sea Ice Variations. J. Clim. 2018, 31, 99–114. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Alekseev, G.V.; Bekryaev, R.V.; Bhatt, U.; Colony, R.; Johnson, M.A.; Karklin, V.P.; Makshtas, A.P.; Walsh, D.; Yulin, A.V. Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 2002, 29, 1878. [Google Scholar] [CrossRef]
- Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. Clim. Dyn. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Previdi, M.; Smith, K.L.; Polvani, L.M. Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett. 2021, 16, 093003. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Screen, J.A.; Deser, C.; Simmonds, I. Local and remote controls on observed Arctic warming. Geophys. Res. Lett. 2012, 39, L10709. [Google Scholar] [CrossRef]
- England, M.R.; Eisenman, I.; Lutsko, N.J.; Wagner, T.J. The recent emergence of Arctic Amplification. Geophys. Res. Lett. 2021, 48, e2021GL094086. [Google Scholar] [CrossRef]
- Schmale, J.; Zieger, P.; Ekman, A.M. Aerosols in current and future Arctic climate. Nat. Clim. Chang. 2021, 11, 95–105. [Google Scholar] [CrossRef]
- Bellouin, N.; Boucher, O.; Haywood, J.; Reddy, M.S. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 2005, 438, 1138–1141. [Google Scholar] [CrossRef]
- Lohmann, U.; Feichter, J. Global indirect aerosol effects: A review. Atmospheric Chem. Phys. 2005, 5, 715–737. [Google Scholar] [CrossRef]
- Breider, T.J.; Mickley, L.J.; Jacob, D.J.; Ge, C.; Wang, J.; Sulprizio, M.P.; Croft, B.; Ridley, D.A.; McConnell, J.R.; Sharma, S.; et al. Multidecadal Trends in Aerosol Radiative Forcing over the Arctic: Contribution of Changes in Anthropogenic Aerosol to Arctic Warming since 1980. J. Geophys. Res. Atmos. 2017, 122, 3573–3594. [Google Scholar] [CrossRef]
- Garrett, T.J.; Zhao, C.; Dong, X.; Mace, G.G.; Hobbs, P.V. Effects of varying aerosol regimes on low-level Arctic stratus. Geophys. Res. Lett. 2004, 31, L17105. [Google Scholar] [CrossRef]
- Lubin, D.; Vogelmann, A. Observational quantification of a total aerosol indirect effect in the Arctic. Tellus B Chem. Phys. Meteorol. 2010, 62, 181–189. [Google Scholar] [CrossRef]
- Mauritsen, T.; Sedlar, J.; Tjernström, M.; Leck, C.; Martin, M.; Shupe, M.; Sjogren, S.; Sierau, B.; Persson, P.O.G.; Brooks, I.M.; et al. An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys. 2011, 11, 165–173. [Google Scholar] [CrossRef]
- Morrison, H.; de Boer, G.; Feingold, G.; Harrington, J.; Shupe, M.D.; Sulia, K. Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci. 2012, 5, 11–17. [Google Scholar] [CrossRef]
- Solomon, A.; Feingold, G.; Shupe, M.D. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys. 2015, 15, 10631–10643. [Google Scholar] [CrossRef]
- Shupe, M.D.; Daniel, J.S.; de Boer, G.; Eloranta, E.W.; Kollias, P.; Long, C.N.; Luke, E.P.; Turner, D.D.; Verlinde, J. A Focus On Mixed-Phase Clouds. Bull. Am. Meteorol. Soc. 2008, 89, 1549–1562. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Z. Comparison of Arctic clouds between European Center for Medium-Range Weather Forecasts simulations and Atmospheric Radiation Measurement Climate Research Facility long-term observations at the North Slope of Alaska Barrow site. J. Geophys. Res. Earth Surf. 2010, 115, D23202. [Google Scholar] [CrossRef]
- Fan, J.; Ghan, S.; Ovchinnikov, M.; Liu, X.; Rasch, P.J.; Korolev, A. Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res. Earth Surf. 2011, 116, D00T07. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Kollias, P.; Vogelmann, A.M.; Yang, K.; Luo, T. Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. Atmos. Chem. Phys. 2018, 18, 4317–4327. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, X.; Wu, M.; Zhao, X.; Ke, Z.; Brown, H. Relative importance of high-latitude local and long-range-transported dust for Arctic ice-nucleating particles and impacts on Arctic mixed-phase clouds. Atmos. Chem. Phys. 2022, 22, 2909–2935. [Google Scholar] [CrossRef]
- Sterzinger, L.J.; Sedlar, J.; Guy, H.; Neely, R.R., III; Igel, A.L. Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations. Atmos. Chem. Phys. 2022, 22, 8973–8988. [Google Scholar] [CrossRef]
- Lohmann, U.; Hoose, C. Sensitivity studies of different aerosol indirect effects in mixed-phase clouds. Atmos. Chem. Phys. 2009, 9, 8917–8934. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Dong, X.; Xi, B.; Wu, P.; Logan, T.; Yung, Y.L. Impacts of long-range transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic. Atmos. Chem. Phys. 2020, 20, 14741–14755. [Google Scholar] [CrossRef]
- Quinn, P.K.; Bates, T.S.; Schulz, K.; Shaw, G.E. Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008. Atmos. Chem. Phys. 2009, 9, 8883–8888. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Beddows, D.C.S.; Tunved, P.; Harrison, R.M.; Lupi, A.; Vitale, V.; Becagli, S.; Traversi, R.; Park, K.-T.; Yoon, Y.J.; et al. Simultaneous measurements of aerosol size distributions at three sites in the European high Arctic. Atmos. Chem. Phys. 2019, 19, 7377–7395. [Google Scholar] [CrossRef]
- Thomas, M.A.; Devasthale, A.; Tjernström, M.; Ekman, A.M.L. The relation between aerosol vertical distribution and temperature inversions in the arctic in winter and spring. Geophys. Res. Lett. 2019, 46, 2836–2845. [Google Scholar] [CrossRef]
- McFarquhar, G.M.; Ghan, S.; Verlinde, J.; Korolev, A.; Strapp, J.W.; Schmid, B.; Tomlinson, J.M.; Wolde, M.; Brooks, S.D.; Cziczo, D.; et al. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds. Bull. Am. Meteorol. Soc. 2011, 92, 183–201. [Google Scholar] [CrossRef] [Green Version]
- Wendisch, M.; Macke, A.; Ehrlich, A.; Lüpkes, C.; Mech, M.; Chechin, D.; Dethloff, K.; Velasco, C.B.; Bozem, H.; Brückner, M.; et al. The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification. Bull. Am. Meteorol. Soc. 2019, 100, 841–871. [Google Scholar] [CrossRef]
- Kabanov, D.M.; Ritter, C.; Sakerin, S.M. Interannual and seasonal variations in the aerosol optical depth of the atmosphere in two regions of Spitsbergen (2002–2018). Atmos. Meas. Tech. 2020, 13, 5303–5317. [Google Scholar] [CrossRef]
- Kassianov, E.; Pekour, M.; Barnard, J.; Flynn, C.J.; Mei, F.; Berg, L.K. Estimation of Aerosol Columnar Size Distribution from Spectral Extinction Data in Coastal and Maritime Environment. Atmosphere 2021, 12, 1412. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A., Jr.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.; Kittaka, C.; et al. The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1229. [Google Scholar] [CrossRef]
- Yang, K.; Wang, Z.; Luo, T.; Liu, X.; Wu, M. Upper troposphere dust belt formation processes vary seasonally and spatially in the Northern Hemisphere. Commun. Earth Environ. 2022, 3, 24. [Google Scholar] [CrossRef]
- Shibata, T.; Shiraishi, K.; Shiobara, M.; Iwasaki, S.; Takano, T. Seasonal variations in high arctic free tropospheric aerosols over ny-ålesund, svalbard, observed by ground-based lidar. J. Geophys. Res. Atmos. 2018, 123, 12353–12367. [Google Scholar] [CrossRef]
- Eloranta, E.; Ponsardin, P. A High Spectral Resolution Lidar Designed for Unattended Operation in the Arctic; Optica Publishing Group: Coeur d’Alene, ID, USA, 2001. [Google Scholar]
- Thorsen, T.J.; Fu, Q.; Newsom, R.K.; Turner, D.; Comstock, J. Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part I: Feature Detection. J. Atmos. Ocean. Technol. 2015, 32, 1977–1998. [Google Scholar] [CrossRef]
- Thorsen, T.; Fu, Q. Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part II: Extinction. J. Atmos. Ocean. Technol. 2015, 32, 1999–2023. [Google Scholar] [CrossRef]
- Garrett, T.J.; Zhao, C. Increased Arctic cloud longwave emissivity associated with poullution from mid-latitudes. Nature 2006, 440, 787–789. [Google Scholar] [CrossRef]
- Mather, J.H.; Voyles, J.W. The Arm Climate Research Facility: A Review of Structure and Capabilities. Bull. Am. Meteorol. Soc. 2013, 94, 377–392. [Google Scholar] [CrossRef]
- Verlinde, J.; Zak, B.D.; Shupe, M.D.; Ivey, M.D.; Stamnes, K. The ARM North Slope of Alaska (NSA) Sites. Meteorol. Monogr. 2016, 57, 8.1–8.13. [Google Scholar] [CrossRef]
- Eloranta, E. High Spectral Resolution lidar measurements of atmospheric extinction: Progress and challenges. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Goldsmith, J. High Spectral Resolution Lidar (HSRL) Instrument Handbook; No. DOE/SC-ARM-TR-157; DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States): Albuquerque, NM, USA, 2016. [Google Scholar] [CrossRef]
- Flynn, C.J.; Mendoza, A.; Zheng, Y.; Mathur, S. Novel polarization-sensitive micropulse lidar measurement technique. Opt. Express 2007, 15, 2785–2790. [Google Scholar] [CrossRef]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Earth Surf. 2006, 111, D07207. [Google Scholar] [CrossRef]
- Eloranta, E.W. High Spectral Resolution Lidar. In Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Weitkamp, K., Ed.; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005; pp. 143–163. [Google Scholar]
- Kollias, P.; Clothiaux, E.E.; Ackerman, T.P.; Albrecht, B.A.; Widener, K.B.; Moran, K.P.; Luke, E.; Johnson, K.L.; Bharadwaj, N.; Mead, J.B.; et al. Development and Applications of ARM Millimeter-Wavelength Cloud Radars. Meteorol. Monogr. 2016, 57, 17.1–17.19. [Google Scholar] [CrossRef]
- Shupe, M.D.; Matrosov, S.; Uttal, T. Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA. J. Atmos. Sci. 2006, 63, 697–711. [Google Scholar] [CrossRef]
- Shupe, M.D.; Turner, D.D.; Zwink, A.; Thieman, M.M.; Mlawer, E.J.; Shippert, T. Deriving Arctic Cloud Microphysics at Barrow, Alaska: Algorithms, Results, and Radiative Closure. J. Appl. Meteorol. Climatology 2015, 54, 1675–1689. [Google Scholar] [CrossRef]
- Shaw, G.E. The Arctic Haze Phenomenon. Bull. Am. Meteorol. Soc. 1995, 76, 2403–2414. [Google Scholar] [CrossRef]
- Zhao, C.; Garrett, T.J. Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett. 2015, 42, 557–564. [Google Scholar] [CrossRef]
- Moffett, C.E.; Barrett, T.E.; Liu, J.; Gunsch, M.J.; Upchurch, L.M.; Quinn, P.K.; Pratt, K.A.; Sheesley, R.J. Long-Term Trends for Marine Sulfur Aerosol in the Alaskan Arctic and Relationships With Temperature. J. Geophys. Res. Atmos. 2020, 125, e2020JD033225. [Google Scholar] [CrossRef]
- Zhang, D.; Comstock, J.; Morris, V. Comparisons of Planetary Boundary Layer Height from Ceilometer with ARM Radiosonde Data. Atmospheric Meas. Tech. 2022, 15, 4735–4749. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Shibata, T.; Nagai, T.; Mizutani, K.; Itabe, T.; Hirota, M.; Fujimoto, T.; Uchino, O. Arctic haze and clouds observed by lidar during four winter seasons of 1993–1997, at Eureka, Canada. Atmos. Environ. 1999, 33, 2459–2470. [Google Scholar] [CrossRef]
- Quinn, P.K.; Shaw, G.; Andrews, E.; Dutton, E.G.; Ruoho-Airola, T.; Gong, S.L. Arctic haze: Current trends and knowledge gaps. Tellus B: Chem. Phys. Meteorol. 2007, 59, 99–114. [Google Scholar] [CrossRef]
- Luo, T.; Wang, Z.; Zhang, D.; Liu, X.; Wang, Y.; Yuan, R. Global dust distribution from improved thin dust layer detection using A-train satellite lidar observations. Geophys. Res. Lett. 2015, 42, 620–628. [Google Scholar] [CrossRef]
- Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Chin, M.; et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom Atmos. Chem. Phys. 2006, 6, 1777–1813. [Google Scholar]
- Bourgeois, Q.; Bey, I. Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions. J. Geophys. Res. Earth Surf. 2011, 116, D08213. [Google Scholar] [CrossRef]
- Engelmann, R.; Ansmann, A.; Ohneiser, K.; Griesche, H.; Radenz, M.; Hofer, J.; Althausen, D.; Dahlke, S.; Maturilli, M.; Veselovskii, I.; et al. Wildfire Smoke, Arctic Haze, and Aerosol Effects on Mixed-Phase and Cirrus Clouds over the North Pole Region during MOSAiC: An Introduction. Atmos. Chem. Phys. 2021, 21, 13397–13423. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Heymsfield, A.; Fan, J.; Liu, D.; Zhao, M. Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds. Geophys. Res. Lett. 2012, 39, L18805. [Google Scholar] [CrossRef]
- Kalesse, H.; de Boer, G.; Solomon, A.; Oue, M.; Ahlgrimm, M.; Zhang, D.; Shupe, M.D.; Luke, E.; Protat, A. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study. Mon. Weather Rev. 2016, 144, 4805–4826. [Google Scholar] [CrossRef]
- Burton, S.P.; Chemyakin, E.; Liu, X.; Knobelspiesse, K.; Stamnes, S.; Sawamura, P.; Moore, R.H.; Hostetler, C.A.; Ferrare, R.A. Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals. Atmos. Meas. Tech. 2016, 9, 5555–5574. [Google Scholar] [CrossRef]
- McLean, W.G.K.; Fu, G.; Burton, S.P.; Hasekamp, O.P. Retrieval of aerosol microphysical properties from atmospheric lidar sounding: An investigation using synthetic measurements and data from the ACEPOL campaign. Atmos. Meas. Tech. 2021, 14, 4755–4771. [Google Scholar] [CrossRef]
- Shupe, M.D.; Rex, M.; Blomquist, B.; Persson, P.O.G.; Schmale, J.; Uttal, T.; Althausen, D.; Angot, H.; Archer, S.; Bariteau, L.; et al. Overview of the MOSAiC expedition: Atmosphere. Elementa Sci. Anthr. 2022, 10, 60. [Google Scholar] [CrossRef]
- Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef]
- Groß, S.; Freudenthaler, V.; Wirth, M.; Weinzierl, B. Towards an aerosol classification scheme for future EarthCARE lidar observations and implications for research needs. Atmos. Sci. Lett. 2015, 16, 77–82. [Google Scholar] [CrossRef] [Green Version]
Instruments | Wavelength/Frequency | Temporal/Vertical Resolution | Measured and/or Derived Quantities |
---|---|---|---|
HSRL | 532 nm | 30 s/30 m | Lidar backscatter coefficient, scattering ratio, and depolarization ratio [47] |
KAZR | 35 GHz | 2 s/30 m | Radar reflectivity factor and Doppler velocity [48] |
MFRSR | 415, 500, 615, 673, 870, and 940 nm | 20 s/column integrated | Aerosol optical depth at 415, 500, 615, 673, and 870 nm; Ångström exponent of 415 and 870 nm |
SONDE | 2 times per day/~20 m | Atmospheric pressure, temperature, and moisture profiles |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Comstock, J.; Xie, H.; Wang, Z. Polar Aerosol Vertical Structures and Characteristics Observed with a High Spectral Resolution Lidar at the ARM NSA Observatory. Remote Sens. 2022, 14, 4638. https://doi.org/10.3390/rs14184638
Zhang D, Comstock J, Xie H, Wang Z. Polar Aerosol Vertical Structures and Characteristics Observed with a High Spectral Resolution Lidar at the ARM NSA Observatory. Remote Sensing. 2022; 14(18):4638. https://doi.org/10.3390/rs14184638
Chicago/Turabian StyleZhang, Damao, Jennifer Comstock, Hailing Xie, and Zhien Wang. 2022. "Polar Aerosol Vertical Structures and Characteristics Observed with a High Spectral Resolution Lidar at the ARM NSA Observatory" Remote Sensing 14, no. 18: 4638. https://doi.org/10.3390/rs14184638
APA StyleZhang, D., Comstock, J., Xie, H., & Wang, Z. (2022). Polar Aerosol Vertical Structures and Characteristics Observed with a High Spectral Resolution Lidar at the ARM NSA Observatory. Remote Sensing, 14(18), 4638. https://doi.org/10.3390/rs14184638