An Integrated Quantitative Method Based on ArcGIS Evaluating the Contribution of Rural Straw Open Burning to Urban Fine Particulate Pollution
Abstract
:1. Introduction
2. Overview of Study Area and Period
3. Methodology and Data Sources
3.1. Modeling Framework
3.2. Determination of Pollution Episodes
3.3. Reconstruction of Hourly Transport Pathways and Wind-Field Grids
3.3.1. Pre-Calculating Backward Trajectories
3.3.2. Plotting Hourly Transport Pathways and Wind-Field Grids
3.4. Identification of Straw Open Burning Sources
3.4.1. Preprocessing Wildfire Data
3.4.2. Identifying Potential Straw Open Burning Sources
3.5. Model Formulation
3.5.1. Estimating SOB-Caused Inflow PM2.5 Concentration
3.5.2. Evaluating the Contribution of SOB-Caused Inflow PM2.5 Concentration
4. Results and Discussion
4.1. Characteristics of PM2.5 Pollution Episodes
4.2. Hourly Transport Pathways and Straw Open Burning Sources
4.3. Contributions of Straw Open Burning Sources
4.4. Analysis of the Impact of Individual Factors
4.4.1. Impact of Meteorological Conditions on the Receptor City
4.4.2. Impact of Burning Area, Transport Distance, and Meteorological Conditions along the Transport Pathways
4.5. Policy Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Poulain, L.; Fahlbusch, B.; Spindler, G.; Mueller, K.; van Pinxteren, D.; Wu, Z.; Iinuma, Y.; Birmili, W.; Wiedensohler, A.; Herrmann, H. Source apportionment and impact of long-range transport on carbonaceous aerosol particles in central Germany during HCCT-2010. Atmos. Chem. Phys. 2021, 21, 3667–3684. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Sinha, V.; Sinha, B.; Paul, S.; Attri, S.D.; Mor, S. Appraisal of regional haze event and its relationship with PM2. 5 concentration, crop residue burning and meteorology in Chandigarh, India. Chemosphere 2021, 273, 128562. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.L.; Wang, L.L.; Li, X.R.; Xin, J.Y.; Liu, Z.R.; Sun, Y.; Liu, J.D.; Zhang, Y.J.; Du, W.; Jin, X.; et al. Emission characteristics of size distribution, chemical composition and light absorption of particles from field-scale crop residue burning in Northeast China. Sci. Total Environ. 2020, 710, 136304. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.F.; Xiao, Y.; Tani, H.; Zhong, G.S.; Sun, Z.Y. Study on spatial distribution of crop residue burning and PM2.5 change in China. Environ. Pollut. 2017, 220, 204–221. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, S. Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu, Southwest China. Sci. Total Environ. 2014, 473, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.H.; Yang, L.S. Characteristics of ambient black carbon mass and sizeresolved particle number concentrations during corn straw open-field burning episode observations at a rural site in southern Taiwan. Int. J. Environ. Res. Publ. Health 2016, 13, 688. [Google Scholar] [CrossRef]
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef]
- Nguyen, L.S.P.; Huang, H.-Y.; Lei, T.L.; Bui, T.T.; Wang, S.-H.; Chi, K.H.; Sheu, G.-R.; Lee, C.-T.; Ou-Yang, C.-F.; Lin, N.-H. Characterizing a landmark biomass-burning event and its implication for aging processes during long-range transport. Atmos. Environ. 2020, 241, 117766. [Google Scholar] [CrossRef]
- Salvador, P.; Almeida, S.; Cardoso, J.; Almeida-Silva, M.; Nunesc, T.; Cerqueira, M.; Alves, C.; Reis, M.; Chaves, P.; Artíñano, B.; et al. Composition and origin of pm in Cape Verde: Characterization of long-range transport episodes. Atmos. Environ. 2016, 127, 326–339. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, X.; Lang, J.; Chen, D.; Cheng, S.; Wei, L.; Wei, X.; Liu, C. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China. Atmos. Chem. Phys. 2017, 17, 2839–2864. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.; Zhang, Q.; Zhang, Y.; Davis, S.; Tong, D.; Zheng, Y.; Liu, Z.; Guan, D.; He, K.; Schellnhuber, H. Impacts of climate change on future air quality and human health in China. Proc. Natl. Acad. Sci. USA 2019, 116, 17193–17220. [Google Scholar] [CrossRef] [PubMed]
- Annan, K.; Ma, Q.; Lund, M.; Wang, S. Population-weighted exposure to pm pollution in China: An integrated approach. Environ. Int. 2018, 120, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Gildemeister, A.E.; Hopke, P.K.; Kim, E. Sources of fine urban particulate matter in Detroit, MI. Chemosphere 2007, 69, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Weiss-Penzias, P.S.; Gustin, M.S.; Lyman, S.N. Sources of gaseous oxidized mercury and mercury dry deposition at two southeastern U.S. sites. Atmos. Environ. 2011, 45, 4569–4579. [Google Scholar] [CrossRef]
- Seibert, P.; Kromp-Kolb, H.; Baltensperger, U.; Jost, D.T.; Schwikowski, M.; Kasper, A.; Puxbaum, H. Trajectory analysis of aerosol measurements at high alpine sites. In Transport and Transformation of Pollutants in the Troposphere; Borrell, P.M., Borrell, P., Cvitas, T., Seiler, W., Eds.; Academic Publishing: Den Haag, The Netherlands, 1994; pp. 689–693. [Google Scholar]
- Han, Y.-J.; Holsen, T.M.; Hopke, P.K. Estimation of source locations of total gaseous mercury measured in New York State using trajectory-based models. Atmos. Environ. 2007, 41, 6033–6047. [Google Scholar] [CrossRef]
- Xie, Y.; Berkowitz, C.M. The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas. Atmos. Environ. 2007, 41, 5831–5847. [Google Scholar] [CrossRef]
- Cheng, I.; Zhang, P.; Blanchard, P.; Dalziel, J.; Tordon, R. Concentration weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada. Atmos. Chem. Phys. 2013, 13, 6031–6048. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Wei, W.; Fu, J.S.; Meng, C.; Ma, S. Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmos. Environ. 2015, 122, 723–736. [Google Scholar] [CrossRef]
- Itahashi, S.; Uno, I.; Kim, S. Source Contributions of Sulfate Aerosol over East Asia Estimated by CMAQ-DDM. Environ. Sci. Technol. 2012, 46, 6733–6741. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.X.; Xing, J.; Fu, K.; Fu, J.S.; Jang, C.; Zhu, Y.; Dong, X.Y.; Gao, Y.; Wu, W.J.; et al. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0. Geosci. Model Dev. 2015, 8, 115–128. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, H.; Jiang, Y.; Chen, F.; Cui, X.; He, J.; Liu, D. A modeling study of PM2.5 transboundary during a winter severe haze dpisode in Southern Yangtze River Delta, China. Atmos. Res. 2021, 248, 105159. [Google Scholar] [CrossRef]
- Chang, X.; Wang, S.; Zhao, B.; Cai, S.; Hao, J. Assessment of inter-city transport of particulate matter in the Beijing–Tianjin–Hebei region. Atmos. Chem. Phys. 2018, 18, 4843–4858. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Yao, S.; Wang, X.; Zhang, J. Multiple perspectives for modeling regional PM2.5 transport across cities in the Beijing-Tianjin-Hebei region during haze episodes. Atmos. Environ. 2019, 212, 22–35. [Google Scholar] [CrossRef]
- Wu, Y.J.; Wang, P.; Yu, S.C.; Wang, L.Q.; Li, P.F.; Li, Z.; Mehmood, K.; Liu, W.P.; Wu, J.; Lichtfouse, E.; et al. Residential emissions predicted as a major source of fne particulate matter in winter over the Yangtze River Delta, China. Environ. Chem. Lett. 2018, 16, 1117–1127. [Google Scholar] [CrossRef]
- Wu, J.R.; Li, G.H.; Cao, J.J.; Bei, N.F.; Wang, Y.C.; Feng, T.; Huang, R.H.; Liu, S.X.; Zhang, Q.; Tie, X.X. Contributions of trans-boundary transport to summertime air quality in Beijing, China. Atmos. Chem. Phys. 2017, 17, 2035–2051. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, Z.; Wang, S.X.; Hua, Y.; Xing, J.; Hao, J.M. Local and regional contributions to fne particle pollution in winter of the Yangtze River Delta, China. Aerosol Air Qual. Res. 2016, 16, 1067–1080. [Google Scholar] [CrossRef]
- Kwok, R.H.F.; Baker, K.R.; Napelenok, S.L.; Tonnesen, G.S. Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment. Geosci. Model Dev. 2015, 8, 99–114. [Google Scholar] [CrossRef]
- In, H.-J.; Byun, D.W.; Park, R.; Moon, N.-K.; Kim, S.; Zhong, S. Impact of transboundary transport of carbonaceous aerosols on the regional air quality in the United States: A case study of the South American wildland fire of May 1998. J. Geophys. Res. Atmos. 2007, 112, D07201. [Google Scholar] [CrossRef]
- An, J.; Li, J.; Zhang, W.; Chen, Y.; Qu, Y.; Xiang, W. Simulation of transboundary transport fluxes of air pollutants among Beijing, Tianjin, and Hebei Province of China. Acta Sci. Circumstantiae 2012, 32, 2684–2692. [Google Scholar]
- Jenner, S.L.; Abiodun, B.J. The transport of atmospheric sulfur over Cape Town. Atmos. Environ. 2013, 79, 248–260. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Burling, I.R.; Urbanski, S.P.; Atlas, E.L.; Adachi, K.; Buseck, P.R.; Wiedinmyer, C.; Akagi, S.K.; Toohey, D.W.; Wold, C.E. Trace gas and particle emissions from open biomass burning in Mexico. Atmos. Chem. Phys. 2011, 11, 6787–6808. [Google Scholar] [CrossRef]
- Bureau of Statistics of Jilin Province. Jilin Statistical Yearbook; Jilin University Press: Changchun, China, 2021.
- Chen, W.W.; Tong, D.Q.; Dan, M.; Zhang, S.C.; Zhang, X.L.; Pan, Y.P. Typical atmospheric haze during crop harvest season in northeastern China: A case in the Changchun region. J. Environ. Sci. 2017, 54, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, G.; Tong, D.Q.; Zhang, X.; Xiu, A.; Zhang, S. Interannual and seasonal variability of greenhouse gases and aerosol emissions from biomass burning in Northeastern China constrained by satellite observations. Remote Sens. 2021, 13, 1005. [Google Scholar] [CrossRef]
- Global Data Assimilation System (GDAS1) Archive Information. Available online: ftp://ftp.arl.noaa.gov/pub/archives/gdas1 (accessed on 16 February 2022).
- Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT-4) Model. Available online: http://www.arl.noaa.gov/ready/open/hysplit4.html (accessed on 16 February 2022).
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- TrajStat Software. Available online: http://www.meteothink.org/docs/trajstat/index.html (accessed on 16 February 2022).
- Cao, F.; Zhang, S.-C.; Kawamura, K.; Zhang, Y.-L. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. Sci. Total Environ. 2016, 572, 1244–1251. [Google Scholar] [CrossRef]
- Pan, X.L.; Kanaya, Y.; Wang, Z.F.; Komazaki, Y.; Taketani, F.; Akimoto, H.; Pochanart, P. Variations of carbonaceous aerosols from open crop residue burning with transport and its implication to estimate their lifetimes. Atmos. Environ. 2013, 74, 301–310. [Google Scholar] [CrossRef]
- Himawari-8 Advanced Himawari Imager (AHI) Fire Product. Available online: ftp://ftp.ptree.jaxa.jp (accessed on 16 February 2022).
- MODIS Land Cover Product (MCD12Q1). Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 16 February 2022).
- Zhang, X.; Kondragunta, S.; Ram, J.; Schmidt, C.; Huang, H.C. Near-real-time global biomass burning emissions product from geostationary satellite constellation. J. Geophys. Res. Atmos. 2012, 117, D14201. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, H.; Tong, D.Q.; Xiu, A.; Zhang, X.; Gao, C. Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the Northeastern China. Sci. Total Environ. 2020, 716, 136517. [Google Scholar] [CrossRef]
- Jorquera, H. Air quality at Santiago, Chile: A box modeling approach II. PM2.5, coarse and PM10 particulate matter fractions. Atmos. Environ. 2002, 36, 331–344. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—an R package for air quality data analysis. Environ. Model. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- Grange, S.K.; Lewis, A.C.; Carslaw, D.C. Source apportionment advances using polar plots of bivariate correlation and regression statistics. Atmos. Environ. 2016, 145, 128–134. [Google Scholar] [CrossRef]
- Sun, X.Z.; Wang, K.; Li, B.; Zong, Z.; Shi, X.F.; Ma, L.X.; Fu, D.L.; Thapa, S.; Qi, H.; Tian, C.G. Exploring the cause of PM2.5 pollution episodes in a cold metropolis in China. J. Clean. Prod. 2020, 256, 120275. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Bao, Q.; Gao, Z.; Cheng, T.; Yu, Y. Evaluation of straw open burning prohibition effect on provincial air quality during October and November 2018 in Jilin Province. Atmosphere 2019, 10, 375. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Han, H.; Zhao, T.; Zhang, X.; Zhuang, B.; Wang, T.; Chen, H.; Wu, Y.; Li, M. Collective impacts of biomass burning and synoptic weather on surface PM2.5 and CO in Northeast China. Atmos. Environ. 2019, 213, 64–80. [Google Scholar] [CrossRef]
- Li, W.G.; Duan, F.K.; Zhao, Q.; Song, W.W.; Cheng, Y.; Wang, X.Y.; Li, L.; He, K.B. Investigating the effect of sources and meteorological conditions on wintertime haze formation in Northeast China: A case study in Harbin. Sci. Total Environ. 2021, 801, 149631. [Google Scholar] [CrossRef]
- Meng, C.; Cheng, T.; Gu, X.; Shi, S.; Wang, W.; Wu, Y.; Bao, F. Contribution of meteorological factors to particulate pollution during winters in Beijing. Sci. Total Environ. 2019, 656, 977–985. [Google Scholar] [CrossRef]
- Li, X.; Cheng, T.; Shi, S.; Guo, H.; Wu, Y.; Lei, M.; Zuo, X.; Wang, W.; Han, Z. Evaluating the impacts of burning biomass on PM2.5 regional transport under various emission conditions. Sci. Total Environ. 2021, 793, 148481. [Google Scholar] [CrossRef]
PE | Start | End | Duration Time | PM2.5 Peak Value | Highest Pollution Level |
---|---|---|---|---|---|
PE I | 20:00 on November 16 | 7:00 on November 18 | 35 h | 270 μg m−3 | Seriously polluted |
PE II | 20:00 on 7 April | 7:00 on 8 April | 11 h | 598 μg m−3 | Seriously polluted |
PE III | 19:00 on 8 April | 11:00 on 10 April | 40 h | 251 μg m−3 | Seriously polluted |
PE IV | 18:00 on 20 April | 4:00 on 21 April | 11 h | 223 μg m−3 | Heavily polluted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Chen, W.; Zhang, P.; Chen, J.; Song, G. An Integrated Quantitative Method Based on ArcGIS Evaluating the Contribution of Rural Straw Open Burning to Urban Fine Particulate Pollution. Remote Sens. 2022, 14, 4671. https://doi.org/10.3390/rs14184671
Wen X, Chen W, Zhang P, Chen J, Song G. An Integrated Quantitative Method Based on ArcGIS Evaluating the Contribution of Rural Straw Open Burning to Urban Fine Particulate Pollution. Remote Sensing. 2022; 14(18):4671. https://doi.org/10.3390/rs14184671
Chicago/Turabian StyleWen, Xin, Weiwei Chen, Pingyu Zhang, Jie Chen, and Guoqing Song. 2022. "An Integrated Quantitative Method Based on ArcGIS Evaluating the Contribution of Rural Straw Open Burning to Urban Fine Particulate Pollution" Remote Sensing 14, no. 18: 4671. https://doi.org/10.3390/rs14184671
APA StyleWen, X., Chen, W., Zhang, P., Chen, J., & Song, G. (2022). An Integrated Quantitative Method Based on ArcGIS Evaluating the Contribution of Rural Straw Open Burning to Urban Fine Particulate Pollution. Remote Sensing, 14(18), 4671. https://doi.org/10.3390/rs14184671