Comparison of Lake Ice Extraction Methods Based on MODIS Images
Abstract
:1. Introduction
2. Study Area
3. Data and Method
3.1. Data
3.2. Methods
3.3. Accuracy Evaluation
4. Results
4.1. Comparison of the Percentage of Lake Ice Area Extracted by Different Remote Sensing Monitoring Methods
4.2. Comparison of the Spatial Accuracy of Different Methods to Identify Lake Ice
4.3. Influence of Snow Cover on Lake Ice Extraction Results
5. Discussion
5.1. Validation of LII Method for Detecting Long-Term Lake Ice Phenology Dates in Qinghai Lake
5.2. Adaptability of LII Method
6. Conclusions
- Among the five remote sensing monitoring methods, the near infrared band reflectance, red band reflectance and the reflectance difference between the red and near infrared band at the lake ice sample points are usually larger than that of lake water, indicating that both SBT and RDT methods can set suitable thresholds to distinguish lake water and lake ice. The NDSI values of some lake ice sample points are smaller than the NDSI values of lake water, which makes the threshold segmentation difficult. Both the MNDSI method and LII method, which are improved by the NDSI method, can increase the difference between lake water and lake ice and are more favorable to distinguish them.
- The monitoring effect of the single band threshold method is better during the freezing period but worse during the ablation period, and that of the RDT method is poor during the freeze period and for snow-covered scenes. Compared with the NDSI method and the MNDSI method, the LII method is significantly more effective in monitoring the lake ice extent of Qinghai Lake during different periods. The LII method has the best monitoring effect in the entire lake freeze–thaw cycle and can be used to extract long-term lake ice phenology features of Qinghai Lake.
- Both the RDT method and the LII method are based on MODIS images, and their extracted lake ice phenology records from 2000 to 2016 of Qinghai Lake are consistent. The FUE extracted based on passive microwave remote sensing imagery is overall earlier than that based on MODIS MOD09GA imagery, while BUE usually lags behind the latter. The mean error caused by cloud when extracting the lake ice phenology date using the LII method is 2.5 days.
- The LII method is suitable for the extraction of the lake ice extent of different types of lakes such as freshwater lakes, brackish water lakes and salt lakes on the QTP. The reasonable threshold range of 0.05~0.07 is helpful to improve the efficiency of extracting lake phenology features in a large region.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Zhu, L.P.; Peng, P.; Zhang, G.Q.; Qiao, B.J.; Liu, C.; Yang, R.M.; Wang, J.B. The role of Tibetan Plateau lakes in surface water cycle under global changes. J. Lake Sci. 2020, 32, 597–608. [Google Scholar]
- Zhu, L.P.; Ju, J.T.; Qiao, B.J.; Yang, R.M.; Liu, C.; Han, B.P. Recent lake changes of the Asia Water Tower and their climate response: Progress, Problems and Prospects. Chin. Sci. Bull. 2019, 64, 2796–2806. (In Chinese) [Google Scholar]
- Assel, R.A.; Robertson, D.M. Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records. Limnol. Oceanogr. 1995, 40, 165–176. [Google Scholar] [CrossRef]
- WMO. Systematic Observation Requirements for Satellite-Based Products for Climate; WMO/TD-No. 1338; GCOS-No. 107; WMO: Geneva, Switzerland, 2006; Volume 1338, p. 103. [Google Scholar]
- Weber, H.; Riffler, M.; Nõges, T.; Wunderle, S. Lake ice phenology from AVHRR data for European lakes: An automated two-step extraction method. Remote Sens. Environ. 2016, 174, 329–340. [Google Scholar] [CrossRef]
- Yu, M.; Lu, P.; Cao, X.W.; Tang, M.G.; Wang, Q.K.; Li, Z.J. Field observations of the bidirectional reflectance characteristics of lake ice. Spectrosc. Spectral Anal. 2020, 40, 2453–2461. [Google Scholar]
- Wang, G.X.; Zhang, T.J.; Yang, R.M.; Zhong, X.Y.; Li, X.D. Lake ice changes in the Third Pole and the Arctic. J. Glaciol. Geocryol. 2020, 42, 124–139. [Google Scholar] [CrossRef]
- Sharma, S.; Blagrave, K.; Watson, S.R.; O’Reilly, C.M.; Batt, R.; Magnuson, J.J.; Clemens, T.; Denfeld, B.A.; Flaim, G.; Grinberga, L.; et al. Increased winter drownings in ice-covered regions with warmer winters. PLoS ONE 2020, 15, e0241222. [Google Scholar] [CrossRef]
- Sharma, S.; Meyer, M.F.; Culpepper, J.; Yang, X.; Hampton, S.; Berger, S.A.; Brousil, M.R.; Fradkin, S.C.; Higgins, S.N.; Jankowski, K.J.; et al. Integrating perspectives to understand lake ice dynamics in a changing world. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005799. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the northern hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef]
- Wei, Q.F.; Ye, Q.H. Review of lake ice monitoring by remote sensing. Prog. Geogr. 2010, 29, 803–810. [Google Scholar]
- Han, W.X.; Huang, C.L.; Gu, J.; Hou, J.L.; Zhang, Y. Spatial-Temporal distribution of the freez-thaw cycle of the largest lake (Qinghai Lake) in China based on Machine Learning and MODIS from 2000 to 2020. Remote Sens. 2021, 13, 1695. [Google Scholar] [CrossRef]
- Sun, H.; Li, C.H.; Yao, X.J. Extraction and analysis of lake ice in typical lakes on the northern slopes of the Himalayas based on NPP-VIIRS data. J. Glaciol. Geocryol. 2021, 43, 70–79. [Google Scholar]
- Qi, M.M.; Liu, S.Y.; Yao, X.J.; Xie, F.M.; Gao, Y.P. Monitoring the ice phenology of Qinghai Lake from 1980 to 2018 using multisource remote sensing data and google earth engine. Remote Sens. 2020, 12, 2217. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.Q.; Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 2017, 607, 120–131. [Google Scholar] [CrossRef]
- Wang, G.X.; Zhang, T.J.; Li, X.D.; He, Z.L.; Li, Y.X. Detecting changes of ice phenology using satellite passive microwave remote sensing data in Qinghai Lake. J. Glaciol. Geocryol. 2019, 43, 296–310. [Google Scholar]
- Wakabayashi, H.; Motohashi, K.; Maezawa, N. Monitoring lake ice in Northern Alaska with backscattering and interferometric approaches using Sentinel-1 SAR data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019; pp. 4202–4205. [Google Scholar]
- Heinilä, K.; Mattila, O.; Metsämäki, S.; Väkevä, S.; Luojus, K.; Schwaizer, G.; Koponen, S. A novel method for detecting lake ice cover using optical satellite data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102566. [Google Scholar] [CrossRef]
- Reed, B.; Budde, M.; Spencer, P.; Miller, A.E. Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ. 2009, 113, 1443–1452. [Google Scholar] [CrossRef]
- Murfitt, J.; Duguay, C.R. 50 years of lake ice research from active microwave remote sensing: Progress and prospects. Remote Sens. Environ. 2021, 264, 112616. [Google Scholar] [CrossRef]
- Gou, P.; Ye, Q.H.; Wei, Q.F. Lake ice change at the Nam Co Lake on the Tibetan Plateau during 2000–2013 and influencing factors. Prog. Geogr. 2015, 34, 1241–1249. [Google Scholar]
- Zhangxin, E.D.C. Using the sea ice data of MODIS to inspect the seasonal variety of the surrounding sea ice of Zhongshan station. Chin. J. Polar Res. 2008, 20, 346–354. [Google Scholar]
- Cao, J.; Yao, X.J.; Jin, H.A.; Zhang, T.F.; Gao, Y.P.; Zhang, D.H.; Zhao, Q.N. Spatiotemporal variation of ice thickness of Lake Qinghai derived from field measurements and model simulation. J. Lake Sci. 2021, 33, 607–621. [Google Scholar]
- Zhang, X.; Wang, K.; Kirillin, G. An automatic method to detect lake ice phenology using MODIS daily temperature imagery. Remote Sens. 2021, 13, 2711. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.Q.; Li, X.G.; Zhang, G.Q.; Zheng, D.; Lee, H. Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data. J. Geophys. Res. Atmos. 2019, 124, 825–843. [Google Scholar] [CrossRef]
- Key, J.R.; Mahoney, R.; Liu, Y.H.; Romanov, P.; Tschudi, M.; Appel, I.; Maslanik, J.; Baldwin, D.; Wang, X.J.; Meade, P. Snow and ice products from Suomi NPP VIIRS. J. Geophys. Res. Atmos. 2013, 118, 816–830. [Google Scholar] [CrossRef]
- Qi, M.M.; Yao, X.J.; Liu, S.Y.; Zhu, Y.; Gao, Y.P.; Liu, B.K. Dynamic change of Lake Qinghai shoreline from 1973 to 2018. J. Lake Sci. 2020, 32, 573–586. [Google Scholar]
- Qi, M.M.; Yao, X.J.; Li, X.F.; An, L.N.; Gong, P.; Gao, Y.P.; Liu, J. Spatial-temporal characteristics of ice phenology of Lake Qinghai from 2000 to 2016. J. Geogr. Sci. 2018, 73, 932–944. [Google Scholar]
- Qi, M.M.; Yao, X.J.; Li, X.F.; Gao, Y.P. A dataset of lake ice phenology in Qinghai Lake from 2000 to 2018. China Sci. Data 2018, 3, 17–27. [Google Scholar]
- Li, X.D.; Zhao, H.F.; Wang, G.X.; Yao, K.R.; Xin, R.; He, Z.L.; Li, L. Influence of watershed hydrothermal conditions and vegetation status on lake level of Qinghai Lake. Arid Land Geogr. 2019, 42, 499–508. [Google Scholar]
- Ke, C.Q.; Xie, H.J.; Lei, R.B.; Li, Q.; Sun, B. Spectral features analysis of sea ice in the Arctic Ocean. Spectrosc. Spectr. Anal. 2012, 32, 1081–1084. [Google Scholar]
- Riggs, G.A.; Hall, D.K.; Salomonson, V.V. A snow index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer. In Proceedings of the IGARSS 1994-1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; pp. 1942–1944. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer Data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1747–1756. [Google Scholar] [CrossRef]
- Li, X.F. The Development and Application of the Monitoring Method of Lake Ice Based on MODIS Images, A Case of the Qinghai-Tibet Plateau. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2018. [Google Scholar]
- Kropáček, J.; Maussion, F.; Chen, F.; Hoerz, S.; Hochschild, V. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere 2013, 7, 287–301. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; Mcintyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Noori, R.; Bateni, S.M.; Saari, M.; Almazroui, M.; Haghighi, T. Strong warming rates in the surface and bottom layers of a boreal lake: Results from approximately six decades of measurements (1964–2020). Earth Space Sci. 2022, 9, e2021EA001973. [Google Scholar] [CrossRef]
- Sharma, S.; Blagrave, K.; Magnuson, J.J.; O’Reilly, C.M.; Oliver, S.; Batt, R.D.; Magee, M.R.; Straile, D.; Weyhenmeyer, G.A.; Winslow, L.; et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Chang. 2019, 9, 227–231. [Google Scholar] [CrossRef]
- Li, X.D.; Long, D.; Huang, Q.; Zhao, F.Y. The state and fate of lake ice thickness in the Northern Hemisphere. Sci. Bull. 2022, 67, 537–546. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Lathrop, R.C. Lake ice: Winter, beauty, value, changes, and a threatened future. LakeLine 2014, 43, 18–27. [Google Scholar]
- Cai, Y.; Ke, C.Q.; Xiao, Y.; Wu, J. What caused the spatial heterogeneity of lake ice phenology changes on the Tibetan Plateau? Sci. Total Environ. 2022, 836, 155517. [Google Scholar] [CrossRef]
- Caldwell, T.J.; Chandra, S.; Albright, T.P.; Harpold, A.A.; Dilts, T.E.; Greenberg, J.A.; Sadro, S.; Dettinger, M.D. Drivers and projections of ice phenology in mountain lakes in the western united states. Limnol. Oceanogr. 2021, 66, 995–1008. [Google Scholar] [CrossRef]
- Solarski, M.; Rzetala, M. Determinants of spatial variability of ice thickness in lakes in high mountains of the temperate zone—The case of the Tatra Mountains. Water 2022, 14, 2360. [Google Scholar] [CrossRef]
- Solarski, M.; Rzetala, M. Changes in the thickness of ice cover on water bodies subject to human pressure (Silesian Upland, Southern Poland). Front. Earth Sci. 2021, 9, 675216. [Google Scholar] [CrossRef]
- Terzhevik, A.Y.; Pal’shin, N.I.; Golosov, S.D.; Zdorovennov, R.E.; Zdorovennova, G.E.; Mitrokhov, A.V.; Potakhin, M.S.; Shipunova, E.A.; Zverev, I.S. Hydrophysical aspects of oxygen regime formation in a shallow ice-covered lake. Water Resour. 2010, 37, 568–579. [Google Scholar] [CrossRef]
- Granados, I.; Toro, M.; Giralt, S.; Camacho, A.; Montes, C. Water column changes under ice during different winters in a mid-latitude Mediterranean high mountain lake. Aquat. Sci. 2020, 82, 30. [Google Scholar] [CrossRef]
- Bengtsson, L. Ice-covered lakes: Environment and climate—Required research. Hydrol. Process 2011, 25, 2767–2769. [Google Scholar] [CrossRef]
- Ke, C.Q.; Cai, Y.; Xiao, Y. Monitoring ice phenology variations in Khanka Lake based on passive remote sensing data from 1979 to 2019. Natl. Remote Sens. Bull. 2022, 26, 201–210. [Google Scholar]
ID | Sensor | Path/Row | Date | ID | Sensor | Path/Row | Date |
---|---|---|---|---|---|---|---|
01 | ETM+ | 133/034 | 21 December 2019 | 10 | OLI | 133/034 | 26 March 2017 |
02 | ETM+ | 133/035 | 21 December 2019 | 11 | OLI | 133/035 | 26 March 2017 |
03 | ETM+ | 133/034 | 17 February 2018 | 12 | OLI | 134/036 | 24 April 2019 |
04 | ETM+ | 133/035 | 17 February 2018 | 13 | OLI | 138/039 | 3 May 2018 |
05 | ETM+ | 133/034 | 6 April 2018 | 14 | OLI | 138/039 | 1 March 2017 |
06 | ETM+ | 133/035 | 6 April 2018 | 15 | OLI | 138/039 | 25 March 2019 |
07 | ETM+ | 134/036 | 6 December 2017 | 16 | OLI | 136/034 | 31 March 2017 |
08 | ETM+ | 134/036 | 15 May 2018 | 17 | OLI | 136/034 | 29 November 2018 |
09 | ETM+ | 136/034 | 7 December 2018 |
Method | SBT | RDT | NDSI | MNDSI | LII | |
---|---|---|---|---|---|---|
Threshold | T1 | T2 | T3 | T4 | T5 | T6 |
0.04 | 0.028 | 0.05 | 0.65 | 0.47 | 0.07 |
Date | True Value of the Percentage of Lake Ice Area (%) | Absolute Values of Percentage Error of Lake Ice Area Extracted by Different Methods (%) | |||||
---|---|---|---|---|---|---|---|
LII | RDT | SBT | NDSI | MNDSI | |||
Freeze period | 21 December 2019 | 18.09 | 3.92 | 5.90 | 1.81 | 4.33 | 6.09 |
complete Freeze period | 17 February 2018 | 100.00 | 1.02 | 1.99 | 0.00 | 4.19 | 12.67 |
Ablation period | 26 March 2017 | 45.09 | 0.10 | 0.73 | 7.59 | 5.04 | 0.10 |
complete Ablation period | 6 April 2018 | 2.09 | 1.07 | 0.31 | 2.12 | 1.12 | 0.53 |
mean | - | - | 1.53 | 2.23 | 2.88 | 3.67 | 4.85 |
Date | Method | Evaluation Indicator | |||
---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Recall (%) | MIoU (%) | ||
21 December 2019 | LII | 92.56 | 88.00 | 68.31 | 77.00 |
RDT | 91.46 | 89.58 | 59.88 | 73.20 | |
SBT | 93.05 | 84.93 | 74.73 | 77.97 | |
NDSI | 88.35 | 73.81 | 55.98 | 66.86 | |
MNDSI | 90.07 | 67.00 | 89.07 | 75.03 | |
17 February 2018 | LII | 98.92 | 100.00 | 98.92 | 49.46 |
RDT | 96.71 | 100.00 | 96.71 | 48.36 | |
SBT | 100.00 | 100.00 | 100.00 | 100.00 | |
NDSI | 95.83 | 100.00 | 95.83 | 47.92 | |
MNDSI | 87.33 | 100.00 | 87.33 | 43.67 | |
26 March 2017 | LII | 89.91 | 87.83 | 89.73 | 83.07 |
RDT | 89.82 | 87.95 | 89.36 | 81.36 | |
SBT | 86.15 | 81.81 | 88.51 | 75.56 | |
NDSI | 82.94 | 80.10 | 81.98 | 70.64 | |
MNDSI | 86.51 | 84.24 | 85.67 | 76.02 | |
6 April 2018 | LII | 98.89 | 90.37 | 48.56 | 72.53 |
RDT | 98.35 | 61.22 | 56.00 | 69.84 | |
SBT | 95.61 | 29.13 | 78.13 | 61.23 | |
NDSI | 96.49 | 24.73 | 39.08 | 57.15 | |
MNDSI | 99.06 | 82.37 | 65.80 | 78.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yao, X.; Wei, Q.; Duan, H.; Zhang, Y. Comparison of Lake Ice Extraction Methods Based on MODIS Images. Remote Sens. 2022, 14, 4740. https://doi.org/10.3390/rs14194740
Zhang H, Yao X, Wei Q, Duan H, Zhang Y. Comparison of Lake Ice Extraction Methods Based on MODIS Images. Remote Sensing. 2022; 14(19):4740. https://doi.org/10.3390/rs14194740
Chicago/Turabian StyleZhang, Hongfang, Xiaojun Yao, Qixin Wei, Hongyu Duan, and Yuan Zhang. 2022. "Comparison of Lake Ice Extraction Methods Based on MODIS Images" Remote Sensing 14, no. 19: 4740. https://doi.org/10.3390/rs14194740
APA StyleZhang, H., Yao, X., Wei, Q., Duan, H., & Zhang, Y. (2022). Comparison of Lake Ice Extraction Methods Based on MODIS Images. Remote Sensing, 14(19), 4740. https://doi.org/10.3390/rs14194740